Skip to main content
Log in

Cardiac contractility modulation: an effective treatment strategy for heart failure beyond reduced left ventricular ejection fraction?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) causes a progressive limitation of functional capacity, poor quality of life (QoL) and increased mortality, yet unlike HF with reduced ejection fraction (HFrEF) there are no effective device-based therapies. Both HFrEF and HFpEF are associated with dysregulations in myocardial cellular calcium homeostasis and modifications in calcium-handling proteins, leading to abnormal myocardial contractility and pathological remodelling. Cardiac contractility modulation (CCM) therapy, based on a pacemaker-like implanted device, applies extracellular electrical stimulation to myocytes during the absolute refractory period of the action potential, which leads to an increase in cytosolic peak calcium concentrations and thereby the force of isometric contraction promoting positive inotropism. Subgroup analysis of CCM trials in HFrEF has demonstrated particular benefits in patients with LVEF between 35% and 45%, suggesting its potential effectiveness also in patients with higher LVEF values. Available evidence on CCM in HFpEF is still preliminary, but improvements in terms of symptoms and QoL have been observed. Future large, dedicated, prospective studies are needed to evaluate the safety and efficacy of this therapy in patients with HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. McDonagh TA, Metra M, Adamo M et al (2021) Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 42(48):4901

    Article  PubMed  Google Scholar 

  2. Chioncel O, Lainscak M, Seferovic PM et al (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 19(12):1574–85

    Article  CAS  PubMed  Google Scholar 

  3. Riccardi M, Sammartino AM, Piepoli M, Adamo M, Pagnesi M, Rosano G, Metra M, von Haehling S, Tomasoni D (2022) Heart failure: an update from the last years and a look at the near future. ESC Heart Fail. 9(6):3667–3693

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis EF, Lamas GA, O’Meara E et al (2007) Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. Eur J Heart Fail. 9(1):83–91

    Article  PubMed  Google Scholar 

  5. Zile MR, Kjellstrom B, Bennett T et al (2013) Effects of exercise on left ventricular systolic and diastolic properties in patients with heart failure and a preserved ejection fraction versus heart failure and a reduced ejection fraction. Circ Heart Fail. 6(3):508–16

    Article  CAS  PubMed  Google Scholar 

  6. Lee DS, Gona P, Vasan RS et al (2009) Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 119(24):3070–7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chan MM, Lam CS (2013) How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail. 15(6):604–13

    Article  PubMed  Google Scholar 

  8. Seferović PM, Fragasso G, Petrie M et al (2020) Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 22(9):1495–1503

  9. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 385(16):1451–61

    Article  CAS  PubMed  Google Scholar 

  10. Nassif ME, Windsor SL, Borlaug BA et al (2021) The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 27(11):1954–1960

    Article  PubMed  PubMed Central  Google Scholar 

  11. Solomon SD, McMurray JJV, Claggett B et al (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 387(12):1089–1098

    Article  PubMed  Google Scholar 

  12. Winter J, Brack KE, Ng GA (2011) Cardiac contractility modulation in the treatment of heart failure: initial results and unanswered questions. Eur J Heart Fail. 13(7):700–10

    Article  PubMed  Google Scholar 

  13. Lompré AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 121(6):822–30

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel PA, Nadarajah R, Ali N, Gierula J, Witte KK (2021) Cardiac contractility modulation for the treatment of heart failure with reduced ejection fraction. Heart Fail Rev. 26(2):217–226

    Article  PubMed  Google Scholar 

  15. Lawo T, Borggrefe M, Butter C et al (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol. 46(12):2229–36

    Article  PubMed  Google Scholar 

  16. Mohri S, Shimizu J, Mika Y et al (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol. 284(4):H1119-23

    Article  CAS  PubMed  Google Scholar 

  17. Cannell MB, Kong CH (2012) Local control in cardiac E-C coupling. J Mol Cell Cardiol. 52(2):298–303

    Article  CAS  PubMed  Google Scholar 

  18. Brunckhorst CB, Shemer I, Mika Y, Ben-Haim SA, Burkhoff D (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail. 8(1):7–15

    Article  PubMed  Google Scholar 

  19. Imai M, Rastogi S, Gupta RC et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol. 49(21):2120–8

    Article  PubMed  Google Scholar 

  20. Butter C, Rastogi S, Minden HH, Meyhöfer J, Burkhoff D, Sabbah HN (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol. 51(18):1784–9

    Article  CAS  PubMed  Google Scholar 

  21. Rastogi S, Mishra S, Zacà V, Mika Y, Rousso B, Sabbah HN (2008) Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology. 110(4):230–7

    Article  CAS  PubMed  Google Scholar 

  22. Wiegn P, Chan R, Jost C et al (2020) Safety, Performance, and Efficacy of Cardiac Contractility Modulation Delivered by the 2-Lead Optimizer Smart System: The FIX-HF-5C2 Study. Circ Heart Fail. 13(4)

    Article  CAS  PubMed  Google Scholar 

  23. Kirkfeldt RE, Johansen JB, Nohr EA, Moller M, Arnsbo P, Nielsen JC (2011) Risk factors for lead complications in cardiac pacing: a population-based cohort study of 28,860 Danish patients. Heart Rhythm. 8(10):1622–8

    Article  PubMed  Google Scholar 

  24. Rao IV, Burkhoff D (2021) Cardiac contractility modulation for the treatment of moderate to severe HF. Expert Rev Med Devices. 18(1):15–21

    Article  CAS  PubMed  Google Scholar 

  25. Mando R, Goel A, Habash F et al (2019) Outcomes of Cardiac Contractility Modulation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Cardiovasc Ther. 17(2019):9769724

    Google Scholar 

  26. Tint D, Florea R, Micu S (2019) New Generation Cardiac Contractility Modulation Device-Filling the Gap in Heart Failure Treatment. J Clin Med. 8(5):588

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manganelli G, Fiorentino A, Ceravolo G et al (2021) Use of Cardiac Contractility Modulation in an Older Patient with Non-Ischemic Dilated Cardiomyopathy: A Case Report. Clin Pract. 11(4):835–840

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kwong JS, Sanderson JE, Yu CM (2012) Cardiac contractility modulation for heart failure: a meta-analysis of randomized controlled trials. Pacing Clin Electrophysiol. 35(9):1111–8

    Article  PubMed  Google Scholar 

  29. Abraham WT, Kuck KH, Goldsmith RL et al (2018) A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation. JACC Heart Fail. 6(10):874–883

    Article  PubMed  Google Scholar 

  30. Kuschyk J, Falk P, Demming T et al (2021) Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system. Eur J Heart Fail. 23(7):1160–1169

    Article  CAS  PubMed  Google Scholar 

  31. Anker SD, Borggrefe M, Neuser H et al (2019) Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail. 21(9):1103–1113

    Article  PubMed  Google Scholar 

  32. Schau T, Seifert M, Meyhöfer J, Neuss M, Butter C (2011) Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace. 13(10):1436–44

    Article  PubMed  Google Scholar 

  33. Liu M, Fang F, Luo XX et al (2016) Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case-control study. Int J Cardiol 1(206):122–126

    Article  Google Scholar 

  34. Kloppe A, Lawo T, Mijic D, Schiedat F, Muegge A, Lemke B (2016) Long-term survival with Cardiac Contractility Modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol. 15(209):291–5

    Article  Google Scholar 

  35. Kuschyk J, Roeger S, Schneider R et al (2015) Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol. 15(183):76–81

    Article  Google Scholar 

  36. Borggrefe MM, Lawo T, Butter C et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J. 29(8):1019–28

    Article  PubMed  Google Scholar 

  37. Neelagaru SB, Sanchez JE, Lau SK et al (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm. 3(10):1140–7

    Article  PubMed  Google Scholar 

  38. Abraham WT, Burkhoff D, Nademanee K et al (2008) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics. Am Heart J. 156(4):641-648.e1

    Article  PubMed  Google Scholar 

  39. Kadish A, Nademanee K, Volosin K et al (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161(2):329–337.e1–2

  40. Abraham WT, Lindenfeld J, Reddy VY et al (2015) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with moderately reduced left ventricular ejection fraction and a narrow QRS duration: study rationale and design. J Card Fail. 21(1):16–23

    Article  PubMed  Google Scholar 

  41. Giallauria F, Cuomo G, Parlato A, Raval NY, Kuschyk J, Stewart Coats AJ (2020) A comprehensive individual patient data meta-analysis of the effects of cardiac contractility modulation on functional capacity and heart failure-related quality of life. ESC Heart Fail. 7(5):2922–2932

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heinzel FR, Hegemann N, Hohendanner F et al (2020) Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther. 10(5):1541–1560

    Article  PubMed  PubMed Central  Google Scholar 

  43. Runte KE, Bell SP, Selby DE et al (2017) Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 10(8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borggrefe M, Burkhoff D (2012) Clinical effects of cardiac contractility modulation (CCM) as a treatment for chronic heart failure. Eur J Heart Fail. 14(7):703–12

    Article  CAS  PubMed  Google Scholar 

  45. Tschöpe C, Kherad B, Klein O et al (2019) Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail. 21(1):14–22

    Article  PubMed  Google Scholar 

  46. Tschöpe C, Butler J, Farmakis D, Morley D, Rao I, Filippatos G (2020) Clinical effects of cardiac contractility modulation in heart failure with mildly reduced systolic function. ESC Heart Fail. 7(6):3531–5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tschöpe C, Van Linthout S, Spillmann F et al (2016) Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol. 15(203):1061–6

    Article  Google Scholar 

  48. Linde C, Grabowski M, Ponikowski P, Rao I, Stagg A, Tschöpe C (2022) Cardiac contractility modulation therapy improves health status in patients with heart failure with preserved ejection fraction; a pilot study (CCM-HFpEF). Eur J Heart Fail 20

  49. Kuschyk J, Stach K, Tülümen E et al (2015) Subcutaneous implantable cardioverter-defibrillator: First single-center experience with other cardiac implantable electronic devices. Heart Rhythm. 12(11):2230–8

    Article  PubMed  Google Scholar 

  50. Trolese L, Faber T, Gressler A et al (2021) Device interaction between cardiac contractility modulation (CCM) and subcutaneous defibrillator (S-ICD). J Cardiovasc Electrophysiol. 32(11):3095–3098

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Riccardi and Dr. Pagnesi designed the review. Dr. Riccardi, Dr. Sammartino and Dr. Pagnesi performed manuscript drafting. Dr. Riccardi, Dr. Sammartino, Dr. Adamo, Dr. Inciardi, Dr. Lombardi, Dr. Pugliese, Dr. Tomasoni, Dr. Vizzardi, Dr. Metra, Dr. Coats and Dr. Pagnesi permorfed manuscript revision and provided value intellectual contribution.

Corresponding author

Correspondence to Marco Metra.

Ethics declarations

Ethical approval

Not applicable.

Competiting interests

Dr. Adamo has received speaker fees from Abbott Vascular and Medtronic. Dr. Metra has received consulting honoraria as a member of trial committees or advisory boards for Abbott Vascular, Actelion, Amgen, Bayer, Edwards Therapeutics, Servier, Vifor Pharma and Windtree Therapeutics. Dr. Coats has received honoraria and/or lecture fees from AstraZeneca, Bayer, Boehringer Ingelheim, Edwards, Menarini, Novartis, Servier, Vifor, Abbott, Actimed, Arena, Cardiac Dimensions, Corvia, CVRx, Enopace, ESN Cleer, Faraday, Impulse Dynamics, Respicardia and Viatris. Dr. Pagnesi has received personal fees from Abbott Vascular, AstraZeneca, Boehringer Ingelheim and Vifor Pharma. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, M., Sammartino, A.M., Adamo, M. et al. Cardiac contractility modulation: an effective treatment strategy for heart failure beyond reduced left ventricular ejection fraction?. Heart Fail Rev 28, 1141–1149 (2023). https://doi.org/10.1007/s10741-023-10315-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10315-4

Keywords

Navigation