Skip to main content

Advertisement

Log in

Cognitive impairment in patients with heart failure: molecular mechanism and therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is associated with multiple organ dysfunction and many comorbidities. Its incidence is high among the elderly and is a major health burden worldwide. Cognitive impairment (CI) is highly prevalent in older patients with HF, which is an abnormality in one or more of the items of cognition, attention, memory, language, psychomotor function, and visual spatial acuity. Studies have shown that the incidence of CI in HF patients is between 13 and 54%, and patients with both conditions have poor self-care ability and prognosis, as well as increased mortality rates. However, the mechanisms of CI development in HF patients are still unclear. In this review, we describe the epidemiology and risk factors as well as measures of improving CI in HF patients. We update the latest pathophysiological mechanisms related to the neurocognitive changes in HF patients, expounding on the mechanisms associated with the development of CI in HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Under appropriate request to the corresponding author.

References

  1. Spiecker M (2006) Heart failure in elderly patients. Exp Gerontol 41:549–551. https://doi.org/10.1016/j.exger.2006.03.002

    Article  PubMed  Google Scholar 

  2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Ramon Gonzalez-Juanatey J, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129-U130. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  3. Kewcharoen J, Trongtorsak A, Kanitsoraphan C, Prasitlumkum N, Mekritthikrai R, Techorueangwiwat C, Limpruttidham N, Rattanawong P (2019) Cognitive impairment and 30-day rehospitalization rate in patients with acute heart failure: A systematic review and meta-analysis. Indian Heart J 71:52–59. https://doi.org/10.1016/j.ihj.2018.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garcia Brunen JM, Povar Echeverria M, Diez-Manglano J, Manzano L, Trullas JC, Romero Requena JM, Salamanca Bautista MP, Gonzalez Franco A, Cepeda Rodrigo JM, Montero-Perez-Barquero M (2020) Cognitive impairment in patients hospitalized for congestive heart failure: data from the RICA Registry. Intern Emerg Med. https://doi.org/10.1007/s11739-020-02400-5

    Article  PubMed  Google Scholar 

  5. Vogels RLC, Scheltens P, Schroeder-Tanka JM, Weinstein HC (2007) Cognitive impairment in heart failure: A systematic review of the literature. Eur J Heart Fail 9:440–449. https://doi.org/10.1016/j.ejheart.2006.11.001

    Article  PubMed  Google Scholar 

  6. Murray AM, Tupper DE, Knopman DS, Gilbertson DT, Pederson SL, Li S, Smith GE, Hochhalter AK, Collins AJ, Kane RL (2006) Cognitive impairment in hemodialysis patients is common. Neurology 67:216–223. https://doi.org/10.1212/01.wnl.0000225182.15532.40

    Article  CAS  PubMed  Google Scholar 

  7. Skrobot O, Black S, Chen C, DeCarli C, Erkinjuntti T, Ford G, Kalaria R, O’Brien J, Pantoni L, Pasquier F, Roman G, Wallin A, Sachdev P, Skoog I, Ben-Shlomo Y, Passmore A, Love S, Kehoe P (2018) Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the vascular impairment of cognition classification consensus study. Alzheimers Dement J Alzheimers Assoc 14:280–292. https://doi.org/10.1016/j.jalz.2017.09.007

    Article  Google Scholar 

  8. Vellone E, Chiala O, Boyne J, Klompstra L, Evangelista LS, Back M, Ben Gal T, Martensson J, Stromberg A, Jaarsma T (2020) Cognitive impairment in patients with heart failure: an international study. ESC Heart Fail 7:46–53. https://doi.org/10.1002/ehf2.12542

    Article  PubMed  Google Scholar 

  9. Toledo C, Lucero C, Andrade DC, Diaz HS, Schwarz KG, Pereyra KV, Arce-Alvarez A, Lopez NA, Martinez M, Inestrosa NC, Del Rio R (2019) Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 11:5924–5942. https://doi.org/10.18632/aging.102150

    Article  CAS  PubMed  Google Scholar 

  10. Drew D, Tighiouart H, Rollins J, Duncan S, Babroudi S, Scott T, Weiner D, Sarnak M (2020) Evaluation of screening tests for cognitive impairment in patients receiving maintenance hemodialysis. J Am Soc Nephrol 31:855–864. https://doi.org/10.1681/asn.2019100988

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saito H, Yamashita M, Endo Y, Mizukami A, Yoshioka K, Hashimoto T, Koseki S, Shimode Y, Kitai T, Maekawa E, Kasai T, Kamiya K, Matsue Y (2020) Cognitive impairment measured by Mini-Cog provides additive prognostic information in elderly patients with heart failure. J Cardiol 76:350–356. https://doi.org/10.1016/j.jjcc.2020.06.016

    Article  PubMed  Google Scholar 

  12. Holm H, Bachus E, Jujic A, Nilsson ED, Wadstrom B, Molvin J, Minthon L, Fedorowski A, Nagga K, Magnusson M (2020) Cognitive test results are associated with mortality and rehospitalization in heart failure: Swedish prospective cohort study. ESC Heart Fail. https://doi.org/10.1002/ehf2.12909

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kewcharoen J, Prasitlumkum N, Kanitsoraphan C, Charoenpoonsiri N, Angsubhakorn N, Putthapiban P, Rattanawong P (2019) Cognitive impairment associated with increased mortality rate in patients with heart failure: A systematic review and meta-analysis. J Saudi Heart Assoc 31:170–178. https://doi.org/10.1016/j.jsha.2019.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akomolafe A, Quarshie A, Jackson P, Thomas J, Deffer O, Oduwole A, Onwuanyi A, Lapu-Bula R, Strayhorn G, Ofili E, Mayberry R (2005) The prevalence of cognitive impairment among African-American patients with congestive heart failure. J Natl Med Assoc 97:689–94. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569330/pdf/jnma00186-0059.pdf

  15. Dong Y, Teo SY, Kang K, Tan M, Ling LH, Yeo PSD, Sim D, Jaufeerally F, Leong KTG, Ong HY, Soon D, Lee S, Loh SY, Tan RS, Chan SP, Richards AM, Lam CSP (2019) Cognitive impairment in Asian patients with heart failure: prevalence, biomarkers, clinical correlates, and outcomes. Eur J Heart Fail 21:688–690. https://doi.org/10.1002/ejhf.1442

    Article  PubMed  Google Scholar 

  16. Pastva AM, Hugenschmidt CE, Kitzman DW, Nelson MB, Brenes GA, Reeves GR, Mentz RJ, Whellan DJ, Chen H, Duncan PW (2020 ) Cognition, physical function and quality-of-life in older patients with acute decompensated heart failure. J Card Fail https://doi.org/10.1016/j.cardfail.2020.09.007

  17. Yohannes AM, Chen W, Moga AM, Leroi I, Connolly MJ (2017) Cognitive impairment in chronic obstructive pulmonary disease and chronic heart failure: a systematic review and meta-analysis of observational studies. J Am Med Dir Assoc. https://doi.org/10.1016/j.jamda.2017.01.014

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gathright EC, Dolansky MA, Gunstad J, Josephson RA, Moore SM, Hughes JW (2019) Examination of attention, executive function, and memory as predictors of mortality risk in adults with systolic heart failure. Eur J Cardiovasc Nurs 18:729–735. https://doi.org/10.1177/1474515119863182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gul A, Malik M (2019) Emotional intelligence and systolic blood pressure are determinants of cognitive deficits in patients with heart failure. J Pak Med Assoc 69:1022–1024

    PubMed  Google Scholar 

  20. Hooghiemstra AM, Leeuwis AE, Bertens AS, Biessels GJ, Bots ML, Brunner-La Rocca HP, Greving JP, Kappelle LJ, van Oostenbrugge RJ, van Rossum AC, van der Flier WM (2019) Frequent cognitive impairment in patients with disorders along the heart-brain axis. Stroke 50:3369–3375. https://doi.org/10.1161/strokeaha.119.026031

    Article  PubMed  Google Scholar 

  21. Sterling MR, Jannat-Khah D, Bryan J, Banerjee S, McClure LA, Wadley VG, Unverzagt FW, Levitan EB, Goyal P, Peterson JC, Manly JJ, Levine DA, Safford MM (2019) The prevalence of cognitive impairment among adults with incident heart failure: The “Reasons for Geographic and Racial Differences in Stroke” (REGARDS) study. J Card Fail 25:130–136. https://doi.org/10.1016/j.cardfail.2018.12.006

    Article  PubMed  Google Scholar 

  22. Lee TC, Qian M, Liu Y, Graham S, Mann DL, Nakanishi K, Teerlink JR, Lip GYH, Freudenberger RS, Sacco RL, Mohr JP, Labovitz AJ, Ponikowski P, Lok DJ, Matsumoto K, Estol C, Anker SD, Pullicino PM, Buchsbaum R, Levin B, Thompson JLP, Homma S, Di Tullio MR (2019) Cognitive decline over time in patients with systolic heart failure: Insights from WARCEF. JACC Heart Fail 7:1042–1053. https://doi.org/10.1016/j.jchf.2019.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Q, Zhang Z, Li L, Wen H, Xu Q (2014) Assessment of cognitive impairment in patients with Parkinson’s disease: prevalence and risk factors. Clin Interv Aging 9:275–281. https://doi.org/10.2147/cia.S47367

    Article  PubMed  PubMed Central  Google Scholar 

  24. Del Sindaco D, Pulignano G, Di Lenarda A, Tarantini L, Cioffi G, Tolone S, Tinti MD, Monzo L, Barbati G, Minardi G (2012) Role of a multidisciplinary program in improving outcomes in cognitively impaired heart failure older patients. Monaldi Arch Chest Dis 78:20–8. https://doi.org/10.4081/monaldi.2012.140

    Article  PubMed  Google Scholar 

  25. Lenoir H, Seux ML, Latour F, Rigaud AS, Hanon O (2004) Vascular risk factors and cognitive impairment among non demented elderly. J Hypertens 22:S105–S105. https://doi.org/10.1097/00004872-200406002-00363

  26. Zhou DHD, Wang JYJ, Li JC, Deng J, Gao CY, Chen M (2005) Frequency and risk factors of vascular cognitive impairment three months after ischemic stroke in China: The chongqing stroke study. Neuroepidemiology 24:87–95. https://doi.org/10.1159/000081055

    Article  PubMed  Google Scholar 

  27. Kwan E, Draper B, Endre ZH, Harvey SB, Brown MA (2020) Prevalence, types and recognition of cognitive impairment in dialysis patients in South Eastern Sydney. Intern Med J. https://doi.org/10.1111/imj.14976

    Article  PubMed  Google Scholar 

  28. Ely AV, Alio C, Bygrave D, Burke M, Walker E (2020) Relationship between psychological distress and cognitive function differs as a function of obesity status in inpatient heart failure. Front Psychol 11:162. https://doi.org/10.3389/fpsyg.2020.00162

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim J, Hwang SY, Heo S, Shin MS, Kim SH (2019) Predicted relationships between cognitive function, depressive symptoms, self-care adequacy, and health-related quality of life and major events among patients with heart failure. Eur J Cardiovasc Nurs 18:418–426. https://doi.org/10.1177/1474515119840877

    Article  PubMed  Google Scholar 

  30. Kim EY, Son YJ (2019) Association between anemia and cognitive impairment among elderly patients with heart failure. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16162933

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zamboni V, Cesari M, Zuccala G, Onder G, Woodman RC, Maraldi C, Ranzini M, Volpato S, Pahor M, Bernabei R (2006) Anemia and cognitive performance in hospitalized older patients: results from the GIFA study. Int J Geriatr Psychiatry 21:529–534. https://doi.org/10.1002/gps.1520

    Article  PubMed  Google Scholar 

  32. Del Sindaco D, Pulignano G, Di Lenarda A, Tarantini L, Cioffi G, Tolone S, Tinti MD, Monzo L, Barbati G, Minardi G (2012) Role of a multidisciplinary program in improving outcomes in cognitively impaired heart failure older patients. Monaldi Arch Chest Dis 78:20-8. https://doi.org/10.4081/monaldi.2012.140

  33. Oudeman EA, Greving JP, Hooghiemstra AM, Brunner-La Rocca HP, Biessels GJ, Kappelle LJ (2019) Nonfocal transient neurological attacks are related to cognitive impairment in patients with heart failure. J Neurol 266:2035–2042. https://doi.org/10.1007/s00415-019-09376-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim J, Shin M-S, Hwang SY, Park E, Lim Y-H, Shim JL, Kim SL, Kim YH, An M (2018) Memory loss and decreased executive function are associated with limited functional capacity in patients with heart failure compared to patients with other medical conditions. Heart Lung 47:61–67. https://doi.org/10.1016/j.hrtlng.2017.09.005

    Article  PubMed  Google Scholar 

  35. Meerlo P, Mistiberger RE, Jacobs BL, Heller HC, McGinty D (2009) New neurons in the adult brain: The role of sleep and consequences of sleep loss. Sleep Med Rev 13:187–194. https://doi.org/10.1016/j.smrv.2008.07.004

    Article  PubMed  Google Scholar 

  36. Lee KS, Lennie TA, Heo S, Song EK, Moser DK (2016) Prognostic importance of sleep quality in patients with heart failure. Am J Crit Care 25:516–525. https://doi.org/10.4037/ajcc2016219

    Article  PubMed  Google Scholar 

  37. Johns MW (1992) Reliability and factor-analysis of the epworth sleepiness scale. Sleep 15:376–381. https://doi.org/10.1093/sleep/15.4.376

    Article  CAS  PubMed  Google Scholar 

  38. Niu W, Yang H, Lu C (2020) The relationship between serum uric acid and cognitive function in patients with chronic heart failure. BMC Cardiovasc Disord 20:381. https://doi.org/10.1186/s12872-020-01666-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shaaban CE, Jia Y, Chang CH, Ganguli M (2019) Independent and joint effects of vascular and cardiometabolic risk factor pairs for risk of all-cause dementia: a prospective population-based study. Int Psychogeriatr 31:1421–1432. https://doi.org/10.1017/s1041610219001066

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tang L, Liu W, Yang Y, Han W, Li K (2020) Relationship between sleep and cognitive function in patients with heart failure: A systematic review. J Psychosom Res 130:109913. https://doi.org/10.1016/j.jpsychores.2019.109913

    Article  PubMed  Google Scholar 

  41. Yiginer O, Tokatli A, Dogan M, Erdal E (2015) Atrial fibrillation may be a hidden factor for the development of cognitive impairment in patients with heart failure. J Geriatr Cardiol 12:590. https://doi.org/10.11909/j.issn.1671-5411.2015.05.007

  42. Fulop GA, Ahire C, Csipo T, Tarantini S, Kiss T, Balasubramanian P, Yabluchanskiy A, Farkas E, Toth A, Nyul-Toth A, Toth P, Csiszar A, Ungvari Z (2019) Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. Geroscience 41:575–589. https://doi.org/10.1007/s11357-019-00110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaita F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, Bergamasco L, Boffano C, Valentini MC, Cesarani F, Scaglione M (2013) Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol 62:1990–1997. https://doi.org/10.1016/j.jacc.2013.05.074

    Article  PubMed  Google Scholar 

  44. Leto L, Feola M (2015) Cognitive impairment in heart failure patients: role of atrial fibrillation. J Geriatr Cardiol 12:690. https://doi.org/10.11909/j.issn.1671-5411.2015.06.011

  45. Abell JG, Kivimaki M, Dugravot A, Tabak AG, Fayosse A, Shipley M, Sabia S, Singh-Manoux A (2018) Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. Eur Heart J 39:3119–3125. https://doi.org/10.1093/eurheartj/ehy288

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, Deal JA, McKhann GM, Mosley TH, Sharrett AR, Schneider ALC, Windham BG, Wruck LM, Knopman DS (2017) Associations Between Midlife Vascular Risk Factors and 25-Year Incident Dementia in the Atherosclerosis Risk in Communities (ARIC) Cohort. JAMA Neurol 74:1246–1254. https://doi.org/10.1001/jamaneurol.2017.1658

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alperovitch A, Blachier M, Soumare A, Ritchie K, Dartigues J-F, Richard-Harston S, Tzourio C (2014) Blood pressure variability and risk of dementia in an elderly cohort, the Three-City Study. Alzheimers Dement 10:S330–S337. https://doi.org/10.1016/j.jalz.2013.05.1777

    Article  PubMed  Google Scholar 

  48. Faraco G, Iadecola C (2013) Hypertension a harbinger of stroke and dementia. Hypertension 62:810–817. https://doi.org/10.1161/hypertensionaha.113.01063

    Article  CAS  PubMed  Google Scholar 

  49. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701. https://doi.org/10.1016/s1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  50. Canavan M, O’Donnell MJ (2022) Hypertension and cognitive impairment: a review of mechanisms and key concepts. Front Neurol. https://doi.org/10.3389/fneur.2022.821135

    Article  PubMed  PubMed Central  Google Scholar 

  51. Iadecola C, Gottesman RF (2019) Neurovascular and cognitive dysfunction in hypertension epidemiology, pathobiology, and treatment. Circ Res 124:1025–1044. https://doi.org/10.1161/circresaha.118.313260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Forette F, Seux ML, Staessen JA, Thijs L, Birkenhager WH, Babarskiene MR, Babeanu S, Bossini A, Gil-Extremera B, Girerd X, Laks T, Lilov E, Moisseyev V, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Fagard R, Syst-Eur I (1998) Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352:1347–1351. https://doi.org/10.1016/s0140-6736(98)03086-4

    Article  CAS  PubMed  Google Scholar 

  53. Cunningham EL, Todd SA, Passmore P, Bullock R, McGuinness B (2021) Pharmacological treatment of hypertension in people without prior cerebrovascular disease for the prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004034.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ding J, Davis-Plourde KL, Sedaghat S, Tully PJ, Wang W, Phillips C, Pase MP, Himali JJ, Windham BG, Griswold M, Gottesman R, Mosley TH, White L, Guonason V, Debette S, Beiser AS, Seshadri S, Ikram MA, Meirelles O, Tzourio C, Launer LJ (2020) Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 19:61–70. https://doi.org/10.1016/s1474-4422(19)30393-x

    Article  CAS  PubMed  Google Scholar 

  55. Abhayaratna WP, Fatema K, Barnes ME, Seward JB, Gersh BJ, Bailey KR, Casaclang-Verzosa G, Tsang TSM (2008) Left atrial reservoir function as a potent marker for first atrial fibrillation or flutter in persons >= 65 years of age. Am J Cardiol 101:1626–1629. https://doi.org/10.1016/j.amjcard.2008.01.051

    Article  PubMed  Google Scholar 

  56. Prabhakaran S, Greenland P (2022) Role of the heart in dementia etiology in the absence of atrial fibrillation or stroke. JAMA-J Am Med Assoc 327:1133–1134. https://doi.org/10.1001/jama.2022.2374

    Article  Google Scholar 

  57. Shen MJ, Arora R, Jalife J (2019) Atrial Myopathy. Jacc-Basic To Translational. Science 4:640–654. https://doi.org/10.1016/j.jacbts.2019.05.005

    Article  Google Scholar 

  58. Russo C, Jin Z, Liu R, Iwata S, Tugcu A, Yoshita M, Homma S, Elkind MSV, Rundek T, DeCarli C, Wright CB, Sacco RL, Di Tullio MR (2013) LA volumes and reservoir function are associated with subclinical cerebrovascular disease the CABL (Cardiovascular Abnormalities and Brain Lesions) study. JACC Cardiovas Imaging 6:313–323. https://doi.org/10.1016/j.jcmg.2012.10.019

    Article  Google Scholar 

  59. Gutierrez A, Norby FL, Maheshwari A, Rooney MR, Gottesman RF, Mosley TH, Lutsey PL, Oldenburg N, Soliman EZ, Alonso A, Chen LY (2019) Association of abnormal p-wave indices with dementia and cognitive decline over 25 years: ARIC-NCS (The Atherosclerosis Risk in Communities Neurocognitive Study). J Am Heart Assoc. https://doi.org/10.1161/jaha.119.014553

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang W, Zhang MJ, Inciardi RM, Norby FL, Johansen MC, Parikh R, Van’t Hof JR, Alonso A, Soliman EZ, Mosley TH, Gottesman RF, hah, AM, Solomon SD, Chen LY (2022) Association of echocardiographic measures of left atrial function and size with incident dementia. JAMA-J Am Med Ass 327:1138–1148. https://doi.org/10.1001/jama.2022.2518

    Article  Google Scholar 

  61. Patel RB, Lam CSP, Svedlund S, Saraste A, Hage C, Tan R-S, Beussink-Nelson L, Tromp J, Sanchez C, Njoroge J, Swat SA, Faxen UL, Fermer ML, Venkateshvaran A, Gan L-M, Lund LH, Shah SJ (2021) Disproportionate left atrial myopathy in heart failure with preserved ejection fraction among participants of the PROMIS-HFpEF study. Sci Rep. https://doi.org/10.1038/s41598-021-84133-9

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xu B, Li H (2015) Brain mechanisms of sympathetic activation in heart failure: Roles of the renin-angiotensin system, nitric oxide and pro-inflammatory cytokines (Review). Mol Med Rep 12:7823–7829. https://doi.org/10.3892/mmr.2015.4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roman GC (2004) Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res 26:454–458. https://doi.org/10.1179/016164104225017686

    Article  PubMed  Google Scholar 

  64. Toledo C, Andrade DC, Diaz HS, Inestrosa NC, Del Rio R (2019) Neurocognitive disorders in heart failure: Novel pathophysiological mechanisms underpinning memory loss and learning impairment. Mol Neurobiol 56:8035–8051. https://doi.org/10.1007/s12035-019-01655-0

    Article  CAS  PubMed  Google Scholar 

  65. Waragai M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Masliah E, Hashimoto M (2020) Adiponectin paradox in Alzheimer’s disease; relevance to amyloidogenic evolvability? Front Endocrinol (Lausanne) 11:108. https://doi.org/10.3389/fendo.2020.00108

    Article  PubMed  Google Scholar 

  66. Doehner W (2019) Dementia and the heart failure patient. Eur Heart J Suppl 21:L28-l31. https://doi.org/10.1093/eurheartj/suz242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Lin Z, Liu M, Liao H, Chen Y, Zhang X, Chan HC, Zhou B, Rao L, Sun H (2020) CFTR deficiency causes cardiac dysplasia during zebrafish embryogenesis and is associated with dilated cardiomyopathy. Mech Dev. https://doi.org/10.1016/j.mod.2020.103627

    Article  PubMed  Google Scholar 

  68. Malik FA, Meissner A, Semenkov I, Molinski S, Pasyk S, Ahmadi S, Bui HH, Bear CE, Lidington D, Bolz S-S (2015) Sphingosine-1-phosphate is a novel regulator of cystic fibrosis transmembrane conductance regulator (CFTR) Activity. Plos One. https://doi.org/10.1371/journal.pone.0130313

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao G, Zhong Y, Su W, Liu S, Song X, Hou T, Mu X, Gong MC, Guo Z (2019) Transcriptional suppression of CPI-17 gene expression in vascular smooth muscle cells by tumor necrosis factor, Krüppel-like factor 4, and Sp1 Is associated with lipopolysaccharide-induced vascular hypocontractility, hypotension, and mortality. Mol Cell Biol 39. https://doi.org/10.1128/mcb.00070-19

  70. Ravindran OS, Vaishnaruby S, Karthik MS, Merciline AD (2019) Impairment of cognitive functions in congestive cardiac failure patients. Indian J Psychiatry 61:146–150. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_182_17

    Article  PubMed  PubMed Central  Google Scholar 

  71. Makwana B, Tart-Zelvin A, Xu X, Gunstad JJ, Cote DM, Poppas A, Cohen RA, Sweet LH (2020) Cerebrovascular perfusion among older adults with and without cardiovascular disease. J Neuroimaging. https://doi.org/10.1111/jon.12757

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vanherle L, Matuskova H, Don-Doncow N, Uhl FE, Meissner A (2020) Improving cerebrovascular function to increase neuronal recovery in neurodegeneration associated to cardiovascular disease. Front Cell Dev Biol 8:53. https://doi.org/10.3389/fcell.2020.00053

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kresge HA, Liu D, Gupta DK, Moore EE, Osborn KE, Acosta LMY, Bell SP, Pechman KR, Gifford KA, Mendes LA, Wang TJ, Blennow K, Zetterberg H, Hohman TJ, Jefferson AL (2020) Lower left ventricular ejection fraction relates to cerebrospinal fluid biomarker evidence of neurodegeneration in older adults. J Alzheimers Dis 74:965–974. https://doi.org/10.3233/jad-190813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matchett B, Grinberg L, Theofilas P, Murray M (2021) The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathol 141:631–650. https://doi.org/10.1007/s00401-020-02248-1

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bouret S (2019) Locus coeruleus, noradrenaline, and behavior: Network effect, network effects? Neuron 103:554–556. https://doi.org/10.1016/j.neuron.2019.07.033

    Article  CAS  PubMed  Google Scholar 

  76. Kaufman A, Geiller T, Losonczy A (2020) A role for the locus coeruleus in hippocampal CA1 Place cell reorganization during spatial reward learning. Neuron 105:1018-1026.e4. https://doi.org/10.1016/j.neuron.2019.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holland N, Robbins T, Rowe J (2021) The role of noradrenaline in cognition and cognitive disorders. Brain : a journal of neurology. https://doi.org/10.1093/brain/awab111

    Article  PubMed  Google Scholar 

  78. Traver S, Salthun-Lassalle B, Marien M, Hirsch EC, Colpaert F, Michel PP (2005) The neurotransmitter noradrenaline rescues septal cholinergic neurons in culture from degeneration caused by low-level oxidative stress. Mol Pharmacol 67:1882–1891. https://doi.org/10.1124/mol.104.007864

    Article  CAS  PubMed  Google Scholar 

  79. Madrigal JLM, Feinstein DL, Dello Russo C (2005) Norepinephrine protects cortical neurons against micro glial-induced cell death. J Neurosci Res 81:390–396. https://doi.org/10.1002/jnr.20481

    Article  CAS  PubMed  Google Scholar 

  80. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129. https://doi.org/10.1016/j.neuron.2012.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scheltens P, Twisk JWR, Blesa R, Scarpini E, von Arnim CAF, Bongers A, Harrison J, Swinkels SHN, Stam CJ, de Waal H, Wurtman RJ, Wieggers RL, Vellas B, Kamphuis PJGH (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: Results from a randomized, controlled trial. J Alzheimers Dis 31:225–236. https://doi.org/10.3233/jad-2012-121189

    Article  CAS  PubMed  Google Scholar 

  82. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181. https://doi.org/10.1007/s00401-010-0789-4

    Article  PubMed  Google Scholar 

  83. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. https://doi.org/10.1097/NEN.0b013e318232a379

    Article  CAS  PubMed  Google Scholar 

  84. Liu X, Chan C-B, Jang S-W, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010) A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53:8274–8286. https://doi.org/10.1021/jm101206p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takahashi J, Shibata T, Sasaki M, Kudo M, Yanezawa H, Obara S, Kudo K, Ito K, Yamashita F, Terayama Y (2015) Detection of changes in the locus coeruleus in patients with mild cognitive impairment and Alzheimer’s disease: High-resolution fast spin-echo T1-weighted imaging. Geriatr Gerontol Int 15:334–340. https://doi.org/10.1111/ggi.12280

    Article  PubMed  Google Scholar 

  86. Wakamatsu K, Tabuchi K, Ojika M, Zucca FA, Zecca L, Ito S (2015) Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem 135:768–776. https://doi.org/10.1111/jnc.13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang LY, Murphy RR, Hanscom B, Li G, Millard SP, Petrie EC, Galasko DR, Sikkema C, Raskind MA, Wilkinson CW, Peskind ER (2013) Cerebrospinal fluid norepinephrine and cognition in subjects across the adult age span. Neurobiol Aging 34:2287–2292. https://doi.org/10.1016/j.neurobiolaging.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Persson J, Larsson A, Reuter-Lorenz PA (2013) Imaging fatigue of interference control reveals the neural basis of executive resource depletion. J Cogn Neurosci 25:338–351. https://doi.org/10.1162/jocn_a_00321

    Article  PubMed  Google Scholar 

  89. Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, Schneider JA, Bennett DA (2013) Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 80:1202–1208. https://doi.org/10.1212/WNL.0b013e3182897103

    Article  PubMed  PubMed Central  Google Scholar 

  90. Paran E, Anson O, Lowenthal DT (2010) Cognitive function and antihypertensive treatment in the elderly: a 6-year follow-up study. Am J Ther 17:358–364. https://doi.org/10.1097/MJT.0b013e3181bf325c

    Article  PubMed  Google Scholar 

  91. Stark SM, Yassa MA, Stark CEL (2010) Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learn Mem 17:284–288. https://doi.org/10.1101/lm.1768110

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mather M, Harley C (2016) The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends Cogn Sci 20:214–226. https://doi.org/10.1016/j.tics.2016.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang ZH, Xi GM, Li WC, Ling HY, Qu P, Fang XB (2010) Cyclic-AMP response element binding protein and tau are involved in the neuroprotective mechanisms of nerve growth factor during focal cerebral ischemia/reperfusion in rats. J Clin Neurosci 17:353–356. https://doi.org/10.1016/j.jocn.2009.07.086

    Article  CAS  PubMed  Google Scholar 

  94. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–313. https://doi.org/10.1523/jneurosci.17-07-02295.1997

  95. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system for whom the cell tolls. Circ Res 108:1133-U201. https://doi.org/10.1161/circresaha.110.226936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dick SA, Epelman S (2016) Chronic heart failure and inflammation what do we really know? Circ Res 119:159–176. https://doi.org/10.1161/circresaha.116.308030

    Article  CAS  PubMed  Google Scholar 

  97. Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, Dawson D, de Windt LJ, Giacca M, Hamdani N, Hilfiker-Kleiner D, Hirsch E, Leite-Moreira A, Mayr M, Thum T, Tocchetti CG, van der Velden J, Varricchi G, Heymans S (2018) The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail 20:445–459. https://doi.org/10.1002/ejhf.1138

    Article  PubMed  Google Scholar 

  98. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL (2020) Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 17:269–285. https://doi.org/10.1038/s41569-019-0315-x

    Article  PubMed  Google Scholar 

  99. Swirski FK, Nahrendorf M (2018) Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 18:733–744. https://doi.org/10.1038/s41577-018-0065-8

    Article  CAS  PubMed  Google Scholar 

  100. Mann DL (2002) Inflammatory mediators and the failing heart - past, present, and the foreseeable future. Circ Res 91:988–998. https://doi.org/10.1161/01.Res.0000043825.01705.1b

    Article  CAS  PubMed  Google Scholar 

  101. Yu XW, Kennedy RH, Liu SJ (2003) JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278:16304–16309. https://doi.org/10.1074/jbc.M212321200

    Article  CAS  PubMed  Google Scholar 

  102. Bozkurt B, Kribbs SB, Clubb FJ, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391. https://doi.org/10.1161/01.Cir.97.14.1382

    Article  CAS  PubMed  Google Scholar 

  103. Hong X, Bu L, Wang Y, Xu J, Wu J, Huang Y, Liu J, Suo H, Yang L, Shi Y, Lou Y, Sun Z, Zhu G, Behnisch T, Yu M, Jia J, Hai W, Meng H, Liang S, Huang F, Zou Y, Ge J (2013) Increases in the risk of cognitive impairment and alterations of cerebral beta-amyloid metabolism in mouse model of heart failure. Plos One. https://doi.org/10.1371/journal.pone.0063829

    Article  PubMed  PubMed Central  Google Scholar 

  104. Toledo C, Andrade DC, Lucero C, Arce-Alvarez A, Diaz HS, Aliaga V, Schultz HD, Marcus NJ, Manriquez M, Faundez M, Del Rio R (2017) Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. Journal Of Physiology-London 595:2479–2495. https://doi.org/10.1113/jp273558

    Article  CAS  Google Scholar 

  105. Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS (2017) Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 26:3327–3341. https://doi.org/10.1093/hmg/ddx217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  107. Knippenberg S, Thau N, Dengler R, Petri S (2010) Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behav Brain Res 213:82–87. https://doi.org/10.1016/j.bbr.2010.04.042

    Article  PubMed  Google Scholar 

  108. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution - epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77. https://doi.org/10.1161/01.Cir.0000108927.80044.7f

    Article  PubMed  Google Scholar 

  109. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult Neurogenesis Modulates the Hippocampus-Dependent Period of Associative Fear Memory. Cell 139:814–827. https://doi.org/10.1016/j.cell.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  110. Breuer ME, Willems P, Russel FGM, Koopman WJH, Smeitink JAM (2012) Modeling mitochondrial dysfunctions in the brain: from mice to men. J Inherit Metab Dis 35:193–210. https://doi.org/10.1007/s10545-011-9375-8

    Article  CAS  PubMed  Google Scholar 

  111. Finsterer J (2012) Cognitive dysfunction in mitochondrial disorders. Acta Neurol Scand 126:1–11. https://doi.org/10.1111/j.1600-0404.2012.01649.x

    Article  CAS  PubMed  Google Scholar 

  112. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  113. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. Plos One. https://doi.org/10.1371/journal.pone.0081162

    Article  PubMed  PubMed Central  Google Scholar 

  114. Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopi J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol-London 583:9–24. https://doi.org/10.1113/jphysiol.2007.135871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dai D-F, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW II, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin ii-induced cardiac hypertrophy and g alpha q overexpression-induced heart failure. Circ Res 108:837-U173. https://doi.org/10.1161/circresaha.110.232306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R (2018) Signaling mechanisms of selective PPAR gamma modulators in Alzheimer’s disease. Ppar Res. https://doi.org/10.1155/2018/2010675

    Article  PubMed  PubMed Central  Google Scholar 

  117. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84. https://doi.org/10.1016/s0165-0173(03)00143-7

    Article  PubMed  Google Scholar 

  118. Parodi-Rullan R, Sone JY, Fossati S (2019) Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease. J Alzheimers Dis 72:1019–1039. https://doi.org/10.3233/jad-190357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adamski MG, Sternak M, Mohaissen T, Kaczor D, Wieronska JM, Malinowska M, Czaban I, Byk K, Lyngso KS, Przyborowski K, Hansen PBL, Wilczynski G, Chlopicki S (2018) Vascular cognitive impairment linked to brain endothelium inflammation in early stages of heart failure in mice. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.007694

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31:367–373. https://doi.org/10.1152/physiolgenomics.00144.2007

    Article  CAS  PubMed  Google Scholar 

  121. Chen J-F, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang D-Z (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190:867–879. https://doi.org/10.1083/jcb.200911036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Rooij E (2011) The art of MicroRNA research. Circ Res 108:219–234. https://doi.org/10.1161/circresaha.110.227496

    Article  PubMed  Google Scholar 

  123. Wang K, Zhang SL, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259. https://doi.org/10.1093/nar/gkq601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  125. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N (2011) Assessment of plasma miRNAs in congestive heart failure. Circ J 75:336–340. https://doi.org/10.1253/circj.CJ-10-0457

    Article  CAS  PubMed  Google Scholar 

  126. Guo MZ, Luo J, Zhao JL, Shang DY, Lv Q, Zang PP (2018) Combined use of circulating miR-133a and NT-proBNP improves heart failure diagnostic accuracy in elderly patients. Med Scie Monit 24:8840–8848. https://doi.org/10.12659/msm.911632

    Article  CAS  Google Scholar 

  127. Li G, Song Y, Li YD, Jie LJ, Wu WY, Li JZ, Zhang QW, Wang Y (2018) Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark Med 12:871–880. https://doi.org/10.2217/bmm-2018-0132

    Article  CAS  PubMed  Google Scholar 

  128. Tual-Chalot S, Stellos K (2021) MicroRNA-based therapy of post-myocardial infarction heart failure. Hellenic J Cardiol: HJC = Hellenike kardiologike epitheorese. https://doi.org/10.1016/j.hjc.2021.03.006

  129. Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K (2021) The role of exosomes and exosomal MicroRNA in cardiovascular disease. Fronti Cell Dev Biol. https://doi.org/10.3389/fcell.2020.616161

    Article  Google Scholar 

  130. Ma JC, Duan MJ, Sun LL, Yan ML, Liu T, Wang Q, Liu CD, Wang X, Kang XH, Pei SC, Zong DK, Chen X, Wang N, Ai J (2015) Cardiac over-expression of microRNA-1 induces impairment of cognition in mice. Neuroscience 299:66–78. https://doi.org/10.1016/j.neuroscience.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  131. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14:147–154. https://doi.org/10.1093/eurjhf/hfr155

    Article  CAS  PubMed  Google Scholar 

  132. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J (2017) Brain-heart interaction cardiac complications after stroke. Circ Res 121:451–468. https://doi.org/10.1161/circresaha.117.311170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY, Chong JPC, Ng JYX, Chen Y-T, Chan MMY, Chen Z, Yeo PSD, Ng TP, Ling LH, Sim D, Leong KTG, Ong HY, Jaufeerally F, Wong R, Chai P, Low AF, Lam CSP, Jeyaseelan K, Richards AM (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17:393–404. https://doi.org/10.1002/ejhf.223

    Article  CAS  PubMed  Google Scholar 

  134. Davis KK, Mintzer M, Dennison Himmelfarb CR, Hayat MJ, Rotman S, Allen J (2012) Targeted intervention improves knowledge but not self-care or readmissions in heart failure patients with mild cognitive impairment. Eur J Heart Fail 14:1041–9. https://doi.org/10.1093/eurjhf/hfs096

    Article  PubMed  Google Scholar 

  135. Aimonino N, Tibaldi V, Barale S, Bardelli B, Pilon S, Marchetto C, Zanocchi M, Molaschi M (2007) Depressive symptoms and quality of life in elderly patients with exacerbation of chronic obstructive pulmonary disease or cardiac heart failure: preliminary data of a randomized controlled trial. Arch Gerontol Geriatr 44(Suppl 1):7–12. https://doi.org/10.1016/j.archger.2007.01.002

    Article  PubMed  Google Scholar 

  136. Bratzke LC, Moser DK, Pelter MM, Paul SM, Nesbitt TS, Cooper LS, Dracup KA (2016) Evidence-based heart failure medications and cognition. J Cardiovasc Nurs 31:62–8. https://doi.org/10.1097/jcn.0000000000000216

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hill L, Carson MA, Vitale C (2019) Care plans for the older heart failure patient. Eur Heart J Suppl 21:L32-l35. https://doi.org/10.1093/eurheartj/suz243

    Article  PubMed  PubMed Central  Google Scholar 

  138. Svahn S, Lovheim H, Isaksson U, Sandman PO, Gustafsson M (2020) Cardiovascular drug use among people with cognitive impairment living in nursing homes in northern Sweden. Eur J Clin Pharmacol 76:525–537. https://doi.org/10.1007/s00228-019-02778-y

    Article  PubMed  Google Scholar 

  139. Gallagher R, Luttik ML, Jaarsma T (2011) Social support and self-care in heart failure. J Cardiovasc Nurs 26:439–45. https://doi.org/10.1097/JCN.0b013e31820984e1

    Article  PubMed  Google Scholar 

  140. Jovicic A, Holroyd-Leduc JM, Straus SE (2006) Effects of self-management intervention on health outcomes of patients with heart failure: a systematic review of randomized controlled trials. BMC Cardiovasc Disord 6:43. https://doi.org/10.1186/1471-2261-6-43

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chiala O, Vellone E, Klompstra L, Ortali GA, Stromberg A, Jaarsma T (2018) Relationships between exercise capacity and anxiety, depression, and cognition in patients with heart failure. Heart Lung 47:465–470. https://doi.org/10.1016/j.hrtlng.2018.07.010

    Article  PubMed  Google Scholar 

  142. Lee JK, Son YJ (2018) Gender differences in the impact of cognitive function on health literacy among older adults with heart failure. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15122711

    Article  PubMed  PubMed Central  Google Scholar 

  143. Terhoeven V, Nikendei C, Cranz A, Weisbrod M, Geis N, Raake PW, Katus HA, Herzog W, Friederich HC, Schultz JH, Pleger ST (2019) Effects of MitraClip on cognitive and psychological function in heart failure patients: the sicker the better. Eur J Med Res 24:14. https://doi.org/10.1186/s40001-019-0371-z

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jiang Y, Shorey S, Seah B, Chan WX, Tam WWS, Wang W (2018) The effectiveness of psychological interventions on self-care, psychological and health outcomes in patients with chronic heart failure-A systematic review and meta-analysis. Int J Nurs Stud 78:16–25. https://doi.org/10.1016/j.ijnurstu.2017.08.006

    Article  PubMed  Google Scholar 

  145. Gary RA, Paul S, Corwin E, Butts B, Miller AH, Hepburn K, Williams B, Waldrop-Valverde D (2019) Exercise and cognitive training as a strategy to improve neurocognitive outcomes in heart failure: a pilot study. Am J Geriatr Psychiatry 27:809–819. https://doi.org/10.1016/j.jagp.2019.01.211

    Article  PubMed  PubMed Central  Google Scholar 

  146. Smagula SF, Freedland KE, Steinmeyer BC, Wallace MJ, Carney RM, Rich MW (2019) Moderators of response to cognitive behavior therapy for major depression in patients with heart failure. Psychosom Med 81:506–512. https://doi.org/10.1097/psy.0000000000000712

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wenzel A (2017) Basic strategies of cognitive behavioral therapy. Psychiatr Clin North Am 40:597–609. https://doi.org/10.1016/j.psc.2017.07.001

    Article  PubMed  Google Scholar 

  148. Beck AT (2005) The current state of cognitive therapy: a 40-year retrospective. Arch Gen Psychiatry 62:953–9. https://doi.org/10.1001/archpsyc.62.9.953

    Article  PubMed  Google Scholar 

  149. Thoma N, Pilecki B, McKay D (2015) Contemporary cognitive behavior therapy: a review of theory, history, and evidence. Psychodyn Psychiatry 43:423–461. https://doi.org/10.1521/pdps.2015.43.3.423

    Article  PubMed  Google Scholar 

  150. Gunderman RB (2006) Cognitive therapy. J Am Coll Radiol 3:835–7. https://doi.org/10.1016/j.jacr.2006.08.005

    Article  PubMed  Google Scholar 

  151. Kaczkurkin AN, Foa EB (2015) Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci 17:337–346. https://doi.org/10.31887/DCNS.2015.17.3/akaczkurkin

    Article  PubMed  PubMed Central  Google Scholar 

  152. Oar EL, Johnco C, Ollendick TH (2017) Cognitive behavioral therapy for anxiety and depression in children and adolescents. Psychiatr Clin North Am 40:661–674. https://doi.org/10.1016/j.psc.2017.08.002

    Article  PubMed  Google Scholar 

  153. Pillny M, Lincoln TM (2020) Modern cognitive behavior therapy of psychotic disorders. Nervenarzt 91:43–49. https://doi.org/10.1007/s00115-019-00831-w

    Article  PubMed  Google Scholar 

  154. Freedland KE, Carney RM, Rich MW, Steinmeyer BC, Rubin EH (2015) Cognitive behavior therapy for depression and self-care in heart failure patients: a randomized clinical trial. JAMA Intern Med 175:1773–82. https://doi.org/10.1001/jamainternmed.2015.5220

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bherer L (2015) Cognitive plasticity in older adults: effects of cognitive training and physical exercise. Ann N Y Acad Sci 1337:1–6. https://doi.org/10.1111/nyas.12682

    Article  PubMed  Google Scholar 

  156. Loriette C, Ziane C, Ben Hamed S (2021) Neurofeedback for cognitive enhancement and intervention and brain plasticity. Rev Neurol (Paris) 177:1133–1144. https://doi.org/10.1016/j.neurol.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  157. Tang Y, Xing Y, Zhu Z, He Y, Li F, Yang J, Liu Q, Li F, Teipel S, Zhao G, Jia J (2019) The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the Cog-VACCINE study): A randomized controlled trial. Alzheimers Dement J Alzheimers Assoc 15:605–614. https://doi.org/10.1016/j.jalz.2019.01.009

    Article  Google Scholar 

  158. Athilingam P, Edwards JD, Valdes EG, Ji M, Guglin M (2015) Computerized auditory cognitive training to improve cognition and functional outcomes in patients with heart failure: Results of a pilot study. Heart Lung 44:120–8. https://doi.org/10.1016/j.hrtlng.2014.12.004

    Article  PubMed  Google Scholar 

  159. Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Lu J, Gao Q, Zhang YD, Tan L (2014) Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol 171:4222–4232. https://doi.org/10.1111/bph.12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ferrario CM (2006) Angiotensin-converting enzyme 2 and angiotensin-(1–7) - an evolving story in cardiovascular regulation. Hypertension 47:515–521. https://doi.org/10.1161/01.HYP.0000196268.08909.fb

    Article  CAS  PubMed  Google Scholar 

  161. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WST, Hampel H, Hull M, Landreth G, Lue LF, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421. https://doi.org/10.1016/s0197-4580(00)00124-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hay M, Vanderah TW, Samareh-Jahani F, Constantopoulos E, Uprety AR, Barnes CA, Konhilas J (2017) Cognitive impairment in heart failure: a protective role for angiotensin-(1–7). Behav Neurosci 131:99–114. https://doi.org/10.1037/bne0000182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu C, Lv XH, Li HX, Cao X, Zhang F, Wang L, Yu M, Yang JK (2012) Angiotensin-(1–7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol 49:291–299. https://doi.org/10.1007/s00592-011-0348-z

    Article  CAS  PubMed  Google Scholar 

  164. Santos RAS, Ferreira AJ, Verano-Braga T, Bader M (2013) Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. J Endocrinol 216:R1–R17. https://doi.org/10.1530/joe-12-0341

    Article  CAS  PubMed  Google Scholar 

  165. Hay M, Polt R, Heien ML, Vanderah TW, Largent-Milnes TM, Rodgers K, Falk T, Bartlett MJ, Doyle KP, Konhilas JP (2019) A novel angiotensin-(1–7) glycosylated mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J Pharmacol Exp Ther 369:9–25. https://doi.org/10.1124/jpet.118.254854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A (2021) Plasma S1P (sphingosine-1-phosphate) links to hypertension and biomarkers of inflammation and cardiovascular disease: findings from a translational investigation. Hypertension 78:195–209. https://doi.org/10.1161/hypertensionaha.120.17379

    Article  CAS  PubMed  Google Scholar 

  167. Stone ML, Sharma AK, Zhao Y, Charles EJ, Huerter ME, Johnston WF, Kron IL, Lynch KR, Laubach VE (2015) Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 308:L1245–L1252. https://doi.org/10.1152/ajplung.00302.2014

  168. Pesce M, Franceschelli S, Ferrone A, Patruno A, Grilli A, De Lutiis MA, Pluchinotta FR, Bergante S, Tettamanti G, Riccioni G, Felaco M, Speranza L (2017) The NF-kB regulates the SHP-1 expression in monocytes in congestive heart failure. Front Biosci (Landmark Ed) 22:757–771. https://doi.org/10.2741/4514

  169. Lidington D, Fares JC, Uhl FE, Dinh DD, Kroetsch JT, Sauv M, Malik FA, Matthes F, Vanherle L, Adel A, Momen A, Zhang H, Aschar-Sobbi R, Foltz WD, Wan H, Sumiyoshi M, Macdonald RL, Husain M, Backx PH, Heximer SP, Meissner A, Bolz S-S (2019) CFTR therapeutics normalize cerebral perfusion deficits in mouse models of heart failure and subarachnoid hemorrhage. JACC-Basic Transl Sci 4:940–958. https://doi.org/10.1016/j.jacbts.2019.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lidington D, Fares JC, Uhl FE, Dinh DD, Kroetsch JT, Sauve M, Malik FA, Matthes F, Vanherle L, Adel A, Momen A, Zhang H, Aschar-Sobbi R, Foltz WD, Wan H, Sumiyoshi M, Macdonald RL, Husain M, Backx PH, Heximer SP, Meissner A, Bolz SS (2019) CFTR therapeutics normalize cerebral perfusion deficits in mouse models of heart failure and subarachnoid hemorrhage. JACC Basic Transl Sci 4:940–958. https://doi.org/10.1016/j.jacbts.2019.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mene-Afejuku TO, Pernia M, Ibebuogu UN, Chaudhari S, Mushiyev S, Visco F, Pekler G (2019) Heart failure and cognitive impairment: clinical relevance and therapeutic considerations. Curr Cardiol Rev 15:291–303. https://doi.org/10.2174/1573403x15666190313112841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gorodeski EZ, Rosenfeldt AB, Fang K, Kubu C, Rao SM, Jansen EA, Dey T, Alberts JL (2019) An iPad-based measure of processing speed in older adults hospitalized for heart failure. J Cardiovasc Nurs 34:E9-e13. https://doi.org/10.1097/jcn.0000000000000568

    Article  PubMed  Google Scholar 

  173. Fino P, Sousa RM, Carvalho R, Sousa N, Almeida F, Pereira VH (2020) Cognitive performance is associated with worse prognosis in patients with heart failure with reduced ejection fraction. ESC Heart Fail. https://doi.org/10.1002/ehf2.12932

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 82160157, Sheng Wang); the National Natural Science Foundation of China (grant numbers 81471106, Feng Zhong); and the Guangzhou Basic and Applied Basic Research project of Basic Research plan (grant numbers 1611, Feng Zhong).

Author information

Authors and Affiliations

Authors

Contributions

Yanan Wu helped search the literature and prepare the manuscript. Liwen Chen helped search the literature and prepare the manuscript. Feng Zhong helped with the article modification. Kaiyi Zhou helped article modification. Chao Lu helped with the article modification. Sheng Wang helped prepare the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sheng Wang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, L., Zhong, F. et al. Cognitive impairment in patients with heart failure: molecular mechanism and therapy. Heart Fail Rev 28, 807–820 (2023). https://doi.org/10.1007/s10741-022-10289-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10289-9

Keywords

Navigation