Radical Besinnung in Formale und transzendentale Logik (1929)

Article
  • 10 Downloads

Abstract

This paper explicates Husserl’s usage of what he calls “radical Besinnung” in Formale und transzendentale Logik (1929). Husserl introduces radical Besinnung as his method in the introduction to FTL. Radical Besinnung aims at criticizing the practice of formal sciences by means of transcendental phenomenological clarification of its aims and presuppositions. By showing how Husserl applies this method to the history of formal sciences down to mathematicians’ work in his time, the paper explains in detail the relationship between historical critical Besinnung and transcendental phenomenology. Ultimately the paper suggests that radical Besinnung should be viewed as a general methodological framework within which transcendental phenomenological descriptions are used to criticize historically given goal-directed practices.

References

  1. Becker, O. (1973). Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene. 2., unveränderte Auflage. Tübingen, Max Niemeyer Verlag.Google Scholar
  2. Carr, D. (1991). Time, narrative, history. Bloomington: Indiana University Press.Google Scholar
  3. Da Silva, J. J. (2017). Mathematics and its applications. A transcendental-idealist perspective. Synthese Library 385. Dordrecht: Springer.Google Scholar
  4. Dodd, J. (2004). Crisis and reflection: An essay on Husserl’s Crisis of the European Sciences. Dordrecht: Springer.Google Scholar
  5. Ewald, W. (1996). From Kant to Hilbert: A source book in the foundations of mathematics (Vol. II). Oxford: Clarendon Press.Google Scholar
  6. Hartimo, M. (2016). Husserl on completeness, definitely. Synthese.  https://doi.org/10.1007/s11229-016-1278-7.Google Scholar
  7. Hartimo, M. (2017). Husserl and Hilbert. In Essays on Husserl’s logic and philosophy of mathematics (pp. 245-263). S. Centrone (Ed.). Synthese Library. Dordrecht: Springer.Google Scholar
  8. Hartimo, M. (2018). Husserl’s scientific context 1917-1938: A look into Husserl’s private library. The New Yearbook for Phenomenology and Phenomenological Philosophy (forthcoming).Google Scholar
  9. Heffernan, G. (unpublished manuscript). Concordance to Husserl’s use of the term Besinnung. Google Scholar
  10. Heffernan, G. (1989). Isagoge in die phänomenologische Apophantik. Eine Einführung in die phänomenologische Urteilslogik durch die Auslegung des Textes der Formalen und transzendentalen Logik von Edmund Husserl. Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  11. Hilbert, D. (1922). Neubegründung der Mathematik. Hamburg: Verlag des mathematischen Seminars; English translation in Ewald, W. (1996). From Kant to Hilbert: A source book in the foundations of mathematics Vol II (pp. 1117-1134). Oxford: Clarendon Press.Google Scholar
  12. Hua 17. Husserl, E. (1974). Formale und transzendentale Logik: Versuch einer Kritik der logischen Vernunft (1929). P. Janssen (Ed.). The Hague: Martinus Nijhoff; Formal and Transcendental Logic. D. Cairns (Trans.). Martinus Nijhoff: The Hague, 1969.Google Scholar
  13. Hua 19/1. Husserl, E. (1984). Logische Untersuchungen, Zweiter Band, Erster Teil. Untersuchungen zur Phänomenologie und Theorie der Erkenntnis. U. Panzer (Ed.). The Hague: Martinus Nijhoff.Google Scholar
  14. Hua 6. Husserl, E. (1976). Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie: Eine Einleitung in die phänomenologische Philosophie. W. Biemel (Ed.). The Hague: Martinus Nijhoff; The crisis of european sciences and transcendental phenomenology. An introduction to phenomenological philosophy. D. Carr (Trans.). Evanston: Northwestern University Press, 1970.Google Scholar
  15. Kern, I. (1976). The three ways to the transcendental phenomenological reduction in the philosophy of Edmund Husserl. In Husserl: Expositions and appraisals (pp. 126-149). F. Elliston and P. McCormick (Eds., Trans.). Notre Dame, London: University of Notre Dame Press.Google Scholar
  16. Klev, A. (2017). Husserl’s logical grammar. History and Philosophy of Logic.  https://doi.org/10.1080/01445340.2017.1399782.Google Scholar
  17. Mancosu, P. (2010). The adventure of reason. Interplay between philosophy of mathematics and mathematical logic 1900-1940. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Moran, D. (2012). Husserl’s Crisis of the European Sciences and Transcendental Phenomenology: An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Rouse, J. (2002). How scientific practices matter: Reclaiming philosophical naturalism. Chicago: University of Chicago Press.Google Scholar
  20. Schuhmann, K. (1977). Husserl-Chronik, Denk- und Lebensweg Edmund Husserls. The Hague: Martinus Nijhoff.Google Scholar
  21. Steinbock, A. (1995). Home and beyond. Generative phenomenology after Husserl. Evanston: Northwestern University Press.Google Scholar
  22. von Wright, G. H. (1963). Norm and action. London: Routledge and Kegan Paul.Google Scholar
  23. Weyl, H. (1925). Die heutige Erkenntnislage in der Mathematik. Symposion. Philosophische Zeitschrift für Forschung und Aussprache, 1(1), 1–32.Google Scholar
  24. Weyl, H. (1926). Philosophie der Mathematik und Naturwissenschaft. München: Oldenburg.Google Scholar
  25. Weyl, H. (2009). Philosophy of mathematics and natural science. Princeton: Princeton University Press.Google Scholar
  26. Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: piecewise approximations to reality. Cambridge, London: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of JyväskyläJyväskyläFinland

Personalised recommendations