Skip to main content

Advertisement

Log in

Sex differences and related estrogenic effects in heart failure with preserved ejection fraction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is an essential subtype of heart failure accounting for 40% of the total. However, the related pathological mechanism and drug therapy research have been stagnant for a long time. The direct cause of this dilemma is the heterogeneity of HFpEF. And some researchers believe that there is no common pathway to reach the origin of HFpEF; others argue that there is an unidentified unified pathophysiological process hidden beneath the ice surface. Aside from the debate, a series of clinical studies have shown that hypertension and obesity play a fundamental role in the pathogenesis of HFpEF. These results imply that there may be two parallel pathological processes interweaved in one disease, manifested as multiple coexistent pathological phenomena, like a shadow. Meanwhile, the prevalence of HFpEF in women is higher than in men in any given age group, especially prominent in elderly patients. These pathological processes and epidemiological data reflect gender differences, reminding us to shift our attention to estrogen. This article will review the parallel pathogenesis of HFpEF, and also introduce sex differences and the potential effect of estrogen in this condition below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Bozkurt B, Coats AJS, Tsutsui H et al (2021) Universal definition and classification of heart failure: a report of the heart failure society of america, heart failure association of the european society of cardiology, japanese heart failure society and writing committee of the universal definition of heart failure: endorsed by the canadian heart failure society, heart failure association of india, cardiac society of australia and new zealand, and chinese heart failure association. Eur J Heart Fail 23(3):352–380. https://doi.org/10.1002/ejhf.2115

    Article  PubMed  Google Scholar 

  2. Mcdonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  3. Gerber Y, Weston SA, Redfield MM et al (2015) A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. Jama Intern Med 175(6):996. https://doi.org/10.1001/jamainternmed.2015.0924

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shimokawa H, Miura M, Nochioka K et al (2015) Heart failure as a general pandemic in Asia. Eur J Heart Fail 17(9):884–892. https://doi.org/10.1002/ejhf.319

    Article  PubMed  Google Scholar 

  5. Ho JE, Enserro D, Brouwers FP et al (2016) Predicting heart failure with preserved and reduced ejection fraction: the international collaboration on heart failure subtypes. Circ Heart Fail 9(6). https://doi.org/10.1161/CIRCHEARTFAILURE.115.003116

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chioncel O, Lainscak M, Seferovic PM et al (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry. Eur J Heart Fail 19(12):1574–1585. https://doi.org/10.1002/ejhf.813

    Article  CAS  PubMed  Google Scholar 

  7. Ceia F, Fonseca C, Mota T et al (2002) Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail 4(4):531–539. https://doi.org/10.1016/s1388-9842(02)00034-x

    Article  PubMed  Google Scholar 

  8. Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11(9):507–515. https://doi.org/10.1038/nrcardio.2014.83

    Article  CAS  PubMed  Google Scholar 

  9. Chamberlain AM, St Sauver JL, Gerber Y et al (2015) Multimorbidity in heart failure: a community perspective. Am J Med 128(1):38–45. https://doi.org/10.1016/j.amjmed.2014.08.024

    Article  PubMed  Google Scholar 

  10. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97(1):1–37. https://doi.org/10.1152/physrev.00021.2015

    Article  PubMed  Google Scholar 

  11. Defilippis EM, Beale A, Martin T et al (2022) Heart failure subtypes and cardiomyopathies in women. Circ Res 130(4):436–454. https://doi.org/10.1161/CIRCRESAHA.121.319900

    Article  CAS  PubMed  Google Scholar 

  12. Sabbatini AR, Kararigas G (2020) Menopause-related estrogen decrease and the pathogenesis of HFpEF: JACC review topic. J Am Coll Cardiol 75(9):1074–1082. https://doi.org/10.1016/j.jacc.2019.12.049

    Article  CAS  PubMed  Google Scholar 

  13. Shah SJ, Katz DH, Selvaraj S et al (2015) Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131(3):269–279. https://doi.org/10.1161/CIRCULATIONAHA.114.010637

    Article  PubMed  Google Scholar 

  14. Lam CSP, Carson PE, Anand IS et al (2012) Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 5(5):571–578. https://doi.org/10.1161/CIRCHEARTFAILURE.112.970061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tromp J, Macdonald MR, Tay WT et al (2018) Heart failure with preserved ejection fraction in the young. Circulation 138(24):2763–2773. https://doi.org/10.1161/CIRCULATIONAHA.118.034720

    Article  PubMed  Google Scholar 

  16. Tromp J, Shen L, Jhund PS et al (2019) Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 74(5):601–612. https://doi.org/10.1016/j.jacc.2019.05.052

    Article  PubMed  Google Scholar 

  17. Dewan P, Rørth R, Raparelli V et al (2019) Sex-related differences in heart failure with preserved ejection fraction. Circ Heart Fail 12(12):e6539. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006539

    Article  Google Scholar 

  18. Chandra A, Vaduganathan M, Lewis EF et al (2019) Health-related quality of life in heart failure with preserved ejection fraction: the PARAGON-HF trial. JACC Heart failure 7(10):862–874. https://doi.org/10.1016/j.jchf.2019.05.015

    Article  PubMed  Google Scholar 

  19. Savji N, Meijers WC, Bartz TM et al (2018) The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail 6(8):701–709. https://doi.org/10.1016/j.jchf.2018.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tsujimoto T, Kajio H (2017) Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol 70(22):2739–2749. https://doi.org/10.1016/j.jacc.2017.09.1111

    Article  PubMed  Google Scholar 

  21. Duca F, Zotter-Tufaro C, Kammerlander AA et al (2018) Gender-related differences in heart failure with preserved ejection fraction. Sci Rep-Uk 8(1):1080. https://doi.org/10.1038/s41598-018-19507-7

    Article  CAS  Google Scholar 

  22. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123(18):2006–2014. https://doi.org/10.1161/CIRCULATIONAHA.110.954388

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pérez-Cremades D, Cheng HS, Feinberg MW (2020) Revisiting hormonal control of vascular injury and repair. Circ Res 127(12):1488–1490. https://doi.org/10.1161/CIRCRESAHA.120.318384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mcmurray JJV, Carson PE, Komajda M et al (2008) Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail 10(2):149–156. https://doi.org/10.1016/j.ejheart.2007.12.010

    Article  PubMed  Google Scholar 

  25. Shah SJ, Kitzman DW, Borlaug BA et al (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134(1):73–90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gaignebet L, Kańduła MM, Lehmann D et al (2020) Sex-specific human cardiomyocyte gene regulation in left ventricular pressure overload. Mayo Clin Proc 95(4):688–697. https://doi.org/10.1016/j.mayocp.2019.11.026

    Article  CAS  PubMed  Google Scholar 

  27. Light KC, Hinderliter AL, West SG et al (2001) Hormone replacement improves hemodynamic profile and left ventricular geometry in hypertensive and normotensive postmenopausal women. J Hypertens 19(2):269–278. https://doi.org/10.1097/00004872-200102000-00014

    Article  CAS  PubMed  Google Scholar 

  28. Gürgen D, Hegner B, Kusch A et al (2011) Estrogen receptor-beta signals left ventricular hypertrophy sex differences in normotensive deoxycorticosterone acetate-salt mice. Hypertension 57(3):648–654. https://doi.org/10.1161/HYPERTENSIONAHA.110.166157

    Article  CAS  PubMed  Google Scholar 

  29. Nwankwo T, Yoon SS, Burt V et al (2013) Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief 133:1–8

    Google Scholar 

  30. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao Z, Wang H, Jessup JA et al (2014) Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol 306(5):H628–H640. https://doi.org/10.1152/ajpheart.00859.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barton M, Meyer MR (2020) Heart failure with preserved ejection fraction in women: new clues to causes and treatment. JACC Basic Transl Sci 5(3):296–299. https://doi.org/10.1016/j.jacbts.2020.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gori M, Lam CSP, Gupta DK et al (2014) Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 16(5):535–542. https://doi.org/10.1002/ejhf.67

    Article  PubMed  Google Scholar 

  34. Mancusi C, Gerdts E, De Simone G et al (2014) Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press 23(4):206–212. https://doi.org/10.3109/08037051.2013.858482

    Article  CAS  PubMed  Google Scholar 

  35. Ji H, Niiranen TJ, Rader F et al (2021) Sex differences in blood pressure associations with cardiovascular outcomes. Circulation 143(7):761–763. https://doi.org/10.1161/CIRCULATIONAHA.120.049360

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beale AL, Nanayakkara S, Segan L et al (2019) Sex differences in heart failure with preserved ejection fraction pathophysiology: a detailed invasive hemodynamic and echocardiographic analysis. JACC Heart Fail 7(3):239–249. https://doi.org/10.1016/j.jchf.2019.01.004

    Article  PubMed  Google Scholar 

  37. Lau ES, Cunningham T, Hardin KM et al (2020) Sex differences in cardiometabolic traits and determinants of exercise capacity in heart failure with preserved ejection fraction. Jama Cardiol 5(1):30–37. https://doi.org/10.1001/jamacardio.2019.4150

    Article  PubMed  Google Scholar 

  38. Mori T, Kai H, Kajimoto H et al (2011) Enhanced cardiac inflammation and fibrosis in ovariectomized hypertensive rats: a possible mechanism of diastolic dysfunction in postmenopausal women. Hypertens Res 34(4):496–502. https://doi.org/10.1038/hr.2010.261

    Article  CAS  PubMed  Google Scholar 

  39. Obokata M, Olson TP, Reddy YNV et al (2018) Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J 39(30):2810–2821. https://doi.org/10.1093/eurheartj/ehy268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Wezenbeek J, Groeneveldt JA, Llucià-Valldeperas A et al (2022) Interplay of sex hormones and long-term right ventricular adaptation in a Dutch PAH-cohort. J Heart Lung Transplant 41(4):445–457. https://doi.org/10.1016/j.healun.2021.11.004

    Article  PubMed  Google Scholar 

  41. Vanderpool RR, Saul M, Nouraie M et al (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. Jama Cardiol 3(4):298–306. https://doi.org/10.1001/jamacardio.2018.0128

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dumas De La Roque E, Savineau J, Bonnet S (2010) Dehydroepiandrosterone: a new treatment for vascular remodeling diseases including pulmonary arterial hypertension. Pharmacol Therapeut 126(2):186–199. https://doi.org/10.1016/j.pharmthera.2010.02.003

    Article  CAS  Google Scholar 

  43. Jones RD, English KM, Pugh PJ et al (2002) Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharm 39(6):814–823. https://doi.org/10.1097/00005344-200206000-00006

    Article  CAS  Google Scholar 

  44. Umar S, Iorga A, Matori H et al (2011) Estrogen rescues preexisting severe pulmonary hypertension in rats. Am J Resp Crit Care 184(6):715–723. https://doi.org/10.1164/rccm.201101-0078OC

    Article  CAS  Google Scholar 

  45. Frump AL, Goss KN, Vayl A et al (2015) Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol 308(9):L873–L890. https://doi.org/10.1152/ajplung.00006.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chatterjee NA, Steiner J, Lewis GD (2014) It is time to look at heart failure with preserved ejection fraction from the right side. Circulation 130(25):2272–2277. https://doi.org/10.1161/CIRCULATIONAHA.114.013536

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gorter TM, van Veldhuisen DJ, Bauersachs J et al (2018) Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20(1):16–37. https://doi.org/10.1002/ejhf.1029

    Article  PubMed  Google Scholar 

  48. Nagata R, Harada T, Omote K et al (2022) Right atrial pressure represents cumulative cardiac burden in heart failure with preserved ejection fraction. ESC heart failure. https://doi.org/10.1002/ehf2.13853

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shah SJ, Borlaug BA, Chung ES et al (2022) Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. Lancet (London, England). https://doi.org/10.1016/S0140-6736(22)00016-2

    Article  PubMed  Google Scholar 

  50. Singh I, Oliveira RKF, Heerdt PM et al (2021) Sex-related differences in dynamic right ventricular-pulmonary vascular coupling in heart failure with preserved ejection fraction. Chest 159(6):2402–2416. https://doi.org/10.1016/j.chest.2020.12.028

    Article  PubMed  Google Scholar 

  51. Hemnes AR, Maynard KB, Champion HC et al (2012) Testosterone negatively regulates right ventricular load stress responses in mice. Pulm Circ 2(3):352–358. https://doi.org/10.4103/2045-8932.101647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Liang C, Gopal DM et al (2015) Preclinical systolic and diastolic dysfunctions in metabolically healthy and unhealthy obese individuals. Circ Heart Fail 8(5):897–904. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franssen C, Chen S, Hamdani N et al (2016) From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart (British Cardiac Soc) 102(4):320–330. https://doi.org/10.1136/heartjnl-2015-307787

    Article  CAS  Google Scholar 

  54. Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borlaug BA, Maleszewski JJ (2020) The heavy heart of HFpEF. Eur Heart J 41(36):3447. https://doi.org/10.1093/eurheartj/ehaa478

    Article  PubMed  Google Scholar 

  56. Bays HE (2011) Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol 57(25):2461–2473. https://doi.org/10.1016/j.jacc.2011.02.038

    Article  CAS  PubMed  Google Scholar 

  57. Cheng S, Fox CS, Larson MG et al (2011) Relation of visceral adiposity to circulating natriuretic peptides in ambulatory individuals. Am J Cardiol 108(7):979–984. https://doi.org/10.1016/j.amjcard.2011.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rao VN, Zhao D, Allison MA et al (2018) Adiposity and incident heart failure and its subtypes: MESA (multi-ethnic study of atherosclerosis). JACC Heart Fail 6(12):999–1007. https://doi.org/10.1016/j.jchf.2018.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  59. Le Jemtel TH, Samson R, Ayinapudi K et al (2019) Epicardial adipose tissue and cardiovascular disease. Curr Hypertens Rep 21(5):36. https://doi.org/10.1007/s11906-019-0939-6

    Article  PubMed  Google Scholar 

  60. Vyas V, Blythe H, Wood EG et al (2021) Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight 6(16). https://doi.org/10.1172/jci.insight.145495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Woerden G, van Veldhuisen DJ, Manintveld OC et al (2021) Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction. Circ Heart Fail 15(3):e009238. https://doi.org/10.1161/CIRCHEARTFAILURE.121.009238

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim S, Kim M, Shim W et al (2017) Epicardial adipose tissue is related to cardiac function in elderly women, but not in men. Nutr Metab Cardiovasc Dis 27(1):41–47. https://doi.org/10.1016/j.numecd.2016.11.001

    Article  PubMed  Google Scholar 

  63. Kenchaiah S, Ding J, Carr JJ et al (2021) Pericardial fat and the risk of heart failure. J Am Coll Cardiol 77(21):2638–2652. https://doi.org/10.1016/j.jacc.2021.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  64. Packer M (2018) Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol 71(20):2360–2372. https://doi.org/10.1016/j.jacc.2018.03.509

    Article  CAS  PubMed  Google Scholar 

  65. Rao VN, Fudim M, Mentz RJ et al (2020) Regional adiposity and heart failure with preserved ejection fraction. Eur J Heart Fail 22(9):1540–1550. https://doi.org/10.1002/ejhf.1956

    Article  CAS  PubMed  Google Scholar 

  66. Tromp J, Westenbrink BD, Ouwerkerk W et al (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72(10):1081–1090. https://doi.org/10.1016/j.jacc.2018.06.050

    Article  CAS  PubMed  Google Scholar 

  67. Westermann D, Lindner D, Kasner M et al (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4(1):44–52. https://doi.org/10.1161/CIRCHEARTFAILURE.109.931451

    Article  PubMed  Google Scholar 

  68. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  69. Hahn VS, Yanek LR, Vaishnav J et al (2020) Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail 8(9):712–724. https://doi.org/10.1016/j.jchf.2020.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chirinos JA, Orlenko A, Zhao L et al (2020) Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 75(11):1281–1295. https://doi.org/10.1016/j.jacc.2019.12.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang N, Ma Q, You Y et al (2022) CXCR4-dependent macrophage-to-fibroblast signaling contributes to cardiac diastolic dysfunction in heart failure with preserved ejection fraction. Int J Biol Sci 18(3):1271–1287. https://doi.org/10.7150/ijbs.65802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gersh FL, O’Keefe JH, Lavie CJ et al (2021) The renin-angiotensin-aldosterone system in postmenopausal women: the promise of hormone therapy. Mayo Clin Proc 96(12):3130–3141. https://doi.org/10.1016/j.mayocp.2021.08.009

    Article  CAS  PubMed  Google Scholar 

  73. Sucedaram Y, Johns EJ, Husain R et al (2021) Exposure to high-fat style diet induced renal and liver structural changes, lipid accumulation and inflammation in intact and ovariectomized female rats. J Inflamm Res 14:689–710. https://doi.org/10.2147/JIR.S299083

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mills EL, Harmon C, Jedrychowski MP et al (2022) Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab 34(1):140–157. https://doi.org/10.1016/j.cmet.2021.11.003

    Article  CAS  PubMed  Google Scholar 

  75. Villa A, Rizzi N, Vegeto E et al (2015) Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep-Uk 5:15224. https://doi.org/10.1038/srep15224

    Article  CAS  Google Scholar 

  76. Bordy R, Totoson P, Prati C et al (2018) Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 14(7):404–420. https://doi.org/10.1038/s41584-018-0022-8

    Article  CAS  PubMed  Google Scholar 

  77. Akiyama E, Sugiyama S, Matsuzawa Y et al (2012) Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 60(18):1778–1786. https://doi.org/10.1016/j.jacc.2012.07.036

    Article  PubMed  Google Scholar 

  78. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  PubMed  Google Scholar 

  79. Kang Y, Liu R, Wu J et al (2019) Structural insights into the mechanism of human soluble guanylate cyclase. Nature 574(7777):206–210. https://doi.org/10.1038/s41586-019-1584-6

    Article  CAS  PubMed  Google Scholar 

  80. Frankenreiter S, Bednarczyk P, Kniess A et al (2017) cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation 136(24):2337–2355. https://doi.org/10.1161/CIRCULATIONAHA.117.028723

    Article  CAS  PubMed  Google Scholar 

  81. Sunggip C, Shimoda K, Oda S et al (2018) TRPC5-eNOS axis negatively regulates ATP-induced cardiomyocyte hypertrophy. Front Pharmacol 9:523. https://doi.org/10.3389/fphar.2018.00523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hayashi T, Matsui-Hirai H, Miyazaki-Akita A et al (2006) Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci U S A 103(45):17018–17023. https://doi.org/10.1073/pnas.0607873103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. El Kazzi M, Shi H, Vuong S et al (2020) Nitroxides mitigate neutrophil-mediated damage to the myocardium after experimental myocardial infarction in rats. Int J Mol Sci 21(20):7650. https://doi.org/10.3390/ijms21207650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hage C, Löfgren L, Michopoulos F et al (2020) Metabolomic profile in HFpEF vs HFrEF patients. J Card Fail 26(12):1050–1059. https://doi.org/10.1016/j.cardfail.2020.07.010

    Article  PubMed  Google Scholar 

  85. Kolijn D, Pabel S, Tian Y et al (2021) Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res 117(2):495–507. https://doi.org/10.1093/cvr/cvaa123

    Article  CAS  PubMed  Google Scholar 

  86. Teoh J, Li X, Simoncini T et al (2020) Estrogen-mediated gaseous signaling molecules in cardiovascular disease. Trends Endocrinol Metab 31(10):773–784. https://doi.org/10.1016/j.tem.2020.06.001

    Article  CAS  PubMed  Google Scholar 

  87. Smirnova NF, Fontaine C, Buscato M et al (2015) The activation function-1 of estrogen receptor alpha prevents arterial neointima development through a direct effect on smooth muscle cells. Circ Res 117(9):770–778. https://doi.org/10.1161/CIRCRESAHA.115.306416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sudhir K, Chou TM, Chatterjee K et al (1997) Premature coronary artery disease associated with a disruptive mutation in the estrogen receptor gene in a man. Circulation 96(10):3774–3777. https://doi.org/10.1161/01.cir.96.10.3774

    Article  CAS  PubMed  Google Scholar 

  89. Fredette NC, Meyer MR, Prossnitz ER (2018) Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol 176:65–72. https://doi.org/10.1016/j.jsbmb.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  90. Li M, Parker BL, Pearson E et al (2020) Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun 11(1):2843. https://doi.org/10.1038/s41467-020-16584-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sasaki H, Nagayama T, Blanton RM et al (2014) PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J Clin Investig 124(6):2464–2471. https://doi.org/10.1172/JCI70731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fukuma N, Takimoto E, Ueda K et al (2020) Estrogen receptor-α non-nuclear signaling confers cardioprotection and is essential to cGMP-PDE5 inhibition efficacy. JACC Basic Transl Sci 5(3):282–295. https://doi.org/10.1016/j.jacbts.2019.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xu S, Ilyas I, Little PJ et al (2021) Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev 73(3):924–967. https://doi.org/10.1124/pharmrev.120.000096

    Article  CAS  PubMed  Google Scholar 

  94. Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131(6):550–559. https://doi.org/10.1161/CIRCULATIONAHA.114.009625

    Article  PubMed  Google Scholar 

  95. Ge J (2020) Coding proposal on phenotyping heart failure with preserved ejection fraction: a practical tool for facilitating etiology-oriented therapy. Cardiol J 27(1):97–98. https://doi.org/10.5603/CJ.2020.0023

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rush CJ, Berry C, Oldroyd KG et al (2021) Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Jama Cardiol 6(10):1130. https://doi.org/10.1001/jamacardio.2021.1825

    Article  PubMed  Google Scholar 

  97. Shah SJ, Lam CSP, Svedlund S et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39(37):3439–3450. https://doi.org/10.1093/eurheartj/ehy531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chandramouli C, Ting TW, Tromp J et al (2022) Sex differences in proteomic correlates of coronary microvascular dysfunction among patients with heart failure and preserved ejection fraction. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2435

    Article  PubMed  Google Scholar 

  99. Kobayashi Y, Fearon WF, Honda Y et al (2015) Effect of sex differences on invasive measures of coronary microvascular dysfunction in patients with angina in the absence of obstructive coronary artery disease. JACC Cardiovasc Interv 8(11):1433–1441. https://doi.org/10.1016/j.jcin.2015.03.045

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chung J, Lee KE, Lee JM et al (2020) Effect of sex difference of coronary microvascular dysfunction on long-term outcomes in deferred lesions. JACC Cardiovasc Interv 13(14):1669–1679. https://doi.org/10.1016/j.jcin.2020.04.002

    Article  PubMed  Google Scholar 

  101. Aziz A, Hansen HS, Sechtem U et al (2017) Sex-related differences in vasomotor function in patients with angina and unobstructed coronary arteries. J Am Coll Cardiol 70(19):2349–2358. https://doi.org/10.1016/j.jacc.2017.09.016

    Article  PubMed  Google Scholar 

  102. Haas AV, Rosner BA, Kwong RY et al (2019) Sex differences in coronary microvascular function in individuals with type 2 diabetes. Diabetes 68(3):631–636. https://doi.org/10.2337/db18-0650

    Article  CAS  PubMed  Google Scholar 

  103. Pepine CJ, Anderson RD, Sharaf BL et al (2010) Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol 55(25):2825–2832. https://doi.org/10.1016/j.jacc.2010.01.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tunc E, Eve AA, Madak-Erdogan Z (2020) Coronary microvascular dysfunction and estrogen receptor signaling. Trends Endocrinol Metab 31(3):228–238. https://doi.org/10.1016/j.tem.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  105. Stender JD, Kim K, Charn TH et al (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30(16):3943–3955. https://doi.org/10.1128/MCB.00118-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hill BJF, Dalton RJ, Joseph BK et al (2017) 17β-estradiol reduces Ca(v) 1.2 channel abundance and attenuates Ca(2+) -dependent contractions in coronary arteries. Pharmacol Res Perspect 5(5):1-. https://doi.org/10.1002/prp2.358

    Article  CAS  Google Scholar 

  107. Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333. https://doi.org/10.1001/jama.288.3.321

    Article  CAS  PubMed  Google Scholar 

  108. Pinkerton JV (2020) Hormone therapy for postmenopausal women. N Engl J Med 382(5):446–455. https://doi.org/10.1056/NEJMcp1714787

    Article  PubMed  Google Scholar 

  109. Fak AS, Erenus M, Tezcan H et al (2000) Effects of a single dose of oral estrogen on left ventricular diastolic function in hypertensive postmenopausal women with diastolic dysfunction. Fertil Steril 73(1):66–71. https://doi.org/10.1016/s0015-0282(99)00451-3

    Article  CAS  PubMed  Google Scholar 

  110. Higashi Y, Sanada M, Sasaki S et al (2001) Effect of estrogen replacement therapy on endothelial function in peripheral resistance arteries in normotensive and hypertensive postmenopausal women. Hypertension (Dallas, Tex.: 1979) 37(2 Pt 2):651–657. https://doi.org/10.1161/01.hyp.37.2.651

    Article  CAS  PubMed  Google Scholar 

  111. Alecrin IN, Aldrighi JM, Caldas MA et al (2004) Acute and chronic effects of oestradiol on left ventricular diastolic function in hypertensive postmenopausal women with left ventricular diastolic dysfunction. Heart (British Cardiac Soc) 90(7):777–781. https://doi.org/10.1136/hrt.2003.016493

    Article  CAS  Google Scholar 

  112. Duygu H, Akman L, Ozerkan F et al (2009) Comparison of the effects of new and conventional hormone replacement therapies on left ventricular diastolic function in healthy postmenopausal women: a Doppler and ultrasonic backscatter study. Int J Cardiovasc Imaging 25(4):387–396. https://doi.org/10.1007/s10554-009-9429-2

    Article  PubMed  Google Scholar 

  113. Duzenli MA, Ozdemir K, Sokmen A et al (2010) The effects of hormone replacement therapy on myocardial performance in early postmenopausal women. Climacteric J Int Menopause Soc 13(2):157–170. https://doi.org/10.3109/13697130902929567

    Article  CAS  Google Scholar 

  114. Schierbeck LL, Rejnmark L, Tofteng CL et al (2012) Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ (Clin Res Ed) 345:. https://doi.org/10.1136/bmj.e6409

    Article  CAS  Google Scholar 

  115. Moreau KL, Stauffer BL, Kohrt WM et al (2013) Essential role of estrogen for improvements in vascular endothelial function with endurance exercise in postmenopausal women. J Clin Endocrinol Metab 98(11):4507–4515. https://doi.org/10.1210/jc.2013-2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hodis HN, Mack WJ, Henderson VW et al (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374(13):1221–1231. https://doi.org/10.1056/NEJMoa1505241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hurtado R, Celani M, Geber S (2016) Effect of short-term estrogen therapy on endothelial function: a double-blinded, randomized, controlled trial. Climacter J Int Menopause Soc 19(5):448–451. https://doi.org/10.1080/13697137.2016.1201809

    Article  CAS  Google Scholar 

  118. Liu L, Klein L, Eaton C et al (2020) Menopausal hormone therapy and risks of first hospitalized heart failure and its subtypes during the intervention and extended postintervention follow-up of the women’s health initiative randomized trials. J Card Fail 26(1):2–12. https://doi.org/10.1016/j.cardfail.2019.09.006

    Article  PubMed  Google Scholar 

  119. Langley RE, Gilbert DC, Duong T et al (2021) Transdermal oestradiol for androgen suppression in prostate cancer: long-term cardiovascular outcomes from the randomised Prostate Adenocarcinoma Transcutaneous Hormone (PATCH) trial programme. Lancet (London, England) 397(10274):581–591. https://doi.org/10.1016/S0140-6736(21)00100-8

    Article  CAS  PubMed  Google Scholar 

  120. Keaney JFJ, Solomon CG (2016) Postmenopausal hormone therapy and atherosclerosis–time is of the essence. N Engl J Med 374(13):1279–1280. https://doi.org/10.1056/NEJMe1602846

    Article  CAS  PubMed  Google Scholar 

  121. Gersh FL, O’Keefe JH, Lavie CJ (2021) Postmenopausal hormone therapy for cardiovascular health: the evolving data. Heart (British Cardiac Soc) 107(14):1115–1122. https://doi.org/10.1136/heartjnl-2019-316323

    Article  Google Scholar 

Download references

Funding

This study is supported by National Natural Science Foundation of China (No.82274436) and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (No. ZYYCXTD-C-202207).

Author information

Authors and Affiliations

Authors

Contributions

DSS, LJY, ZZQ, and FGW contributed to manuscript conceptualization and design. DSS and FGW contributed to first draft writing. All authors contributed to manuscript writing and critical review. All authors have read the final version of the manuscript and agreed to its submission.

Corresponding author

Correspondence to Fan Guanwei.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuaishuai, D., Jingyi, L., Zhiqiang, Z. et al. Sex differences and related estrogenic effects in heart failure with preserved ejection fraction. Heart Fail Rev 28, 937–948 (2023). https://doi.org/10.1007/s10741-022-10274-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10274-2

Keywords

Navigation