Skip to main content
Log in

Patient phenotype profiling using echocardiography and natriuretic peptides to personalise heart failure therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a progressive condition with a clinical picture resulting from reduced cardiac output (CO) and/or elevated left ventricular (LV) filling pressures (LVFP). The original Diamond-Forrester classification, based on haemodynamic data reflecting CO and pulmonary congestion, was introduced to grade severity, manage, and risk stratify advanced HF patients, providing evidence that survival progressively worsened for those classified as warm/dry, cold/dry, warm/wet, and cold/wet. Invasive haemodynamic evaluation in critically ill patients has been replaced by non-invasive haemodynamic phenotype profiling using echocardiography. Decreased CO is not infrequent among ambulatory HF patients with reduced ejection fraction, ranging from 23 to 45%. The Diamond-Forrester classification may be used in combination with the evaluation of natriuretic peptides (NPs) in ambulatory HF patients to pursue the goal of early identification of those at high risk of adverse events and personalise therapy to antagonise neurohormonal systems, reduce congestion, and preserve tissue/renal perfusion. The most benefit of the Guideline-directed medical treatment is to be expected in stable patients with the warm/dry profile, who more often respond with LV reverse remodelling, while more selective individualised treatments guided by echocardiography and NPs are necessary for patients with persisting congestion and/or tissue/renal hypoperfusion (cold/dry, warm/wet, and cold/wet phenotypes) to achieve stabilization and to avoid further neurohormonal activation, as a result of inappropriate use of vasodilating or negative chronotropic drugs, thus pursuing the therapeutic objectives. Therefore, tracking the haemodynamic status over time by clinical, imaging, and laboratory indicators helps implement therapy by individualising drug regimens and interventions according to patients' phenotypes even in an ambulatory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  2. Mele D, Andrade A, Bettencourt P et al (2020) From left ventricular ejection fraction to cardiac hemodynamics: role of echocardiography in evaluating patients with heart failure. Heart Fail Rev 25:217–230

    Article  PubMed  Google Scholar 

  3. Palazzuoli A, Correale M, Iacoviello M, Gronda E (2023) Does the Measurement of ejection fraction still make sense in the HFpEF framework? What recent trials suggest. J Clin Med 12:693

    Article  PubMed  PubMed Central  Google Scholar 

  4. Palazzuoli A, Ruocco G, Valente S et al (2022) Non-invasive assessment of acute heart failure by Stevenson classification: does echocardiographic examination recognize different phenotypes? Front Cardiovasc Med 9. https://doi.org/10.3389/FCVM.2022.911578

  5. Dini FL, Pestelli G, Pugliese NR et al (2022) Combining echo-derived haemodynamic phenotypes and myocardial strain for risk stratification of chronic heart failure with reduced ejection fraction. Eur Hear J - Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeac127

    Article  Google Scholar 

  6. Dini FL, Carluccio E, Bitto R et al (2022) Echocardiographically defined haemodynamic categorization predicts prognosis in ambulatory heart failure patients treated with sacubitril/valsartan. ESC Hear Fail 9:1107–1117. https://doi.org/10.1002/ehf2.13779

    Article  Google Scholar 

  7. Chubuchny V, Pugliese NR, Taddei C et al (2021) A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Hear Fail 8:1216–1229. https://doi.org/10.1002/ehf2.13183

    Article  Google Scholar 

  8. Forrester JS, Diamond G, Chatterjee K, Swan HJC (1976) Medical therapy of acute myocardial infarction by application of hemodynamic subsets. N Engl J Med 295:1404–1413. https://doi.org/10.1056/nejm197612162952505

    Article  CAS  PubMed  Google Scholar 

  9. Steimle AE, Stevenson LW, Chelimsky-Fallick C et al (1997) Sustained hemodynamic efficacy of therapy tailored to reduce filling pressures in survivors with advanced heart failure. Circulation 96:1165–1172. https://doi.org/10.1161/01.CIR.96.4.1165

    Article  CAS  PubMed  Google Scholar 

  10. Stevenson LW, Tillisch JH, Hamilton M et al (1990) Importance of hemodynamic response to therapy in predicting survival with ejection fraction ≤ 20% secondary to ischemic or nonischemic dilated cardiomyopathy. Am J Cardiol 66:1348–1354. https://doi.org/10.1016/0002-9149(90)91166-4

    Article  CAS  PubMed  Google Scholar 

  11. Drazner MH, Stevenson LW (2019) Relief and prevention of congestion in heart failure enhance quality and length of life. Circulation 140:1380–1382

    Article  PubMed  Google Scholar 

  12. Pugliese NR, Pellicori P, Filidei F et al (2023) The incremental value of multi-organ assessment of congestion using ultrasound in outpatients with heart failure. Eur Hear J - Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeac254

    Article  Google Scholar 

  13. Lindenfeld JA, Zile MR, Desai AS et al (2021) Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet 398:991–1001. https://doi.org/10.1016/S0140-6736(21)01754-2

    Article  CAS  PubMed  Google Scholar 

  14. Kim KH, Jentzer JC, Wiley BM et al (2021) Diamond-Forrester classification using echocardiography haemodynamic assessment in cardiac intensive care unit patients. ESC Hear Fail. https://doi.org/10.1002/ehf2.13527

    Article  Google Scholar 

  15. Temporelli PL, Corrà U, Imparato A et al (1998) Reversible restrictive left ventricular diastolic filling with optimized oral therapy predicts a more favorable prognosis in patients with chronic heart failure. J Am Coll Cardiol 31:1591–1597. https://doi.org/10.1016/S0735-1097(98)00165-X

    Article  CAS  PubMed  Google Scholar 

  16. Traversi E, Pozzoli M, Cioffi G et al (1996) Mitral flow velocity changes after 6 months of optimized therapy provide important hemodynamic and prognostic information in patients with chronic heart failure. Am Heart J 132:809–819. https://doi.org/10.1016/S0002-8703(96)90316-6

    Article  CAS  PubMed  Google Scholar 

  17. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  18. Palazzuoli A, Ruocco G, Beltrami M et al (2018) Combined use of lung ultrasound, B-type natriuretic peptide, and echocardiography for outcome prediction in patients with acute HFrEF and HFpEF. Clin Res Cardiol 107:586–596. https://doi.org/10.1007/s00392-018-1221-7

    Article  CAS  PubMed  Google Scholar 

  19. Pugliese NR, Fabiani I, Conte L et al (2020) Persistent congestion, renal dysfunction and inflammatory cytokines in acute heart failure: a prognosis study. J Cardiovasc Med 21:494–502. https://doi.org/10.2459/JCM.0000000000000974

    Article  CAS  Google Scholar 

  20. Gargani L, Pugliese NR, Frassi F et al (2021) Prognostic value of lung ultrasound in patients hospitalized for heart disease irrespective of symptoms and ejection fraction. ESC Hear Fail 8:2660–2669. https://doi.org/10.1002/ehf2.13206

    Article  Google Scholar 

  21. Dini FL, Traversi E, Franchini M et al (2003) Contrast-enhanced Doppler hemodynamics for noninvasive assessment of patients with chronic heart failure and left ventricular systolic dysfunction. J Am Soc Echocardiogr 16:124–131. https://doi.org/10.1067/mje.2003.8

    Article  PubMed  Google Scholar 

  22. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11:260–274. https://doi.org/10.1016/j.jcmg.2017.11.017

    Article  PubMed  Google Scholar 

  23. Carluccio E, Dini FL, Biagioli P et al (2013) The “echo heart failure score”: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail 15:868–876. https://doi.org/10.1093/eurjhf/hft038

    Article  PubMed  Google Scholar 

  24. Dini FL, Ballo P, Pugliese NR et al (2022) Improved diastolic dysfunction is associated with higher forward flow and better prognosis in chronic heart failure. Int J Cardiovasc Imaging 38:727–737. https://doi.org/10.1007/s10554-021-02457-z

    Article  Google Scholar 

  25. Baudry G, Coutance G, Dorent R et al (2022) Prognosis value of Forrester’s classification in advanced heart failure patients awaiting heart transplantation. ESC Hear Fail 9:3287–3297. https://doi.org/10.1002/ehf2.14037

    Article  Google Scholar 

  26. Pugliese NR, Fabiani I, Mandoli GE et al (2019) Echo-derived peak cardiac power output-to-left ventricular mass with cardiopulmonary exercise testing predicts outcome in patients with heart failure and depressed systolic function. Eur Heart J Cardiovasc Imaging 20:700–708. https://doi.org/10.1093/ehjci/jey172

    Article  PubMed  Google Scholar 

  27. St. John Sutton M, Linde C, Gold MR, et al (2017) Left ventricular architecture, long-term reverse remodeling, and clinical outcome in mild heart failure with cardiac resynchronization: results from the REVERSE Trial. JACC Hear Fail 5:169–178. https://doi.org/10.1016/j.jchf.2016.11.012

    Article  Google Scholar 

  28. Tobushi T, Nakano M, Hosokawa K et al (2017) Improved diastolic function is associated with higher cardiac output in patients with heart failure irrespective of left ventricular ejection fraction. J Am Heart Assoc 6:1–7. https://doi.org/10.1161/JAHA.116.003389

    Article  Google Scholar 

  29. Dini FL, Carluccio E, Montecucco F et al (2017) Combining echo and natriuretic peptides to guide heart failure care in the outpatient setting: a position paper. Eur J Clin Invest 47:e12846

    Article  Google Scholar 

  30. Núñez J, de la Espriella R, Rossignol P et al (2022) Congestion in heart failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2664

  31. von Lueder TG, Kotecha D, Atar D, Hopper I (2017) Neurohormonal blockade in heart failure. Card Fail Rev 03:19. https://doi.org/10.15420/cfr.2016:22:2

  32. Pugliese NR, Masi S, Taddei S (2020) The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure. Heart Fail Rev 25:31–42

    Article  CAS  PubMed  Google Scholar 

  33. Tsutsui H, Albert NM, Coats AJS et al (2023) Natriuretic peptides: role in the diagnosis and management of heart failure: a scientific statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur J Heart Fail 25:616–631

    Article  CAS  PubMed  Google Scholar 

  34. Myhre PL, Prescott MF, Murphy SP et al (2022) Early B-type natriuretic peptide change in HFrEF patients treated with sacubitril/valsartan: a pooled analysis of EVALUATE-HF and PROVE-HF. JACC Hear Fail 10:119–128. https://doi.org/10.1016/j.jchf.2021.09.007

    Article  Google Scholar 

  35. Sullivan RD, Mehta RM, Tripathi R, Reed GL, Gladysheva IP (2019) Renin activity in heart failure with reduced systolic function-new insights. Int J Mol Sci 20(13):3182. https://doi.org/10.3390/ijms20133182. PMID: 31261774; PMCID: PMC6651297

  36. McLellan J, Bankhead CR, Oke JL et al (2020) Natriuretic peptide-guided treatment for heart failure: a systematic review and meta-analysis. BMJ Evidence-Based Med 25:33–37

    Article  Google Scholar 

  37. Lee KK, Doudesis D, Anwar M et al (2022) Development and validation of a decision support tool for the diagnosis of acute heart failure: systematic review, meta-analysis, and modelling study. BMJ 377:e068424. https://doi.org/10.1136/bmj-2021-068424

  38. Bettencourt P, Chora I, Silva F et al (2021) Acute on chronic heart failure—which variations on B‐type natriuretic peptide levels? J Am Coll Emerg Physicians Open 2. https://doi.org/10.1002/emp2.12448

  39. Maisel AS (2001) Practical approaches to treating patients with acute decompensated heart failure. J Card Fail 7:13–17. https://doi.org/10.1054/JCAF.2001.26646

    Article  CAS  PubMed  Google Scholar 

  40. Ibrahim NE, Burnett JC, Butler J et al (2020) Natriuretic peptides as inclusion criteria in clinical trials: a JACC: heart failure position paper. JACC Hear Fail 8:347–358

    Article  Google Scholar 

  41. Moura B, Aimo A, Al-Mohammad A et al (2021) Integration of imaging and circulating biomarkers in heart failure: a consensus document by the Biomarkers and Imaging Study Groups of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 23:1577–1596. https://doi.org/10.1002/ejhf.2339

    Article  PubMed  Google Scholar 

  42. Simioniuc A, Carluccio E, Ghio S et al (2016) Echo and natriuretic peptide guided therapy improves outcome and reduces worsening renal function in systolic heart failure: an observational study of 1137 outpatients. Int J Cardiol 224:416–423. https://doi.org/10.1016/j.ijcard.2016.09.034

    Article  PubMed  Google Scholar 

  43. Sabbah HN (2017) Silent disease progression in clinically stable heart failure. Eur J Heart Fail 19:469–478

    Article  PubMed  Google Scholar 

  44. Butler J, Gheorghiade M, Metra M (2016) Moving away from symptoms-based heart failure treatment: misperceptions and real risks for patients with heart failure. Eur J Heart Fail 18:350–352

    Article  PubMed  Google Scholar 

  45. Konstam MA, Kramer DG, Patel AR et al (2011) Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4:98–108

    Article  PubMed  Google Scholar 

  46. Monosilio S, Filomena D, Luongo F et al (2022) Cardiac and vascular remodeling after 6 months of therapy with sacubitril/valsartan: mechanistic insights from advanced echocardiographic analysis. Front Cardiovasc Med 9:883769. https://doi.org/10.3389/fcvm.2022.883769

  47. Fabiani I, Pugliese NR, Conte L et al (2017) Incremental prognostic value of a complex left ventricular remodeling classification in asymptomatic for heart failure hypertensive patients. J Am Soc Hypertens 11:412–419. https://doi.org/10.1016/j.jash.2017.05.005

    Article  PubMed  Google Scholar 

  48. Merlo M, Pyxaras SA, Pinamonti B et al (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57:1468–1476. https://doi.org/10.1016/j.jacc.2010.11.030

    Article  PubMed  Google Scholar 

  49. Kramer DG, Trikalinos TA, Kent DM et al (2010) Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: A meta-analytic approach. J Am Coll Cardiol 56:392–406. https://doi.org/10.1016/j.jacc.2010.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  50. Januzzi JL Jr, Prescott MF, Butler J, Felker GM, Maisel AS, McCague K, Camacho A, Piña IL, Rocha RA, Shah AM, Williamson KM, Solomon SD; PROVE-HF Investigators (2019) Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322(11):1085–1095. https://doi.org/10.1001/jama.2019.12821. PMID: 31475295; PMCID: PMC6724151

  51. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA et al (2021) Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 77:243–255. https://doi.org/10.1016/j.jacc.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  52. Gayat E, Arrigo M, Littnerova S et al (2018) Heart failure oral therapies at discharge are associated with better outcome in acute heart failure: a propensity-score matched study. Eur J Heart Fail 20:345–354. https://doi.org/10.1002/EJHF.932

    Article  CAS  PubMed  Google Scholar 

  53. Sharma A, Verma S, Bhatt DL et al (2022) Optimizing foundational therapies in patients with HFrEF: how do we translate these findings into clinical care? JACC Basic to Transl. Sci 7:504–517

    Google Scholar 

  54. Mercurio V, Ambrosio G, Correale M et al (2022) Innovations in medical therapy of heart failure with reduced ejection fraction. J Cardiovasc Med Publish Ah. https://doi.org/10.2459/jcm.0000000000001413

    Article  Google Scholar 

  55. Rosano GMC, Allen LA, Abdin A et al (2021) Drug layering in heart failure: phenotype-guided initiation. JACC Hear Fail 9:775–783. https://doi.org/10.1016/j.jchf.2021.06.011

    Article  Google Scholar 

  56. Musella F, Rosano GMC, Hage C et al (2023) Patient profiles in heart failure with reduced ejection fraction: prevalence, characteristics, treatments and outcomes in a real-world heart failure population. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2892

    Article  PubMed  Google Scholar 

  57. Carluccio E, Dini FL, Bitto R et al (2022) Benefit from sacubitril/valsartan is associated with hemodynamic improvement in heart failure with reduced ejection fraction: an echocardiographic study. Int J Cardiol 350:62–68. https://doi.org/10.1016/j.ijcard.2022.01.004

    Article  PubMed  Google Scholar 

  58. Marti CN, Fonarow GC, Anker SD et al (2019) Medication dosing for heart failure with reduced ejection fraction — opportunities and challenges. Eur J Heart Fail 21:286–296

    Article  PubMed  Google Scholar 

  59. Hall JE, Hall ME (2021) Guyton and hall: textbook of medical physiology, 14th edn. Elsevier

    Google Scholar 

  60. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341:577–585. https://doi.org/10.1056/nejm199908193410806

    Article  CAS  PubMed  Google Scholar 

  61. Verbrugge FH, Guazzi M, Testani JM, Borlaug BA (2020) Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation 142:[in press]. https://doi.org/10.1161/CIRCULATIONAHA.119.045409

  62. Cogliati C, Ceriani E, Gambassi G et al (2022) Phenotyping congestion in patients with acutely decompensated heart failure with preserved and reduced ejection fraction: the Decongestion duRing therapY for acute decOmpensated heart failure in HFpEF vs HFrEF- DRY-OFF study. Eur J Intern Med 97:69–77. https://doi.org/10.1016/j.ejim.2021.11.010

    Article  CAS  PubMed  Google Scholar 

  63. Chioncel O, Mebazaa A, Harjola VP et al (2017) Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19:1242–1254. https://doi.org/10.1002/ejhf.890

    Article  PubMed  Google Scholar 

  64. Park JJ, Mebazaa A, Hwang IC et al (2020) Phenotyping heart failure according to the longitudinal ejection fraction change: myocardial strain, predictors, and outcomes. J Am Heart Assoc 9:15009. https://doi.org/10.1161/JAHA.119.015009

    Article  Google Scholar 

  65. Pugliese NR, de Biase N, Balletti A et al (2022) Characterization of hemodynamic and metabolic abnormalities in the heart failure spectrum: the role of combined cardiopulmonary and exercise echocardiography stress test. Minerva Cardiol Angiol 70:370–384

    Article  PubMed  Google Scholar 

  66. Ghio S, Carluccio E, Scardovi AB et al (2021) Prognostic relevance of Doppler echocardiographic re-assessment in HFrEF patients. Int J Cardiol 327:111–116. https://doi.org/10.1016/j.ijcard.2020.11.025

    Article  PubMed  Google Scholar 

  67. Kobayashi M, Gargani L, Palazzuoli A et al (2021) Association between right-sided cardiac function and ultrasound-based pulmonary congestion on acutely decompensated heart failure: findings from a pooled analysis of four cohort studies. Clin Res Cardiol 110:1181–1192. https://doi.org/10.1007/s00392-020-01724-8

    Article  CAS  PubMed  Google Scholar 

  68. Mele D, Pestelli G, Dini FL et al (2020) Novel echocardiographic approach to hemodynamic phenotypes predicts outcome of patients hospitalized with heart failure. Circ Cardiovasc Imaging 13:9939. https://doi.org/10.1161/CIRCIMAGING.119.009939

    Article  Google Scholar 

  69. Ahmad T, Lund LH, Rao P et al (2018) Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc 7. https://doi.org/10.1161/JAHA.117.008081

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the writing and the reviewing of the manuscript.

Corresponding author

Correspondence to Frank L. Dini.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, F.L., Carluccio, E., Ghio, S. et al. Patient phenotype profiling using echocardiography and natriuretic peptides to personalise heart failure therapy. Heart Fail Rev 29, 367–378 (2024). https://doi.org/10.1007/s10741-023-10340-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10340-3

Keywords

Navigation