Husserl Studies

, Volume 27, Issue 3, pp 217–226 | Cite as

Der Durchgang durch das Unmögliche. An Unpublished Manuscript from the Husserl-Archives

Article

Abstract

The article introduces and discusses an unpublished manuscript by Edmund Husserl, conserved at the Husserl-Archives Leuven with signature K I 26, pp. 73a–73b. The article is followed by the text of the manuscript in German and in an English translation. The manuscript, titled “The Transition through the Impossible” (Der Durchgang durch das Unmögliche), was part of the material Husserl used for his 1901 Doppelvortrag in Göttingen. In the manuscript, the impossible is characterized as the “sphere of objectlessness” (Sphäre der Gegenstandslosigkeit) and Husserl addresses the question whether and when it is warranted to perform a transition through the impossible to obtain valid results for the sphere of objectivity.

References

  1. Centrone, S. (2010). Logic and philosophy of mathematics in the early Husserl. Synthese Library 345. Dordrecht: Springer.Google Scholar
  2. Centrone, S. (2011). Husserls Doppelvortrag in der mathematischen Gesellschaft in Göttingen 1901. Neuen Abhandlungen der Akademie der Wissenschaften zu Göttingen (forthcoming).Google Scholar
  3. Gauß, C. F. (1863). Theoria residuorum biquadraticorum, commentatio secunda. In Werke. Göttingen: Königliche Gesellschaft der Wissenschaften.Google Scholar
  4. Hartimo, M. H. (2007). Towards completeness: Husserl on theories of manifolds 1890–1901. Synthese, 156, 281–310.CrossRefGoogle Scholar
  5. Husserl, E. (1891). Philosophie der Arithmetik (Psychologische und Logische Untersuchungen). Halle-Saale: C.E.M. Pfeffer (Robert Stricker).Google Scholar
  6. Hua XII. Husserl, E. Philosophie der Arithmetik. Mit Ergänzenden Texten (18901901). Husserliana XII. Den Haag: Nijhoff, 1970.Google Scholar
  7. Hua XXI. Husserl, E. Studien zur Arithmetik und Geometrie. Den Haag: Nijhoff, 1983.Google Scholar
  8. Hua XIX/1. Husserl, E. Logische Untersuchungen (Zweiter Band, Erster Teil). Den Haag: Nijhoff/Kluwer, 1984.Google Scholar
  9. Hua XIX/2. Husserl, E. Logische Untersuchungen (Zweiter Band, Zweiter Teil). Den Haag: Nijhoff/Kluwer, 1984.Google Scholar
  10. Husserl, E. (1994a). Briefwechsel. Husserliana Dokumente III. Dordrecht: Kluwer.Google Scholar
  11. Hua CW V (1994b). Husserl, E. Early writings in the philosophy of logic and mathematics. Edmund Husserl Collected Works V. Dordrecht: Kluwer.Google Scholar
  12. Hua CW X (2003). Husserl, E. Philosophy of arithmetic. Edmund Husserl Collected Works X. Dordrecht: Kluwer.Google Scholar
  13. Husserl, E. (2005a). Lecture On the concept of number (WS 1889/90). The New Yearbook for Phenomenology and Phenomenological Philosophy, V, 279–309 recto.Google Scholar
  14. Husserl, E. (2005b). Vorlesung Über den Begriff der Zahl (WS 1889/90). The New Yearbook for Phenomenology and Phenomenological Philosophy, V, 278–308 verso.Google Scholar
  15. Ierna, C. (2005). The beginnings of Husserl’s philosophy. Part 1: From Über den Begriff der Zahl to Philosophie der Arithmetik. The New Yearbook for Phenomenology and Phenomenological Philosophy, V, 1–56.Google Scholar
  16. Ierna, C. (2006). The beginnings of Husserl’s philosophy. Part 2: Mathematical and philosophical background. The New Yearbook for Phenomenology and Phenomenological Philosophy, VI, 33–81.Google Scholar
  17. Peckhaus, V. (1990). Hilbertprogramm und Kritische Philosophie. Das Göttinger Modell interdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  18. Schuhmann, E., & Schuhmann, K. (2001). Husserls Manuskripte zu seinem Göttinger Doppelvortrag von 1901. Husserl Studies, 17(2), 87–123.CrossRefGoogle Scholar
  19. Spiegelberg, H. (1982). The phenomenological movement (3 ed.). Phaenomenologica 5/6. Den Haag: Nijhoff.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Husserl-Archives LeuvenKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations