Skip to main content

Advertisement

Log in

Sex-specific differences in risk factors, comorbidities, diagnostic challenges, optimal management, and prognostic outcomes of heart failure with preserved ejection fraction: A comprehensive literature review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Due to hormonal variations, heart failure with preserved ejection fraction (HFpEF) remains prevalent in women and affects almost half of the heart failure (HF) patients. Given the yearly death rate of 10–30% and the unavailability of medications targeting HFpEF, the need arises for a better understanding of the fundamental mechanisms of this syndrome. This comprehensive review explores sex-specific differences in traditional risk factors; female-specific factors that may impact HFpEF development and response to therapy, including variations in hormone levels that may occur pre- and post-menopausal or during pregnancy; and disparities in comorbidities, clinical presentation, and diagnostic challenges. Lastly, the review addresses prognostic outcomes, noting that women with HFpEF have a poor quality of life but a higher survival rate. It also discusses novel biomarkers and precision medicine, emphasizing their potential to improve early detection and personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heart failure - symptoms and causes - Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142. Accessed 24 Jul 2023

  2. Redfield MM, Borlaug BA (2023) Heart failure with preserved ejection fraction: a review. JAMA 329:827–838. https://doi.org/10.1001/JAMA.2023.2020

    Article  PubMed  Google Scholar 

  3. Kittleson MM, Panjrath GS, Amancherla K et al (2023) 2023 ACC expert consensus decision pathway on management of heart failure with preserved ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 81:1835–1878. https://doi.org/10.1016/J.JACC.2023.03.393

    Article  PubMed  Google Scholar 

  4. Sotomi Y, Hikoso S, Nakatani D et al (2021) Sex differences in heart failure with preserved ejection fraction. J Am Heart Assoc 10:1–20. https://doi.org/10.1161/JAHA.120.018574

    Article  Google Scholar 

  5. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  6. Day S (2018) Heart failure with preserved ejection fraction. Encyclopedia of Cardiovascular Research and Medicine 1–4:464–468. https://doi.org/10.1016/B978-0-12-809657-4.10904-4

    Article  Google Scholar 

  7. Yang E, Vaishnav J, Song E et al (2022) Atrial fibrillation is an independent risk factor for heart failure hospitalization in heart failure with preserved ejection fraction. ESC Heart Fail 9:2918. https://doi.org/10.1002/EHF2.13836

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trevisan L, Cautela J, Resseguier N et al (2018) Prevalence and characteristics of coronary artery disease in heart failure with preserved and mid-range ejection fractions: a systematic angiography approach. Arch Cardiovasc Dis 111:109–118. https://doi.org/10.1016/J.ACVD.2017.05.006

    Article  PubMed  Google Scholar 

  9. Deney A, Nader V, Matta A et al (2022) Retrospective study of 573 patients with heart failure evaluated for coronary artery disease at Toulouse University Center, France. Med Sci Monit 28:e934804–1. https://doi.org/10.12659/MSM.934804

  10. Brittain EL, Thenappan T, Huston JH et al (2022) Elucidating the clinical implications and pathophysiology of pulmonary hypertension in heart failure with preserved ejection fraction: a call to action: a scientific statement from the American Heart Association. Circulation 146:e73. https://doi.org/10.1161/CIR.0000000000001079

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pulmonary hypertension in women - Brigham and Women’s Hospital. https://www.brighamandwomens.org/medicine/pulmonary-and-critical-care-medicine/womens-lung-health/pulmonary-hypertension-in-women. Accessed 25 Sep 2023

  12. Daubert MA, Douglas PS (2019) Primary prevention of heart failure in women. JACC Heart Fail 7:181–191. https://doi.org/10.1016/J.JCHF.2019.01.011

    Article  PubMed  Google Scholar 

  13. Delicce AV, Makaryus AN (2023) Physiology, Frank Starling Law. StatPearls

  14. Tadic M, Cuspidi C, Plein S et al (2019) Sex and heart failure with preserved ejection fraction: from pathophysiology to clinical studies. J Clin Med 8. https://doi.org/10.3390/JCM8060792

  15. Arendse LB, Jan Danser AH, Poglitsch M et al (2019) Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Rev 71:539. https://doi.org/10.1124/PR.118.017129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanna P, Shivkumar K, Ardell JL (2018) Calming the nervous heart: autonomic therapies in heart failure. Card Fail Rev 4:92. https://doi.org/10.15420/CFR.2018.20.2

  17. Li S, Gupte AA (2017) The role of estrogen in cardiac metabolism and diastolic function. Methodist Debakey Cardiovasc J 13:4. https://doi.org/10.14797/MDCJ-13-1-4

  18. Ueda K, Fukuma N, Adachi Y et al (2021) Sex differences and regulatory actions of estrogen in cardiovascular system. Front Physiol 12:738218. https://doi.org/10.3389/FPHYS.2021.738218/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parrish JN, Bertholomey ML, Pang HW et al (2019) Estradiol modulation of the renin–angiotensin system and the regulation of fear extinction. Transl Psychiatry 9. https://doi.org/10.1038/S41398-019-0374-0

  20. Chen Y, Zhang Z, Hu F et al (2015) 17β-estradiol prevents cardiac diastolic dysfunction by stimulating mitochondrial function: a preclinical study in a mouse model of a human hypertrophic cardiomyopathy mutation. J Steroid Biochem Mol Biol 147:92–102. https://doi.org/10.1016/J.JSBMB.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  21. Mori T, Kai H, Kajimoto H et al (2011) Enhanced cardiac inflammation and fibrosis in ovariectomized hypertensive rats: a possible mechanism of diastolic dysfunction in postmenopausal women. Hypertens Res 34:496–502. https://doi.org/10.1038/HR.2010.261

    Article  CAS  PubMed  Google Scholar 

  22. Subramanya V, Zhao D, Ouyang P et al (2018) Sex hormone levels and change in left ventricular structure among men and post-menopausal women: the multi-ethnic study of atherosclerosis (MESA). Maturitas 108:37. https://doi.org/10.1016/J.MATURITAS.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  23. Schafstedde M, Nordmeyer S (2023) The role of androgens in pressure overload myocardial hypertrophy. Front Endocrinol (Lausanne) 14. https://doi.org/10.3389/FENDO.2023.1112892

  24. Szadkowska I, Guligowska A, Jegier A et al (2023) Serum testosterone level correlates with left ventricular hypertrophy in older women. Front Endocrinol (Lausanne) 13:1079043. https://doi.org/10.3389/FENDO.2022.1079043/BIBTEX

    Article  PubMed  Google Scholar 

  25. Xing C, Zhang J, Zhao H, He B (2022) Effect of sex hormone-binding globulin on polycystic ovary syndrome: mechanisms, manifestations, genetics, and treatment. Int J Womens Health 14:91–105. https://doi.org/10.2147/IJWH.S344542

  26. Dos Santos RL, Da Silva FB, Ribeiro RF, Stefanon I (2014) Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig 18:89–103. https://doi.org/10.1515/HMBCI-2013-0048/ASSET/GRAPHIC/HMBCI-2013-0048_FIG2.JPG

    Article  PubMed  Google Scholar 

  27. Thomas P, Pang Y (2013) Protective actions of progesterone in the cardiovascular system: Potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids 78:583–588. https://doi.org/10.1016/J.STEROIDS.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  28. Szmuilowicz ED, Adler GK, Ricchiuti V et al (2007) Relationships between endogenous sex hormone concentrations and vascular function in postmenopausal women. J Clin Endocrinol Metab 92:4738–4741. https://doi.org/10.1210/JC.2007-1471

    Article  CAS  PubMed  Google Scholar 

  29. Bhullar SK, Shah AK, Dhalla NS (2021) Role of angiotensin II in the development of subcellular remodeling in heart failure. Explor Med 2:352–371. https://doi.org/10.37349/EMED.2021.00054

  30. Florijn BW, Bijkerk R, Van Der Veer EP, Van Zonneveld AJ (2018) Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res 114:210–225. https://doi.org/10.1093/CVR/CVX223

    Article  CAS  PubMed  Google Scholar 

  31. Bernardo BC, Ooi JYY, Matsumoto A et al (2016) Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, disease- and treatment-regulated miRNAs. J Physiol 594:5959–5974. https://doi.org/10.1113/JP272512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernández-Atucha A, Izagirre A, Fraile-Bermúdez AB et al (2017) Sex differences in the aging pattern of renin–angiotensin system serum peptidases. Biol Sex Differ 8. https://doi.org/10.1186/S13293-017-0128-8

  33. Toering TJ, Gant CM, Visser FW et al (2018) Sex differences in renin-angiotensin-aldosterone system affect extracellular volume in healthy subjects. Am J Physiol Renal Physiol 314:F873–F878. https://doi.org/10.1152/AJPRENAL.00109.2017

    Article  CAS  PubMed  Google Scholar 

  34. Tadic M, Cuspidi C, Frydas A, Grassi G (2018) The role of arterial hypertension in development heart failure with preserved ejection fraction: just a risk factor or something more? Heart Fail Rev 23:631–639. https://doi.org/10.1007/S10741-018-9698-8

    Article  PubMed  Google Scholar 

  35. Tadic M, Cuspidi C (2019) Obesity and heart failure with preserved ejection fraction: a paradox or something else? Heart Fail Rev 24:379–385. https://doi.org/10.1007/S10741-018-09766-X

    Article  PubMed  Google Scholar 

  36. McHugh K, DeVore AD, Wu J et al (2019) Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol 73:602–611. https://doi.org/10.1016/J.JACC.2018.11.033

    Article  PubMed  Google Scholar 

  37. Grassi G, Seravalle G, Quarti-Trevano F et al (2009) Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 53:205–209. https://doi.org/10.1161/HYPERTENSIONAHA.108.121467

    Article  CAS  PubMed  Google Scholar 

  38. Zhou D, Yan M, Cheng Q et al (2022) Prevalence and prognosis of left ventricular diastolic dysfunction in community hypertension patients. BMC Cardiovasc Disord 22. https://doi.org/10.1186/S12872-022-02709-3

  39. Rivera FB, Tang VAS, De Luna DV et al (2023) Sex differences in cardiovascular outcomes of SGLT-2 inhibitors in heart failure randomized controlled trials: a systematic review and meta-analysis. American Heart Journal Plus: Cardiology Research and Practice 26:100261. https://doi.org/10.1016/J.AHJO.2023.100261

    Article  PubMed  Google Scholar 

  40. Sharma A, Wood S, Bell JS et al (2023) Sex differences in risk of cardiovascular events and mortality with sodium glucose co-transporter-2 inhibitors versus glucagon-like peptide 1 receptor agonists in Australians with type 2 diabetes: a population-based cohort study. Lancet Reg Health West Pac 33. https://doi.org/10.1016/j.lanwpc.2023.100692

  41. Wang N, Evans J, Sawant S et al (2023) Sex-specific differences in the efficacy of heart failure therapies: a meta-analysis of 84,818 patients. Heart Fail Rev 28:949–959. https://doi.org/10.1007/S10741-022-10275-1/FIGURES/3

    Article  PubMed  Google Scholar 

  42. Moss ME, Carvajal B, Jaffe IZ (2019) The endothelial mineralocorticoid receptor: contributions to sex differences in cardiovascular disease. Pharmacol Ther 203:107387. https://doi.org/10.1016/J.PHARMTHERA.2019.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daniel KR, Wells G, Stewart K et al (2009) Effect of aldosterone antagonism on exercise tolerance, doppler diastolic function, and quality of life in older women with diastolic heart failure. Congest Heart Fail 15:68. https://doi.org/10.1111/J.1751-7133.2009.00056.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kosmala W, Rojek A, Przewlocka-Kosmala M et al (2016) Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol 68:1823–1834. https://doi.org/10.1016/J.JACC.2016.07.763

    Article  CAS  PubMed  Google Scholar 

  45. Rossello X, Ferreira JP, Pocock SJ et al (2020) Sex differences in mineralocorticoid receptor antagonist trials: a pooled analysis of three large clinical trials. Eur J Heart Fail 22:834–844. https://doi.org/10.1002/EJHF.1740

    Article  CAS  PubMed  Google Scholar 

  46. Merrill M, Sweitzer NK, Lindenfeld JA, Kao DP (2019) Sex differences in outcomes and response to spironolactone in HFpEF: a secondary analysis of TOPCAT. JACC Heart Fail 7:228–238. https://doi.org/10.1016/J.JCHF.2019.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pitt B, Pfeffer MA, Assmann SF et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:10. https://doi.org/10.1056/NEJMOA1313731

  48. Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620. https://doi.org/10.1056/NEJMOA1908655/SUPPL_FILE/NEJMOA1908655_DATA-SHARING.PDF

    Article  CAS  PubMed  Google Scholar 

  49. Valero-Munoz M, Li S, Wilson RM et al (2016) Dual endothelin-A/endothelin-B receptor blockade and cardiac remodeling in heart failure with preserved ejection fraction. Circ Heart Fail 9. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003381

  50. Zile MR, Bourge RC, Redfield MM et al (2014) Randomized, double-blind, placebo-controlled study of sitaxsentan to improve impaired exercise tolerance in patients with heart failure and a preserved ejection fraction. JACC Heart Fail 2:123–130. https://doi.org/10.1016/J.JCHF.2013.12.002

    Article  PubMed  Google Scholar 

  51. Garawi F, Devries K, Thorogood N, Uauy R (2014) Global differences between women and men in the prevalence of obesity: is there an association with gender inequality? European Journal of Clinical Nutrition 2014 68:10 68:1101–1106. https://doi.org/10.1038/ejcn.2014.86

  52. Rozenbaum Z, Topilsky Y, Khoury S et al (2019) Association of body mass index and diastolic function in metabolically healthy obese with preserved ejection fraction. Int J Cardiol 277:147–152. https://doi.org/10.1016/J.IJCARD.2018.08.008

    Article  PubMed  Google Scholar 

  53. Owan TE, Hodge DO, Herges RM et al (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259. https://doi.org/10.1056/NEJMOA052256

    Article  CAS  PubMed  Google Scholar 

  54. Hassanin A, Hassanein M, Lanier GM et al (2022) Prevalence of obesity and its association with cardiometabolic risk factors, heart failure phenotype and mortality among patients hospitalized for heart failure in Egypt. Egyptian Heart Journal 74:1–10. https://doi.org/10.1186/S43044-021-00232-Y/TABLES/5

    Article  Google Scholar 

  55. Connelly PJ, Currie G, Delles C (2022) Sex differences in the prevalence, outcomes and management of hypertension. Curr Hypertens Rep 24:185. https://doi.org/10.1007/S11906-022-01183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT (2020) Hypertension prevalence among adults aged 18 and over: United States, 2017–2018. In: NCHS Data Brief. https://pubmed.ncbi.nlm.nih.gov/32487290/. Accessed 1 Oct 2023

  57. Virani SS, Alonso A, Benjamin EJ et al (2020) Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141:E139–E596. https://doi.org/10.1161/CIR.0000000000000757

    Article  PubMed  Google Scholar 

  58. Gillis EE, Sullivan JC (2016) Sex differences in hypertension. Hypertension 68:1322–1327. https://doi.org/10.1161/HYPERTENSIONAHA.116.06602

    Article  CAS  PubMed  Google Scholar 

  59. Kaur G, Lau E (2022) Sex differences in heart failure with preserved ejection fraction: from traditional risk factors to sex-specific risk factors. Women’s Health 18. https://doi.org/10.1177/17455057221140209

  60. Higashi H, Okayama H, Saito M et al (2013) Relationship between augmentation index and left ventricular diastolic function in healthy women and men. Am J Hypertens 26:1280–1286. https://doi.org/10.1093/AJH/HPT115

    Article  PubMed  Google Scholar 

  61. Chester R, Sander G, Fernandez C et al (2013) Women have significantly greater difference between central and peripheral arterial pressure compared to men: the Bogalusa Heart Study. J Am Soc Hypertens 7:379. https://doi.org/10.1016/J.JASH.2013.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  62. Redfield MM, Jacobsen SJ, Borlaug BA et al (2005) Age- and gender-related ventricular-vascular stiffening. Circulation 112:2254–2262. https://doi.org/10.1161/CIRCULATIONAHA.105.541078

    Article  PubMed  Google Scholar 

  63. Parikh JD, Hollingsworth KG, Wallace D et al (2016) Normal age-related changes in left ventricular function: role of afterload and subendocardial dysfunction. Int J Cardiol 223:306–312. https://doi.org/10.1016/J.IJCARD.2016.07.252

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kararigas G, Dworatzek E, Petrov G et al (2014) Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur J Heart Fail 16:1160–1167. https://doi.org/10.1002/EJHF.171

    Article  CAS  PubMed  Google Scholar 

  65. Gebhard C, Maredziak M, Messerli M et al (2020) Increased long-term mortality in women with high left ventricular ejection fraction: data from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) long-term registry. Eur Heart J Cardiovasc Imaging 21:363. https://doi.org/10.1093/EHJCI/JEZ321

  66. Kajstura J, Gurusamy N, Ogórek B et al (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386. https://doi.org/10.1161/CIRCRESAHA.110.231498

    Article  CAS  PubMed  Google Scholar 

  67. Borlaug BA, Olson TP, Lam CSP et al (2010) Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 56:845–854. https://doi.org/10.1016/J.JACC.2010.03.077

    Article  PubMed  PubMed Central  Google Scholar 

  68. Melikian AA, Djordjevic MV, Hosey J et al (2007) Gender differences relative to smoking behavior and emissions of toxins from mainstream cigarette smoke. Nicotine Tob Res 9:377–387. https://doi.org/10.1080/14622200701188836

    Article  CAS  PubMed  Google Scholar 

  69. Zakiniaeiz Y, Gueorguieva R, Peltier MR et al (2023) Sex steroid hormone levels associated with dopamine D2/3 receptor availability in people who smoke cigarettes. Front Behav Neurosci 17:1192740. https://doi.org/10.3389/FNBEH.2023.1192740/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Global diabetes cases to soar from 529 million to 1.3 billion by 2050 | The Institute for Health Metrics and Evaluation. https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050. Accessed 1 Oct 2023

  71. Huebschmann AG, Huxley RR, Kohrt WM et al (2019) Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62:1761–1772. https://doi.org/10.1007/S00125-019-4939-5

  72. National Diabetes Statistics Report | Diabetes | CDC. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed 1 Oct 2023

  73. Wright AK, Welsh P, Gill JMR et al (2020) Age-, sex- and ethnicity-related differences in body weight, blood pressure, HbA1c and lipid levels at the diagnosis of type 2 diabetes relative to people without diabetes. Diabetologia 63:1542–1553. https://doi.org/10.1007/S00125-020-05169-6/FIGURES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kautzky-Willer A, Leutner M, Harreiter J (2023) Sex differences in type 2 diabetes. Diabetologia 66(6):986–1002. https://doi.org/10.1007/S00125-023-05891-X

  75. Abudureyimu M, Luo X, Wang X et al (2022) Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 14:28. https://doi.org/10.1093/JMCB/MJAC028

    Article  Google Scholar 

  76. Pechánová O, Varga ZV, Cebová M et al (2015) Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 172:1415. https://doi.org/10.1111/BPH.12960

    Article  PubMed  Google Scholar 

  77. Fessel G, Li Y, Diederich V et al (2014) Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness. PLoS ONE 9:e110948. https://doi.org/10.1371/JOURNAL.PONE.0110948

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  78. Deichl A, Wachter R, Edelmann F (2022) Comorbidities in heart failure with preserved ejection fraction. Herz 47:301. https://doi.org/10.1007/S00059-022-05123-9

    Article  PubMed  PubMed Central  Google Scholar 

  79. Palau P, Bertomeu-González V, Sanchis J et al (2020) Differential prognostic impact of type 2 diabetes mellitus in women and men with heart failure with preserved ejection fraction. Rev Esp Cardiol (Engl Ed) 73:463–470. https://doi.org/10.1016/J.REC.2019.09.002

    Article  PubMed  Google Scholar 

  80. Kovesdy CP (2011) (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl 12:7–11. https://doi.org/10.1016/J.KISU.2021.11.003

    Article  Google Scholar 

  81. Chronic Kidney Disease in the United States, 2023. https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html. Accessed 1 Oct 2023

  82. Romejko K, Rymarz A, Szamotulska K et al (2022) Left ventricular diastolic dysfunction in chronic kidney disease patients not treated with dialysis. Nutrients 14. https://doi.org/10.3390/NU14214664

  83. Neugarten J, Golestaneh L (2019) Influence of sex on the progression of chronic kidney disease. Mayo Clin Proc 94:1339–1356. https://doi.org/10.1016/J.MAYOCP.2018.12.024

    Article  PubMed  Google Scholar 

  84. Ricardo AC, Yang W, Sha D et al (2019) Sex-related disparities in CKD progression. J Am Soc Nephrol 30:137. https://doi.org/10.1681/ASN.2018030296

    Article  CAS  PubMed  Google Scholar 

  85. Gallo G, Volpe M, Savoia C (2021) Endothelial dysfunction in hypertension: current concepts and clinical implications. Front Med (Lausanne) 8:798958. https://doi.org/10.3389/FMED.2021.798958

    Article  PubMed  Google Scholar 

  86. Huang MJ, Wei RB, Zhao J et al (2017) Albuminuria and endothelial dysfunction in patients with non-diabetic chronic kidney disease. Med Sci Monit 23:4447. https://doi.org/10.12659/MSM.903660

  87. Harlacher E, Wollenhaupt J, Baaten CCFMJ, Noels H (2022) Impact of uremic toxins on endothelial dysfunction in chronic kidney disease: a systematic review. Int J Mol Sci 23. https://doi.org/10.3390/IJMS23010531/S1

  88. Ren X, Ren L, Wei Q et al (2017) Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol 16:1–12. https://doi.org/10.1186/S12933-017-0531-9/FIGURES/6

    Article  CAS  Google Scholar 

  89. Mosca L, Barrett-Connor E, Kass Wenger N (2011) Sex/gender differences in cardiovascular disease prevention what a difference a decade makes. Circulation 124:2145. https://doi.org/10.1161/CIRCULATIONAHA.110.968792

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gao Z, Chen Z, Sun A, Deng X (2019) Gender differences in cardiovascular disease. Med Nov Technol Devices 4:100025. https://doi.org/10.1016/J.MEDNTD.2019.100025

    Article  Google Scholar 

  91. Pravda NS, Karny-Rahkovich O, Shiyovich A et al (2021) Coronary artery disease in women: a comprehensive appraisal. J Clin Med 10:4664. https://doi.org/10.3390/JCM10204664

    Article  Google Scholar 

  92. Shah SJ, Lam CSP, Svedlund S et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39:3439. https://doi.org/10.1093/EURHEARTJ/EHY531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taqueti VR, Solomon SD, Shah AM et al (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39:840. https://doi.org/10.1093/EURHEARTJ/EHX721

    Article  CAS  PubMed  Google Scholar 

  94. Sharma K, Al Rifai M, Ahmed HM et al (2017) Usefulness of coronary artery calcium to predict heart failure with preserved ejection fraction in men versus women (from the multi-ethnic study of atherosclerosis). Am J Cardiol 120:1847–1853. https://doi.org/10.1016/J.AMJCARD.2017.07.089

    Article  CAS  PubMed  Google Scholar 

  95. Zakeri R, Chamberlain AM, Roger VL, Redfield MM (2013) Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation 128:1085. https://doi.org/10.1161/CIRCULATIONAHA.113.001475

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kagami K, Obokata M, Harada T et al (2022) Diastolic filling time, chronotropic response, and exercise capacity in heart failure and preserved ejection fraction with sinus rhythm. J Am Heart Assoc 11:26009. https://doi.org/10.1161/JAHA.121.026009

    Article  Google Scholar 

  97. O’Neal WT, Sandesara P, Hammadah M et al (2017) Gender differences in the risk of adverse outcomes in patients with atrial fibrillation and heart failure with preserved ejection fraction. Am J Cardiol 119:1785. https://doi.org/10.1016/J.AMJCARD.2017.02.045

    Article  PubMed  PubMed Central  Google Scholar 

  98. Roca GQ, Redline S, Claggett B et al (2015) Sex-specific association of sleep apnea severity with subclinical myocardial injury, ventricular hypertrophy, and heart failure risk in a community dwelling cohort: the atherosclerosis risk in communities-sleep heart health study. Circulation 132:1329. https://doi.org/10.1161/CIRCULATIONAHA.115.016985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raut S, Gupta G, Narang R et al (2021) The impact of obstructive sleep apnoea severity on cardiac structure and injury. Sleep Med 77:58. https://doi.org/10.1016/J.SLEEP.2020.10.024

    Article  PubMed  Google Scholar 

  100. Limongelli G, Rubino M, Esposito A et al (2018) The challenge of cardiomyopathies and heart failure in pregnancy. Curr Opin Obstet Gynecol 30:378–384. https://doi.org/10.1097/GCO.0000000000000496

    Article  PubMed  Google Scholar 

  101. Hall ME, George EM, Granger JP (2011) The heart during pregnancy. Rev Esp Cardiol 64:1045. https://doi.org/10.1016/J.RECESP.2011.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rutherford JD (2012) Heart failure in pregnancy. Curr Heart Fail Rep 9:277–281. https://doi.org/10.1007/S11897-012-0105-9

    Article  PubMed  Google Scholar 

  103. Briller JE, Mogos MF, Muchira JM, Piano MR (2021) Pregnancy associated heart failure with preserved ejection fraction: risk factors and maternal morbidity. J Card Fail 27:143–152. https://doi.org/10.1016/J.CARDFAIL.2020.12.020

  104. Goldstein SA, Pagidipati NJ (2022) Hypertensive disorders of pregnancy and heart failure risk. Curr Hypertens Rep 24:205–213. https://doi.org/10.1007/S11906-022-01189-2

    Article  PubMed  Google Scholar 

  105. Golia E, Gravino R, Rea A et al (2017) Management of pregnancy in cardiomyopathies and heart failure. Future Cardiol 13:81–96. https://doi.org/10.2217/FCA-2015-0004

    Article  CAS  PubMed  Google Scholar 

  106. Wu P, Haththotuwa R, Kwok CS et al (2017) Preeclampsia and future cardiovascular health. Circ Cardiovasc Qual Outcomes 10. https://doi.org/10.1161/CIRCOUTCOMES.116.003497/-/DC1

  107. Wu R, Wang T, Gu R et al (2020) Hypertensive disorders of pregnancy and risk of cardiovascular disease-related morbidity and mortality: a systematic review and meta-analysis. Cardiology 145:633–647. https://doi.org/10.1159/000508036

    Article  PubMed  Google Scholar 

  108. Regitz-Zagrosek V, Oertelt-Prigione S, Seeland U, Hetzer R (2010) Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 74:1265–1273. https://doi.org/10.1253/CIRCJ.CJ-10-0196

    Article  CAS  PubMed  Google Scholar 

  109. Maslov PZ, Kim JK, Argulian E et al (2019) Is cardiac diastolic dysfunction a part of post-menopausal syndrome? JACC Heart Fail 7:192–203. https://doi.org/10.1016/J.JCHF.2018.12.018

    Article  PubMed  Google Scholar 

  110. Das A, Durrant D, Salloum FN et al (2015) PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 147:12–21. https://doi.org/10.1016/J.PHARMTHERA.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  111. Thilaganathan B, Kalafat E (2019) Cardiovascular system in preeclampsia and beyond. Hypertension 73:522. https://doi.org/10.1161/HYPERTENSIONAHA.118.11191

    Article  CAS  PubMed  Google Scholar 

  112. Melchiorre K, Sharma R, Thilaganathan B (2014) Cardiovascular implications in preeclampsia. Circulation 130:703–714. https://doi.org/10.1161/CIRCULATIONAHA.113.003664

    Article  PubMed  Google Scholar 

  113. Bright RA, Lima FV, Avila C et al (2021) Maternal heart failure. J Am Heart Assoc 10. https://doi.org/10.1161/JAHA.121.021019

  114. Lindley KJ, Walsh MN (2021) Pregnancy and heart failure: a special issue of the Journal of Cardiac Failure. J Card Fail 27:130–131. https://doi.org/10.1016/J.CARDFAIL.2021.01.014

    Article  PubMed  Google Scholar 

  115. Hajouli S, Ludhwani D (2022) Heart Failure and Ejection Fraction. StatPearls

  116. Pieske B, Tschöpe C, De Boer RA et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317. https://doi.org/10.1093/EURHEARTJ/EHZ641

    Article  PubMed  Google Scholar 

  117. van Ommen AMLN, Canto ED, Cramer MJ et al (2022) Diastolic dysfunction and sex-specific progression to HFpEF: current gaps in knowledge and future directions. BMC Medicine 20:1–16. https://doi.org/10.1186/S12916-022-02650-4

  118. Marwick TH (2018) Ejection fraction pros and cons: JACC state-of-the-art review. J Am Coll Cardiol 72:2360–2379. https://doi.org/10.1016/J.JACC.2018.08.2162

    Article  MathSciNet  PubMed  Google Scholar 

  119. Boonman-De Winter LJM, Rutten FH, Cramer MJ et al (2015) Efficiently screening heart failure in patients with type 2 diabetes. Eur J Heart Fail 17:187–195. https://doi.org/10.1002/EJHF.216

    Article  PubMed  Google Scholar 

  120. Groepenhoff F, Eikendal ALM, Rittersma ZHS et al (2021) Persistent symptoms and health needs of women and men with non-obstructed coronary arteries in the years following coronary angiography. Front Cardiovasc Med 8:670843. https://doi.org/10.3389/FCVM.2021.670843

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dewan P, Rørth R, Raparelli V et al (2019) Sex-related differences in heart failure with preserved ejection fraction. Circ Heart Fail 12. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006539

  122. Januzzi JL, Myhre PL (2020) The challenges of NT-proBNP testing in HFpEF: shooting arrows in the wind∗. Heart Fail 8:382–385. https://doi.org/10.1016/J.JCHF.2020.03.003

    Article  Google Scholar 

  123. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 18:891–975. https://doi.org/10.1002/EJHF.592

    Article  PubMed  Google Scholar 

  124. Cediel G, Codina P, Spitaleri G et al (2020) Gender-related differences in heart failure biomarkers. Front Cardiovasc Med 7. https://doi.org/10.3389/FCVM.2020.617705

  125. Suthahar N, Meijers WC, Ho JE et al (2018) Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 20:1205–1214. https://doi.org/10.1002/EJHF.1209

    Article  CAS  PubMed  Google Scholar 

  126. Harada E, Mizuno Y, Kugimiya F et al (2018) Sex differences in heart failure with preserved ejection fraction reflected by B-type natriuretic peptide level. Am J Med Sci 356:335–343. https://doi.org/10.1016/j.amjms.2018.06.009

    Article  PubMed  Google Scholar 

  127. Hsich EM, Grau-Sepulveda MV, Hernandez AF et al (2012) Sex differences in in-hospital mortality in acute decompensated heart failure with reduced and preserved ejection fraction. Am Heart J 163:430-437.e3. https://doi.org/10.1016/J.AHJ.2011.12.013

    Article  PubMed  Google Scholar 

  128. Schulz A, Schuster A (2022) Visualizing diastolic failure: nn-invasive imaging-biomarkers in patients with heart failure with preserved ejection fraction. EBioMedicine 86:104369. https://doi.org/10.1016/J.EBIOM.2022.104369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sharifov OF, Schiros CG, Aban I et al (2016) Diagnostic accuracy of tissue Doppler index E/è for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta‐Analysis. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.115.002530

  130. Obokata M, Kane GC, Reddy YNV et al (2017) Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction: a simultaneous invasive-echocardiographic study. Circulation 135:825–838. https://doi.org/10.1161/CIRCULATIONAHA.116.024822/-/DC1

    Article  PubMed  Google Scholar 

  131. Mitter SS, Shah SJ, Thomas JD (2017) A test in context: E/A and E/e′ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol 69:1451–1464. https://doi.org/10.1016/J.JACC.2016.12.037

    Article  PubMed  Google Scholar 

  132. Kou S, Caballero L, Dulgheru R et al (2014) Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging 15:680. https://doi.org/10.1093/EHJCI/JET284

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gori M, Lam CSP, Gupta DK et al (2014) Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 16:535–542. https://doi.org/10.1002/EJHF.67

    Article  PubMed  Google Scholar 

  134. Beale AL, Nanayakkara S, Segan L et al (2019) Sex differences in heart failure with preserved ejection fraction pathophysiology: a detailed invasive hemodynamic and echocardiographic analysis. JACC Heart Fail 7:239–249. https://doi.org/10.1016/J.JCHF.2019.01.004

    Article  PubMed  Google Scholar 

  135. Reddy YNV, Carter RE, Obokata M et al (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138:861–870. https://doi.org/10.1161/CIRCULATIONAHA.118.034646

    Article  PubMed  PubMed Central  Google Scholar 

  136. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42:3599–3726. https://doi.org/10.1093/EURHEARTJ/EHAB368

  137. CY Lin HY Sung YJ Chen (2023) Personalized management for heart failure with preserved ejection fraction. J Pers Med 13:746 https://doi.org/10.3390/JPM13050746

  138. Verbrugge FH, Omote K, Reddy YNV et al (2022) Heart failure with preserved ejection fraction in patients with normal natriuretic peptide levels is associated with increased morbidity and mortality. Eur Heart J 43:1941–1951. https://doi.org/10.1093/EURHEARTJ/EHAB911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Morfino P, Aimo A, Castiglione V et al (2022) Biomarkers of HFpEF: natriuretic peptides, high-sensitivity troponins and beyond. J Cardiovasc Dev Dis 9. https://doi.org/10.3390/JCDD9080256

  140. Januzzi JL, Butler J, Zannad F et al (2022) Prognostic implications of N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin T in EMPEROR-preserved. JACC Heart Fail 10:512–524. https://doi.org/10.1016/J.JCHF.2022.05.004

    Article  PubMed  Google Scholar 

  141. Redfield MM, Rodeheffer RJ, Jacobsen SJ et al (2002) Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 40:976–982. https://doi.org/10.1016/S0735-1097(02)02059-4

    Article  CAS  PubMed  Google Scholar 

  142. Cypen J, Ahmad T, Testani JM, DeVore AD (2017) Novel biomarkers for the risk stratification of heart failure with preserved ejection fraction. Curr Heart Fail Rep 14:434–443. https://doi.org/10.1007/S11897-017-0358-4

    Article  CAS  PubMed  Google Scholar 

  143. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D (2022) The diagnostic and therapeutic potential of galectin-3 in cardiovascular diseases. Biomolecules 12. https://doi.org/10.3390/BIOM12010046

  144. Ho JE, Liu C, Lyass A et al (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249. https://doi.org/10.1016/J.JACC.2012.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Norvik JV, Schirmer H, Ytrehus K et al (2017) Low adiponectin is associated with diastolic dysfunction in women: across-sectional study from the Tromsø Study. BMC Cardiovasc Disord 17:1–10. https://doi.org/10.1186/S12872-017-0509-2/FIGURES/5

    Article  Google Scholar 

  146. Hamdani N, Costantino S, Mügge A et al (2021) Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 42:1940–1958. https://doi.org/10.1093/EURHEARTJ/EHAB197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Villacorta H, Maisel AS (2016) Soluble ST2 testing: a promising biomarker in the management of heart failure. Arq Bras Cardiol 106:145. https://doi.org/10.5935/ABC.20150151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Motiwala SR, Sarma A, Januzzi JL, O’Donoghue ML (2014) Biomarkers in ACS and heart failure: should men and women be interpreted differently? Clin Chem 60:35–43. https://doi.org/10.1373/CLINCHEM.2013.202531

    Article  CAS  PubMed  Google Scholar 

  149. Tromp J, Khan MAF, Klip IT et al (2017) Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.116.003989

  150. Bošković A, Rando OJ (2018) Transgenerational epigenetic inheritance. Annu Rev Genet 52:21–41. https://doi.org/10.1146/ANNUREV-GENET-120417-031404

    Article  PubMed  Google Scholar 

  151. Costantino S, Mohammed SA, Ambrosini S, Paneni F (2019) Epigenetic processing in cardiometabolic disease. Atherosclerosis 281:150–158. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2018.09.029

    Article  CAS  PubMed  Google Scholar 

  152. Donekal S, Venkatesh BA, Liu YC et al (2014) Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ Cardiovasc Imaging 7:292–302. https://doi.org/10.1161/CIRCIMAGING.113.001073

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ambrosini S, Gorica E, Mohammed SA et al (2022) Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 37:219. https://doi.org/10.1097/HCO.0000000000000961

    Article  PubMed  PubMed Central  Google Scholar 

  154. Eisenberg E, Di Palo KE, Piña IL (2018) Sex differences in heart failure. Clin Cardiol 41:211–216. https://doi.org/10.1002/CLC.22917

    Article  PubMed  PubMed Central  Google Scholar 

  155. Marx G, Koens S, Von Dem Knesebeck O, Scherer M (2022) Original research: age and gender differences in diagnostic decision-making of early heart failure: results of a mixed-methods interview-study using video vignettes. BMJ Open 12. https://doi.org/10.1136/BMJOPEN-2021-054025

  156. Koens S, Marx G, Gras C et al (2020) Physicians’ information seeking behavior in patients presenting with heart failure symptoms – does gender of physician and patient matter? Patient Educ Couns 103:2437–2442. https://doi.org/10.1016/J.PEC.2020.05.022

    Article  Google Scholar 

  157. Tapia J, Basalo M, Enjuanes C et al (2023) Psychosocial factors partially explain gender differences in health-related quality of life in heart failure patients. ESC Heart Fail 10:1090–1102. https://doi.org/10.1002/EHF2.14260

    Article  PubMed  Google Scholar 

  158. Punnoose LR, Lindenfeld JA (2020) Sex-specific differences in access and response to medical and device therapies in heart failure: state of the art. Prog Cardiovasc Dis 63:640–648. https://doi.org/10.1016/J.PCAD.2020.09.004

    Article  PubMed  Google Scholar 

  159. Bierer BE, Meloney LG, Ahmed HR, White SA (2022) Advancing the inclusion of underrepresented women in clinical research. Cell Rep Med 3. https://doi.org/10.1016/J.XCRM.2022.100553

  160. Cottingham MD, Fisher JA (2022) Gendered logics of biomedical research: women in U.S. phase I clinical trials. Soc Probl 69:492–509. https://doi.org/10.1093/SOCPRO/SPAA035

    Article  PubMed  Google Scholar 

  161. Vaduganathan M, Tahhan AS, Alrohaibani A et al (2019) Do women and men respond similarly to therapies in contemporary heart failure clinical trials? JACC Heart Fail 7:267. https://doi.org/10.1016/J.JCHF.2018.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  162. Scott PE, Unger EF, Jenkins MR et al (2018) Participation of women in clinical trials supporting FDA approval of cardiovascular drugs. J Am Coll Cardiol 71:1960–1969. https://doi.org/10.1016/J.JACC.2018.02.070

    Article  PubMed  Google Scholar 

  163. Michos ED, Reddy TK, Gulati M et al (2021) Improving the enrollment of women and racially/ethnically diverse populations in cardiovascular clinical trials: an ASPC practice statement. Am J Prev Cardiol 8:100250. https://doi.org/10.1016/J.AJPC.2021.100250

    Article  PubMed  PubMed Central  Google Scholar 

  164. Harrison JM, Jung M, Lennie TA et al (2016) Refusal to participate in heart failure studies: do age and gender matter? J Clin Nurs 25:983–991. https://doi.org/10.1111/JOCN.13135

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mastoris I, DeFilippis EM, Martyn T et al (2023) Remote patient monitoring for patients with heart failure: sex- and race-based disparities and opportunities. Card Fail Rev 9. https://doi.org/10.15420/CFR.2022.22

  166. Kenkre TS, Malhotra P, Johnson BD et al (2017) Ten-year mortality in the women’s ischemia syndrome evaluation (WISE). Circ Cardiovasc Qual Outcomes 10. https://doi.org/10.1161/CIRCOUTCOMES.116.003863

  167. Van DIemen J, Verdonk P, Chieffo A et al (2021) The importance of achieving sex- and gender-based equity in clinical trials: a call to action. Eur Heart J 42:2990–2994. https://doi.org/10.1093/EURHEARTJ/EHAB457

  168. Reza N, Gruen J, Bozkurt B (2022) Representation of women in heart failure clinical trials: barriers to enrollment and strategies to close the gap. American Heart Journal Plus: Cardiology Research and Practice 13:100093. https://doi.org/10.1016/J.AHJO.2022.100093

  169. Bekfani T, Nisser J, Derlien S et al (2021) Psychosocial factors, mental health, and coordination capacity in patients with heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction. ESC Heart Fail 8:3268. https://doi.org/10.1002/EHF2.13468

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mosquera PA, San Sebastian M, Waenerlund AK et al (2016) Income-related inequalities in cardiovascular disease from mid-life to old age in a Northern Swedish cohort: A decomposition analysis. Soc Sci Med 149:135–144. https://doi.org/10.1016/J.SOCSCIMED.2015.12.017

    Article  PubMed  Google Scholar 

  171. Williams DR, Mohammed SA, Leavell J, Collins C (2010) Race, socioeconomic status and health: complexities, ongoing challenges and research opportunities. Ann N Y Acad Sci 1186:69. https://doi.org/10.1111/J.1749-6632.2009.05339.X

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  172. Luepker RV, Rosamond WD, Murphy R et al (1993) Socioeconomic status and coronary heart disease risk factor trends. The Minnesota Heart Survey Circulation 88:2172–2179. https://doi.org/10.1161/01.CIR.88.5.2172

    Article  CAS  PubMed  Google Scholar 

  173. Schultz WM, Kelli HM, Lisko JC et al (2018) Socioeconomic status and cardiovascular outcomes. Circulation 137:2166–2178. https://doi.org/10.1161/CIRCULATIONAHA.117.029652

    Article  PubMed  PubMed Central  Google Scholar 

  174. Khan SS, Beach LB, Yancy CW (2022) Sex-based differences in heart failure: JACC focus seminar 7/7. J Am Coll Cardiol 79:1530–1541. https://doi.org/10.1016/J.JACC.2022.02.013

    Article  PubMed  Google Scholar 

  175. Khan SS, Ning H, Shah SJ et al (2019) 10-year risk equations for incident heart failure in the general population. J Am Coll Cardiol 73:2388–2397. https://doi.org/10.1016/J.JACC.2019.02.057

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ma C, Luo H, Fan L et al (2020) Heart failure with preserved ejection fraction: an update on pathophysiology, diagnosis, treatment, and prognosis. Braz J Med Biol Res 53:1–16. https://doi.org/10.1590/1414-431X20209646

    Article  Google Scholar 

  177. Heart failure 5-year outcomes - American College of Cardiology. https://www.acc.org/latest-in-cardiology/journal-scans/2017/11/10/22/18/heart-failure-with-preserved-borderline-aha-2017. Accessed 21 Sep 2023

  178. Doughty RN, Cubbon R, Ezekowitz J et al (2012) The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 33:1750–1757. https://doi.org/10.1093/EURHEARTJ/EHR254

    Article  Google Scholar 

  179. Treatment and prognosis of heart failure with preserved ejection fraction - UpToDate. https://www.uptodate.com/contents/treatment-and-prognosis-of-heart-failure-with-preserved-ejection-fraction/print. Accessed 21 Sep 2023

  180. Chan MMY, Lam CSP (2013) How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail 15:604–613. https://doi.org/10.1093/EURJHF/HFT062

    Article  PubMed  Google Scholar 

  181. Goyal P, Paul T, Almarzooq ZI et al (2017) Sex- and race-related differences in characteristics and outcomes of hospitalizations for heart failure with preserved ejection fraction. J Am Heart Assoc 6:. https://doi.org/10.1161/JAHA.116.003330

  182. Duca F, Zotter-Tufaro C, Kammerlander AA et al (2018) Gender-related differences in heart failure with preserved ejection fraction. Sci Rep 8:1080. https://doi.org/10.1038/S41598-018-19507-7

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  183. Hoang-Kim A, Parpia C, Freitas C et al (2020) Readmission rates following heart failure: a scoping review of sex and gender based considerations. BMC Cardiovasc Disord 20. https://doi.org/10.1186/S12872-020-01422-3

  184. Stolfo D, Uijl A, Vedin O et al (2019) Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Heart Fail 7:505–515. https://doi.org/10.1016/J.JCHF.2019.03.011

    Article  PubMed  Google Scholar 

  185. Shahim A, Hourqueig M, Donal E et al (2021) Predictors of long-term outcome in heart failure with preserved ejection fraction: a follow-up from the KaRen study. ESC Heart Fail 8:4243. https://doi.org/10.1002/EHF2.13533

    Article  PubMed  PubMed Central  Google Scholar 

  186. de Mansur AP, Del Carlo CH, Gonçalinho GHF et al (2022) Sex differences in heart failure mortality with preserved, mildly reduced and reduced ejection fraction: a retrospective, single-center, large-cohort study. Int J Environ Res Public Health 19:16171. https://doi.org/10.3390/IJERPH192316171

Download references

Acknowledgements

We thank Dr. Munazza Khan from Medical University, Pleven, who performed native English language editing for our research article. All figures are created with BioRender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abubakar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, M., Saleem, A., Hajjaj, M. et al. Sex-specific differences in risk factors, comorbidities, diagnostic challenges, optimal management, and prognostic outcomes of heart failure with preserved ejection fraction: A comprehensive literature review. Heart Fail Rev 29, 235–256 (2024). https://doi.org/10.1007/s10741-023-10369-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10369-4

Keywords

Navigation