Skip to main content
Log in

Cardiopulmonary exercise testing criteria for advanced therapies in patients with heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Many cardiology associations endorse the role of the cardiopulmonary exercise test (CPET) to define the severity of impairment of functional capacity in individuals with heart failure with reduced ejection fraction (HFrEF) and when evaluating the need for advanced therapies for these patients. The focus of the CPET within the cardiology community has been on peak volume of oxygen uptake (VO2). However, several CPET variables are associated with outcomes in individuals with and without chronic disease and can inform clinical decisions in individuals with HFrEF. In this manuscript, we will review the normal cardiopulmonary response to a graded exercise test and review current guideline recommendations relative to CPET in patients with HFrEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable. The article type is a review.

References

  1. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, Danziger-Isakov L, Kirklin JK, Kirk R, Kushwaha SS, Lund LH, Potena L, Ross HJ, Taylor DO, Verschuuren EA, Zuckermann A (2016) The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant 35(1):1–23. https://doi.org/10.1016/j.healun.2015.10.023

    Article  PubMed  Google Scholar 

  2. Fang JC, Ewald GA, Allen LA, Butler J, Canary CA, Colvin-Adams M, Dickinson MG, Levy P, Stough WG, Sweitzer NK, Teerlink JR, Whellan DJ, Albert NM, Krishnamani R, Rich MW, Walsh MN, Bonnell MR, Carson PE, Chan MC, Dries DL, Hernandez AF, Hershberger RE, Katz SD, Moore S, Rodgers JE, Rogers JG, Vest AR, Givertz MM (2015) Advanced (stage D) heart failure: a statement from the Heart Failure Society of America guidelines committee. J Card Fail 21(6):519–534. https://doi.org/10.1016/j.cardfail.2015.04.013

    Article  PubMed  Google Scholar 

  3. Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, Gustafsson F, Tsui S, Barge-Caballero E, De Jonge N, Frigerio M, Hamdan R, Hasin T, Hülsmann M, Nalbantgil S, Potena L, Bauersachs J, Gkouziouta A, Ruhparwar A, Ristic AD, Straburzynska-Migaj E, McDonagh T, Seferovic P, Ruschitzka F (2018) Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20(11):1505–1535. https://doi.org/10.1002/ejhf.1236

    Article  PubMed  Google Scholar 

  4. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW (2022) AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation 145(18):e895–e1032. https://doi.org/10.1161/cir.0000000000001063

    Article  PubMed  Google Scholar 

  5. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A (2021) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  6. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83(3):778–786. https://doi.org/10.1161/01.cir.83.3.778

    Article  CAS  PubMed  Google Scholar 

  7. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL, Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA (2013) American Heart Association Exercise CR, CoNPA Prevention Committee of the Council on Clinical Cardiology, CoC Metabolism, N Stroke, E Council on, and Prevention (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128(8):873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44

    Article  Google Scholar 

  8. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV (2010) American Heart Association Exercise CR, C Prevention Committee of the Council on Clinical, E Council on, Prevention, D Council on Peripheral Vascular, C Interdisciplinary Council on Quality of, and R Outcomes (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122(2):191–225. https://doi.org/10.1161/CIR.0b013e3181e52e69

    Article  Google Scholar 

  9. American Thoracic Society and American College of Chest Physicians (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167(2):211–77. https://doi.org/10.1164/rccm.167.2.211

  10. Sietsema KE, Sue DY, Stringer WW, Rossiter HB, Ward SA (2020) Wasserman & Whipp’s principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins.

  11. Brawner CA, Ehrman JK, AldredH Schairer JR, Keteyian SJ (2008) Quality assurance and cardiopulmonary exercise testing in clinical trials. J Card Fail 14(4):283–289. https://doi.org/10.1016/j.cardfail.2008.01.001

    Article  PubMed  Google Scholar 

  12. Keteyian SJ, Brawner CA, Ehrman JK, Ivanhoe R, Boehmer JP, Abraham WT (2010) Reproducibility of peak oxygen uptake and other cardiopulmonary exercise parameters: implications for clinical trials and clinical practice. Chest 138(4):950–955. https://doi.org/10.1378/chest.09-2624

    Article  PubMed  Google Scholar 

  13. Mehra MR, Kobashigawa J, Starling R, Russell S, Uber PA, Parameshwar J, Mohacsi P, Augustine S, Aaronson K, Barr M (2006) Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant 25(9):1024–1042. https://doi.org/10.1016/j.healun.2006.06.008

    Article  PubMed  Google Scholar 

  14. Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112(2):219–49. https://doi.org/10.1164/arrd.1975.112.2.219

  15. Peters CM, Dempsey JA, Hopkins SR, Sheel AW (2023) Is the lung built for exercise? Med Sci Sports Exerc, Advances and unresolved questions. https://doi.org/10.1249/mss.0000000000003255

    Book  Google Scholar 

  16. Campbell SC (1982) A comparison of the maximum voluntary ventilation with the forced expiratory volume in one second: an assessment of subject cooperation. J Occup Med 24(7):531–533

    CAS  PubMed  Google Scholar 

  17. Dillard TA, Hnatiuk OW, McCumber TR (1993) Maximum voluntary ventilation. Spirometric determinants in chronic obstructive pulmonary disease patients and normal subjects. Am Rev Respir Dis 147(4):870–5. https://doi.org/10.1164/ajrccm/147.4.870

  18. Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129(2 Pt 2):S49-55. https://doi.org/10.1164/arrd.1984.129.2P2.S49

    Article  CAS  PubMed  Google Scholar 

  19. Sue DY, Hansen JE (1984) Normal values in adults during exercise testing. Clin Chest Med 5(1):89–98.

  20. Hansen JE, Casaburi R, Cooper DM, Wasserman K (1988) Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol Occup Physiol 57(2):140–145. https://doi.org/10.1007/BF00640653

    Article  CAS  PubMed  Google Scholar 

  21. Spiro SG, Juniper E, Bowman P, Edwards RH (1974) An increasing work rate test for assessing the physiological strain of submaximal exercise. Clin Sci Mol Med 46(2):191–206. https://doi.org/10.1042/cs0460191

    Article  CAS  PubMed  Google Scholar 

  22. O'Donnell DE, Laveneziana P (2006) The clinical importance of dynamic lung hyperinflation in COPD. COPD 3(4):219-32. https://doi.org/10.1080/15412550600977478

  23. Ulrich S, Schneider SR, Bloch KE (2017) Effect of hypoxia and hyperoxia on exercise performance in healthy individuals and in patients with pulmonary hypertension: a systematic review. J Appl Physiol 123(6):1657–1670. https://doi.org/10.1152/japplphysiol.00186.2017

    Article  CAS  PubMed  Google Scholar 

  24. Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Phys 87(6):1997–2006. https://doi.org/10.1152/jappl.1999.87.6.1997

  25. Woods PR, Olson TP, Frantz RP, Johnson BD (2010) Causes of breathing inefficiency during exercise in heart failure. J Card Fail 16(10):835–842. https://doi.org/10.1016/j.cardfail.2010.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barratt SL, Davis R, Sharp C, Pauling JD (2020) The prognostic value of cardiopulmonary exercise testing in interstitial lung disease: a systematic review. ERJ Open Res 6(3). https://doi.org/10.1183/23120541.00027-2020

  27. Neder JA, Berton DC, Arbex FF, Alencar MC, Rocha A, Sperandio PA, Palange P, O’Donnell DE (2017) Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur Respir J 49(3):1602036. https://doi.org/10.1183/13993003.02036-2016

    Article  PubMed  Google Scholar 

  28. O’Donnell DE, Elbehairy AF, Faisal A, Webb KA, Neder JA, Mahler DA (2016) Exertional dyspnoea in COPD: the clinical utility of cardiopulmonary exercise testing. Eur Respir Rev 25(141):333–347. https://doi.org/10.1183/16000617.0054-2016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reybrouck T, Mertens L, Schulze-Neick I, Austenat I, Eyskens B, Dumoulin M, Gewillig M (1998) Ventilatory inefficiency for carbon dioxide during exercise in patients with pulmonary hypertension. Clin Physiol 18(4):337–344. https://doi.org/10.1046/j.1365-2281.1998.00109.x

    Article  CAS  PubMed  Google Scholar 

  30. Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, Coats AJ (2000) Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J 21(2):154–161. https://doi.org/10.1053/euhj.1999.1863

    Article  CAS  PubMed  Google Scholar 

  31. Riley MS, Nicholls DP, Cooper CB (2017) Cardiopulmonary exercise testing and metabolic myopathies. Ann Am Thorac Soc 14(Supplement_1):S129-S139. https://doi.org/10.1513/AnnalsATS.201701-014FR

  32. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K (2002) Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med 166(11):1443–1448. https://doi.org/10.1164/rccm.2202033

    Article  PubMed  Google Scholar 

  33. Brawner CA, Shafiq A, Aldred HA, Ehrman JK, Leifer ES, Selektor Y, Tita C, Velez M, Williams CT, Schairer JR, Lanfear DE, Keteyian SJ (2015) Comprehensive analysis of cardiopulmonary exercise testing and mortality in patients with systolic heart failure: the Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project. J Card Fail 21(9):710–718. https://doi.org/10.1016/j.cardfail.2015.06.001

    Article  PubMed  Google Scholar 

  34. Agostoni P, Corra U, Cattadori G, Veglia F, La Gioia R, Scardovi AB, Emdin M, Metra M , Sinagra G, Limongelli G, Raimondo R, Re F, Guazzi M, Belardinelli R, Parati G, Magri D, Fiorentini C, A Mezzani, E Salvioni, D Scrutinio, R Ricci, L Bettari, A Di Lenarda, LE Pastormerlo, G Pacileo, R Vaninetti, Apostolo A, Iorio A, Paolillo S, Palermo P, Contini M, Confalonieri M, Giannuzzi P, Passantino A, Cas LD, Piepoli MF, Passino C, Group MSR (2013) Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis. Int J Cardiol 167(6):2710–2718. https://doi.org/10.1016/j.ijcard.2012.06.113

    Article  Google Scholar 

  35. Brawner CA, Ehrman JK, Shafiq A, Saval MA, Russell SD, Lanfear DE, Keteyian SJ (2018) Challenges with percent predicted maximal VO2 in patients with heart failure. Med Sci Sports Exerc 50(2):204–210. https://doi.org/10.1249/mss.0000000000001431

    Article  PubMed  Google Scholar 

  36. Gargiulo P, Olla S, Boiti C, Contini M, Perrone-Filardi P, Agostoni P (2014) Predicted values of exercise capacity in heart failure: where we are, where to go. Heart Fail Rev 19(5):645–653. https://doi.org/10.1007/s10741-013-9403-x

    Article  PubMed  Google Scholar 

  37. Ehrman JK, Brawner CA, Shafiq A, Lanfear DE, Saval M, Keteyian SJ (2018) Cardiopulmonary exercise measures of men and women with HFREF differ in their relationship to prognosis: the Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project. J Card Fail 24(4):227–233. https://doi.org/10.1016/j.cardfail.2018.02.005

    Article  PubMed  Google Scholar 

Download references

Funding

CA Brawner: Dr. Brawner is supported by the following grants from the National Institutes of Health: 1R01AG077179-01 and R33HL143099.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Clinton A. Brawner.

Ethics declarations

Ethical approval

Not applicable. The article type is a review.

Competing interests

CA Brawner: Dr. Brawner has served as a Project Director for exercise testing core laboratory service with service agreements with Actelion Pharmaceuticals, Bristol Myers Squibb, Medpace, and Labcorp. Payment for these services is made to Henry Ford Health System. MH Lazar: No conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brawner, C.A., Lazar, M.H. Cardiopulmonary exercise testing criteria for advanced therapies in patients with heart failure. Heart Fail Rev 28, 1297–1306 (2023). https://doi.org/10.1007/s10741-023-10337-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10337-y

Keywords

Navigation