Adjusting for health status in non-linear models of health care disparities

  • Benjamin L. Cook
  • Thomas G. McGuire
  • Ellen Meara
  • Alan M. Zaslavsky
Article

Abstract

This article compared conceptual and empirical strengths of alternative methods for estimating racial disparities using non-linear models of health care access. Three methods were presented (propensity score, rank and replace, and a combined method) that adjust for health status while allowing SES variables to mediate the relationship between race and access to care. Applying these methods to a nationally representative sample of blacks and non-Hispanic whites surveyed in the 2003 and 2004 Medical Expenditure Panel Surveys (MEPS), we assessed the concordance of each of these methods with the Institute of Medicine (IOM) definition of racial disparities, and empirically compared the methods’ predicted disparity estimates, the variance of the estimates, and the sensitivity of the estimates to limitations of available data. The rank and replace and combined methods (but not the propensity score method) are concordant with the IOM definition of racial disparities in that each creates a comparison group with the appropriate marginal distributions of health status and SES variables. Predicted disparities and prediction variances were similar for the rank and replace and combined methods, but the rank and replace method was sensitive to limitations on SES information. For all methods, limiting health status information significantly reduced estimates of disparities compared to a more comprehensive dataset. We conclude that the two IOM-concordant methods were similar enough that either could be considered in disparity predictions. In datasets with limited SES information, the combined method is the better choice.

Keywords

Racial disparities Statistical adjustment for health status Propensity score Rank and replace 

References

  1. AHRQ: National Healthcare Disparities Report, 2004. Agency for Healthcare Research and Quality, Rockville, MD (2004)Google Scholar
  2. AHRQ: National Healthcare Disparities Report, 2005. Agency for Healthcare Research and Quality, Rockville, MD (2005)Google Scholar
  3. AHRQ: National Healthcare Disparities Report, 2006. Agency for Healthcare Research and Quality, Rockville, MD (2006)Google Scholar
  4. AHRQ: National Healthcare Disparities Report, 2007. Agency for Healthcare Research and Quality, Rockville, MD (2007)Google Scholar
  5. Ashton, C.M., Haidet, P., Paterniti, D.A., Collins, T.C., Gordon, H.S., O’Malley, K., et al.: Racial and ethnic disparities in the use of health services: bias, preferences, or poor communication? J. Gen. Intern. Med. 18(2), 146–152 (2003). doi:10.1046/j.1525-1497.2003.20532.x PubMedCrossRefGoogle Scholar
  6. Ayanian, J.Z., Cleary, P.D., Weissman, J.S., Epstein, A.M.: The effect of patients’ preferences on racial differences in access to renal transplantation. N. Engl. J. Med. 341(22), 1661–1669 (1999). doi:10.1056/NEJM199911253412206 PubMedCrossRefGoogle Scholar
  7. Baicker, K., Chandra, A., Skinner, J.S., Wennberg, J.E.: Who you are and where you live: how race and geography affect the treatment of medicare beneficiaries. Health Aff. (Millwood) (Suppl Web Exclusives), VAR33–VAR44 (2004)Google Scholar
  8. Balsa, A.I., Cao, Z., McGuire, T.G.: Does managed health care reduce health care disparities between minorities and Whites? J. Health Econ. 27(1), 101–121 (2007). doi:10.1016/j.jhealeco.2006.06.001 CrossRefGoogle Scholar
  9. Basu, A., Rathouz, P.J.: Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics 6(1), 93–109 (2005). doi:10.1093/biostatistics/kxh020 PubMedCrossRefGoogle Scholar
  10. Bertrand, M., Mullainathan, S.: Are Emily and Brendan More Employable than Lakisha and Jamal? A field experiment on labor market discrimination. Am. Econ. Rev. 94(4), 991–1013 (2004). doi:10.1257/0002828042002561 CrossRefGoogle Scholar
  11. Blinder, A.: Wage discrimination: reduced form and structural estimates. J. Hum. Resour. 8, 436–455 (1973). doi:10.2307/144855 CrossRefGoogle Scholar
  12. Buntin, M.B., Zaslavsky, A.M.: Too much ado about two-part models and transformation? Comparing methods of modeling medicare expenditures. J. Health Econ. 23(3), 525–542 (2004). doi:10.1016/j.jhealeco.2003.10.005 PubMedCrossRefGoogle Scholar
  13. Chandra, A., Skinner, J.: 2003. “Geography and racial disparities in health and health care.” NBER Working Paper No. 9513. Cambridge, MAGoogle Scholar
  14. Cook, B.L.: Effect of Medicaid managed care on racial disparities in health care access. Health Serv. Res. 42(1), 124–145 (2007). doi:10.1111/j.1475-6773.2006.00611.x PubMedCrossRefGoogle Scholar
  15. Cook, B.L., Miranda, J., McGuire, T.G.: Measuring trends in mental health care disparities, 2000–2004. Psychiatr. Serv. 58(12), 1533–1540 (2007)PubMedCrossRefGoogle Scholar
  16. Cook, B.L., McGuire, T.G., Zuvekas, S.H.: Measuring trends in racial/ethnic health care disparities. Med. Care Res. Rev. (2008) (in press)Google Scholar
  17. Cooper-Patrick, L., Powe, N.R., Jenckes, M.W., Gonzales, J.J., Levine, D.M., Ford, D.E.: Identification of patient attitudes and preferences regarding treatment of depression. J. Gen. Intern. Med. 12(7), 431–438 (1997). doi:10.1046/j.1525–1497.1997.00075.x PubMedCrossRefGoogle Scholar
  18. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979). doi:10.1214/aos/1176344552 CrossRefGoogle Scholar
  19. Ellis, R., van de Ven, W.: Risk adjustment in competitive health insurance markets. In: Culyer, A.J., Newhouse, J.P. (eds.) Handbook of Health Economics, pp. 755–845. Elsevier, New York (2000)Google Scholar
  20. Even, W.E., Macpherson, D.A.: The decline of private-sector unionization and the gender wage gap. J. Hum. Resour. 28, 279–296 (1993). doi:10.2307/146204 CrossRefGoogle Scholar
  21. Fairlie, R.: 2006. “An Extension of the Blinder-Oaxaca Decomposition Technique to Logit and Probit Models.” IZA Discussion Papers. I. f. t. S. o. L. (IZA). Bonn, GermanyGoogle Scholar
  22. Fiscella, K., Franks, P., Doescher, M.P., Saver, B.G.: Disparities in health care by race, ethnicity, and language among the insured: findings from a national sample. Med. Care 40(1), 52–59 (2002). doi:10.1097/00005650–200201000-00007 PubMedCrossRefGoogle Scholar
  23. Ford, E., Newman, J., Deosaransingh, K.: Racial and ethnic differences in the use of cardiovascular procedures: findings from the California Cooperative Cardiovascular Project. Am. J. Public Health 90(7), 1128–1134 (2000)PubMedCrossRefGoogle Scholar
  24. Fournier, M.: Exploiting information from path dependence in Oaxaca-Blinder decomposition procedures. Appl. Econ. Lett. 12, 669–672 (2005). doi:10.1080/13504850500191152 CrossRefGoogle Scholar
  25. Guevara, J.P., Mandell, D.S., Rostain, A.L., Zhao, H., Hadley, T.R.: Disparities in the reporting and treatment of health conditions in children: an analysis of the Medical Expenditure Panel Survey. Health Serv. Res. 41(2), 532–549 (2006). doi:10.1111/j.1475-6773.2005.00484.x PubMedCrossRefGoogle Scholar
  26. Ham, J., Svejnar, J., Terrell, K.: Unemployment and the social safety net during transitions to a market economy: evidence from the Czech and Slovak Republics. Am. Econ. Rev. 88(5), 1117–1142 (1998)Google Scholar
  27. Hargraves, J.L., Hadley, J.: The contribution of insurance coverage and community resources to reducing racial/ethnic disparities in access to care. Health Serv. Res. 38(3), 809–829 (2003). doi:10.1111/1475–6773.00148 PubMedCrossRefGoogle Scholar
  28. Hargraves, J.L., Wilson, I.B., Zaslavsky, A., James, C., Walker, J.D., Rogers, G., et al.: Adjusting for patient characteristics when analyzing reports from patients about hospital care. Med. Care 39(6), 635–641 (2001). doi:10.1097/00005650-200106000-00011 PubMedCrossRefGoogle Scholar
  29. Hirano, K., Imbens, G.: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Serv. Outcomes Res. Methodol. 2, 259–278 (2001). doi:10.1023/A:1020371312283 CrossRefGoogle Scholar
  30. Hofer, T.P., Hayward, R.A., Greenfield, S., Wagner, E.H., Kaplan, S.H., Manning, W.G.: “The unreliability of individual physician “report cards” for assessing the costs and quality of care of a chronic disease. JAMA 281(22), 2098–2105 (1999). doi:10.1001/jama.281.22.2098 PubMedCrossRefGoogle Scholar
  31. Howland, J., Stokes 3rd, J., Crane, S.C., Belanger, A.J.: Adjusting capitation using chronic disease risk factors: a preliminary study. Health Care Financ. Rev. 9(2), 15–23 (1987)PubMedGoogle Scholar
  32. Ibrahim, S.A., Whittle, J., Bean-Mayberry, B., Kelley, M.E., Good, C., Conigliaro, J.: Racial/ethnic variations in physician recommendations for cardiac revascularization. Am. J. Public Health 93(10), 1689–1693 (2003)PubMedCrossRefGoogle Scholar
  33. IOM: Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. National Academies Press, Washington, DC (2002)Google Scholar
  34. Kirby, J.B., Taliaferro, G., Zuvekas, S.H.: Explaining racial and ethnic disparities in health care. Med. Care 44(Suppl 5), I64–I72 (2006)PubMedGoogle Scholar
  35. Kressin, N.R., Chang, B.H., Whittle, J., Peterson, E.D., Clark, J.A., Rosen, A.K., et al.: Racial differences in cardiac catheterization as a function of patients’ beliefs. Am. J. Public Health 94(12), 2091–2097 (2004)PubMedCrossRefGoogle Scholar
  36. Kressin, N.R., Petersen, L.A.: Racial differences in the use of invasive cardiovascular procedures: review of the literature and prescription for future research. Ann. Intern. Med. 135(5), 352–366 (2001)PubMedGoogle Scholar
  37. Kupersmith, J.: Quality of care in teaching hospitals: a literature review. Acad. Med. 80(5), 458–466 (2005). doi:10.1097/00001888–200505000-00012 PubMedCrossRefGoogle Scholar
  38. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman & Hall, London (1989)Google Scholar
  39. McGuire, T.G., Alegria, M., Cook, B.L., Wells, K.B., Zaslavsky, A.M.: Implementing the Institute of Medicine definition of disparities: an application to mental health care. Health Serv. Res. 41(5), 1979–2005 (2006). doi:10.1111/j.1475-6773.2006.00583.x PubMedCrossRefGoogle Scholar
  40. Nielsen, H.S.: Discrimination and detailed decomposition in a logit model. Econ. Lett. 61, 115–120 (1998). doi:10.1016/S0165-1765(98)00155-4 CrossRefGoogle Scholar
  41. O’Malley, A.J., Zaslavsky, A.M., Elliott, M.N., Zaborski, L., Cleary, P.D.: Case-mix adjustment of the CAHPS Hospital Survey. Health Serv. Res. 40(6 Pt 2), 2162–2181 (2005). doi:10.1111/j.1475-6773.2005.00470.x PubMedCrossRefGoogle Scholar
  42. Oaxaca, R.: Male-female wage differentials in urban labor markets. Int. Econ. Rev. 9, 693–709 (1973). doi:10.2307/2525981 CrossRefGoogle Scholar
  43. Park, R.: Estimation with heteroscedastic error terms. Econometrica 34, 888 (1966). doi:10.2307/1910108 CrossRefGoogle Scholar
  44. Peterson, E.D., Shaw, L.K., DeLong, E.R., Pryor, D.B., Califf, R.M., Mark, D.B.: Racial variation in the use of coronary-revascularization procedures. Are the differences real? Do they matter? N. Engl. J. Med. 336(7), 480–486 (1997). doi:10.1056/NEJM199702133360706 PubMedCrossRefGoogle Scholar
  45. Petersen, L.A., Wright, S.M., Peterson, E.D., Daley, J.: Impact of race on cardiac care and outcomes in veterans with acute myocardial infarction. Med. Care 40(Suppl 1), I86–I96 (2002). doi:10.1097/00005650-200201001-00010 PubMedGoogle Scholar
  46. Powers, D.A., Pullman, T.W.: Year. “Multivariate decomposition for nonlinear models.” In Population Association of America 2006 Annual Meeting, edited by, pp. Princeton, NJGoogle Scholar
  47. Riach, P.A., Rich, J.: Field experiments of discrimination in the market place. Econ. J. 112, F480–F518 (2002). doi:10.1111/1468-0297.00080 CrossRefGoogle Scholar
  48. Rosenbaum, P.: Model-based direct adjustment. J. Am. Stat. Assoc. 82, 387–394 (1987). doi:10.2307/2289440 CrossRefGoogle Scholar
  49. Rosenbaum, P., Rubin, D.: Reducing bias in observational studies using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516–524 (1984). doi:10.2307/2288398 CrossRefGoogle Scholar
  50. Rubin, D.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66(5), 688–701 (1974). doi:10.1037/h0037350 CrossRefGoogle Scholar
  51. Rubin, D.B.: Estimating causal effects from large data sets using propensity scores. Ann. Intern. Med. 127(8 Pt 2), 757–763 (1997)PubMedGoogle Scholar
  52. Saha, S., Arbelaez, J.J., Cooper, L.A.: Patient-physician relationships and racial disparities in the quality of health care. Am. J. Public Health 93(10), 1713–1719 (2003)PubMedCrossRefGoogle Scholar
  53. Schneider, E.C., Leape, L.L., Weissman, J.S., Piana, R.N., Gatsonis, C., Epstein, A.M.: “Racial differences in cardiac revascularization rates: does “overuse” explain higher rates among white patients? Ann. Intern. Med. 135(5), 328–337 (2001)PubMedGoogle Scholar
  54. Schulman, K.A., Berlin, J.A., Harless, W., Kerner, J.F., Sistrunk, S., Gersh, B.J., et al.: The effect of race and sex on physicians’ recommendations for cardiac catheterization. N. Engl. J. Med. 340(8), 618–626 (1999). doi:10.1056/NEJM199902253400806 PubMedCrossRefGoogle Scholar
  55. Shi, L.: Experience of primary care by racial and ethnic groups in the United States. Med. Care 37(10), 1068–1077 (1999). doi:10.1097/00005650-199910000-00010 PubMedCrossRefGoogle Scholar
  56. Skinner, J., Weinstein, J.N., Sporer, S.M., Wennberg, J.E.: Racial, ethnic, and geographic disparities in rates of knee arthroplasty among Medicare patients. N. Engl. J. Med. 349(14), 1350–1359 (2003). doi:10.1056/NEJMsa021569 PubMedCrossRefGoogle Scholar
  57. StataCorp: Stata Statistical Software 9.0. (release. College Station, TX: Stata CorporationGoogle Scholar
  58. Waidmann, T.A. and Rajan, S. 2000. “Race and ethnic disparities in health care access and utilization: an examination of state variation. Med. Care Res. Rev. 57(Suppl 1), 55–84 (2005). doi:10.1177/107755800773743600 Google Scholar
  59. Weinick, R.M., Zuvekas, S.H., Cohen, J.W.: Racial and ethnic differences in access to and use of health care services, 1977 to 1996. Med. Care Res. Rev. 57(Suppl 1), 36–54 (2000). doi:10.1177/107755800773743592 PubMedCrossRefGoogle Scholar
  60. Wells, K., Klap, R., Koike, A., Sherbourne, C.: Ethnic disparities in unmet need for alcoholism, drug abuse, and mental health care. Am. J. Psychiatry 158(12), 2027–2032 (2001). doi:10.1176/appi.ajp.158.12.2027 PubMedCrossRefGoogle Scholar
  61. Yun, M.: Decomposing differences in the first moment. Econ. Lett. 82, 275–280 (2004). doi:10.1016/j.econlet.2003.09.008 CrossRefGoogle Scholar
  62. Zaslavsky, A.M., Ayanian, J.Z.: Integrating research on racial and ethnic disparities in health care over place and time. Med. Care 43(4), 303–307 (2005). doi:10.1097/01.mlr.0000159975.43573.8d PubMedCrossRefGoogle Scholar
  63. Zaslavsky, A., Zaborski, L., Ding, L., Shaul, J., Cioffi, M., Cleary, P.: Adjusting performance measures to ensure equitable plan comparisons. Health Care Financ. Rev. 22(3), 109–126 (2001)Google Scholar
  64. Zuvekas, S.H., Taliaferro, G.S.: Pathways to access: health insurance, the health care delivery system, and racial/ethnic disparities, 1996–1999. Health Aff. (Millwood) 22(2), 139–153 (2003). doi:10.1377/hlthaff.22.2.139 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Benjamin L. Cook
    • 1
  • Thomas G. McGuire
    • 2
  • Ellen Meara
    • 2
    • 3
  • Alan M. Zaslavsky
    • 2
  1. 1.Center for Multicultural Mental Health ResearchCambridge Health Alliance—Harvard Medical SchoolSomervilleUSA
  2. 2.Department of Health Care PolicyHarvard Medical SchoolBostonUSA
  3. 3.National Bureau of Economic ResearchCambridgeUSA

Personalised recommendations