Skip to main content

Dependence and reduced motor function in heart failure: future directions for well-being

Abstract

While patients with heart failure experience a wide range of symptoms, evidence is mounting that patients with heart failure suffer from reduced functional independence. Given that the number of patients with heart failure is rising and considering the adverse outcomes of reduced functional independence, understanding the underlying mechanisms of reduced functionality in patients with heart failure is of increasing importance. Yet, little information exists on how heart failure negatively affects functional independence, including motor function. This article summarizes reports of reduced independence and highlights its significant adverse outcomes in the patients with heart failure. Finally, this article discusses potential causes of reduced independence based on existing reports of impaired central and peripheral nervous systems in the patients with heart failure. Overall, the article provides a solid foundation for future studies investigating motor impairments in patients with heart failure. Such studies may lead to advances in treatment and prevention of reduced independence associated with heart failure, which ultimately contribute to the well-being of patients with heart failure.

This is a preview of subscription content, access via your institution.

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Virani SS et al (2020) Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation 141(9):e139–e596

    PubMed  Article  Google Scholar 

  2. Heidenreich PA et al (2013) Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 6(3):606–19

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Yancy CW et al (2013) ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):e240-327

    PubMed  Google Scholar 

  4. Ostwald SK et al (1989) Manual dexterity as a correlate of dependency in the elderly. J Am Geriatr Soc 37(10):963–9

    CAS  PubMed  Article  Google Scholar 

  5. Kandel ER et al (2000) Principles of neural science. Vol. 4. McGraw-hill New York

  6. Alosco ML, Hayes SM (2015) Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease. Heart Fail Rev 20(5):561–71

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Ampadu J, Morley JE (2015) Heart failure and cognitive dysfunction. Int J Cardiol 178:12–23

    PubMed  Article  Google Scholar 

  8. Grotle AK et al (2020) Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 228:102698

  9. Gure TR et al (2008) Degree of disability and patterns of caregiving among older Americans with congestive heart failure. J Gen Intern Med 23(1):70–6

    PubMed  Article  Google Scholar 

  10. Norberg EB, Boman K, Löfgren B (2008) Activities of daily living for old persons in primary health care with chronic heart failure. Scand J Caring Sci 22(2):203–10

    PubMed  Article  Google Scholar 

  11. Wong CY et al (2011) Trends in comorbidity, disability, and polypharmacy in heart failure. Am J Med 124(2):136–43

    PubMed  PubMed Central  Article  Google Scholar 

  12. Skalska A et al (2014) Reduced functionality in everyday activities of patients with self-reported heart failure hospitalization–population-based study results. Int J Cardiol 176(2):423–9

    PubMed  Article  Google Scholar 

  13. Dunlay SM et al (2015) Activities of daily living and outcomes in heart failure. Circ Heart Fail 8(2):261–7

    PubMed  PubMed Central  Article  Google Scholar 

  14. Manemann SM et al (2018) Multimorbidity and functional limitation in individuals with heart failure: a prospective community study. J Am Geriatr Soc 66(6):1101–1107

    PubMed  PubMed Central  Article  Google Scholar 

  15. Chivite D et al (2018) Basal functional status predicts one-year mortality after a heart failure hospitalization in elderly patients - the RICA prospective study. Int J Cardiol 254:182–188

    PubMed  Article  Google Scholar 

  16. García-Olmos L et al (2019) Disability and quality of life in heart failure patients: a cross-sectional study. Fam Pract 36(6):693–698

    PubMed  Article  Google Scholar 

  17. Goyal P et al (2019) Association between functional impairment and medication burden in adults with heart failure. J Am Geriatr Soc 67(2):284–291

    PubMed  Article  Google Scholar 

  18. Gerrard P (2013) The hierarchy of the activities of daily living in the Katz index in residents of skilled nursing facilities. J Geriatr Phys Ther 36(2):87–91

    PubMed  Article  Google Scholar 

  19. Dodge HH et al (2005) Cognitive impairment as a strong predictor of incident disability in specific ADL–IADL tasks among community-dwelling elders: the Azuchi study. Gerontologist 45(2):222–230

    PubMed  Article  Google Scholar 

  20. Alosco ML et al (2014) Executive dysfunction is independently associated with reduced functional independence in heart failure. J Clin Nurs 23(5–6):829–36

    PubMed  Article  Google Scholar 

  21. Alosco ML et al (2016) Reduced gray matter volume is associated with poorer instrumental activities of daily living performance in heart failure. J Cardiovasc Nurs 31(1):31–41

    PubMed  PubMed Central  Article  Google Scholar 

  22. Komajda M et al (2009) Contemporary management of octogenarians hospitalized for heart failure in Europe: Euro Heart Failure Survey II. Eur Heart J 30(4):478–86

    PubMed  Article  Google Scholar 

  23. Takabayashi K et al (2019) A decline in activities of daily living due to acute heart failure is an independent risk factor of hospitalization for heart failure and mortality. J Cardiol 73(6):522–529

    PubMed  Article  Google Scholar 

  24. Yamashita M et al (2020) Prognostic value of instrumental activity of daily living in initial heart failure hospitalization patients aged 65 years or older. Heart Vessels 35(3):360–366

    PubMed  Article  Google Scholar 

  25. Kitamura M et al (2017) Relationship between activities of daily living and readmission within 90 days in hospitalized elderly patients with heart failure. Biomed Res Int 2017:7420738

    PubMed  PubMed Central  Article  Google Scholar 

  26. Lesman-Leegte I et al (2009) Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J Card Fail 15(1):17–23

    PubMed  Article  Google Scholar 

  27. Heo S et al (2008) Predictors and effect of physical symptom status on health-related quality of life in patients with heart failure. Am J Crit Care 17(2):124–32

    PubMed  Article  Google Scholar 

  28. Williams ME, Hadler NM, Earp JA (1982) Manual ability as a marker of dependency in geriatric women. J Chronic Dis 35(2):115–22

    CAS  PubMed  Article  Google Scholar 

  29. Scherbakov N, Doehner W (2018) Heart-brain interactions in heart failure. Card Fail Rev 4(2):87–91

    PubMed  PubMed Central  Article  Google Scholar 

  30. Doehner W et al (2018) Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association. Eur J Heart Fail 20(2):199–215

  31. Kumar R et al (2009) Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis 33(2):236–42

    PubMed  Article  Google Scholar 

  32. Kumar R et al (2011) Brain axonal and myelin evaluation in heart failure. J Neurol Sci 307(1–2):106–13

    PubMed  PubMed Central  Article  Google Scholar 

  33. Kumar R et al (2015) Reduced regional brain cortical thickness in patients with heart failure. PLoS One 10(5):e0126595

  34. Pan A et al (2013) Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J Card Fail 19(2):94–100

    PubMed  PubMed Central  Article  Google Scholar 

  35. Woo MA et al (2009) Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail 15(3):214–23

    PubMed  Article  Google Scholar 

  36. Woo MA et al (2003) Regional brain gray matter loss in heart failure. J Appl Physiol 95(2):677–684

  37. Vogels RL et al (2007) Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur J Heart Fail 9(10):1003–9

    PubMed  Article  Google Scholar 

  38. Almeida OP et al (2012) Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J 33(14):1769–76

    PubMed  Article  Google Scholar 

  39. Scott SH (2012) The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci 16(11):541–9

    PubMed  Article  Google Scholar 

  40. Azim E, Seki K (2019) Gain control in the sensorimotor system. Curr Opin Physiol 8:177–187

    PubMed  PubMed Central  Article  Google Scholar 

  41. Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30(2):189-201; discussion 201-39

  42. Brodoehl S et al (2013) Age-related changes in the somatosensory processing of tactile stimulation–an fMRI study. Behav Brain Res 238:259–64

    PubMed  Article  Google Scholar 

  43. Chakrabarti S, Schwarz C (2018) Cortical modulation of sensory flow during active touch in the rat whisker system. Nat Commun 9(1):3907

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6(12):1309–16

    CAS  PubMed  Article  Google Scholar 

  45. Goble DJ et al (2012) The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp 33(4):895–908

    PubMed  Article  Google Scholar 

  46. Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22(4):575–9

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12(2):149–54

    CAS  PubMed  Article  Google Scholar 

  48. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901

    CAS  PubMed  Article  Google Scholar 

  49. Kalaska JF (2009) From intention to action: motor cortex and the control of reaching movements. Adv Exp Med Biol 629:139–78

    PubMed  Article  Google Scholar 

  50. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–69

    CAS  PubMed  Article  Google Scholar 

  51. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–44

    PubMed  PubMed Central  Article  Google Scholar 

  52. Fling BW, Seidler RD (2012) Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. Cereb Cortex 22(11):2643–52

    CAS  PubMed  Article  Google Scholar 

  53. Turner RS, Desmurget M (2010) Basal ganglia contributions to motor control: a vigorous tutor. Curr Opin Neurobiol 20(6):704–16

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Manto M et al (2012) Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum (London, England) 11(2):457–487

    Article  Google Scholar 

  55. Seidler RD et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–33

    CAS  PubMed  Article  Google Scholar 

  56. Wilson J et al (2019) The neural correlates of discrete gait characteristics in ageing: a structured review. Neurosci Biobehav Rev 100:344–369

    PubMed  PubMed Central  Article  Google Scholar 

  57. Rosano C et al (2008) Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J Gerontol A Biol Sci Med Sci 63(12):1380–8

    PubMed  Article  Google Scholar 

  58. Murray ME et al (2010) Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch Neurol 67(11):1379–85

    PubMed  PubMed Central  Article  Google Scholar 

  59. de Laat KF et al (2012) Cortical thickness is associated with gait disturbances in cerebral small vessel disease. Neuroimage 59(2):1478–84

    PubMed  Article  Google Scholar 

  60. Silbert LC et al (2008) Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline. Neurology 71(2):108–13

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Callisaya ML et al (2013) Brain structural change and gait decline: a longitudinal population-based study. J Am Geriatr Soc 61(7):1074–9

    PubMed  Article  Google Scholar 

  62. Koppelmans V et al (2015) Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults. Hum Brain Mapp 36(6):2352–63

    PubMed  PubMed Central  Article  Google Scholar 

  63. Koppelmans V et al (2017) Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Struct Funct 222(4):1929–1944

    PubMed  Article  Google Scholar 

  64. Fling BW et al (2011) Differential callosal contributions to bimanual control in young and older adults. J Cogn Neurosci 23(9):2171–85

    PubMed  Article  Google Scholar 

  65. Celutkiene J et al (2016) Expert opinion-cognitive decline in heart failure: more attention is needed. Card Fail Rev 2(2):106–109

    PubMed  PubMed Central  Google Scholar 

  66. Zuccala G et al (2001) Cognitive dysfunction as a major determinant of disability in patients with heart failure: results from a multicentre survey. On behalf of the GIFA (SIGG-ONLUS) Investigators. J Neurol Neurosurg Psychiatry 70(1):109–112

  67. Roy B et al (2017) Reduced regional cerebral blood flow in patients with heart failure. Eur J Heart Fail 19(10):1294–1302

    PubMed  Article  Google Scholar 

  68. Beer C et al (2009) Contributors to cognitive impairment in congestive heart failure: a pilot case-control study. Intern Med J 39(9):600–5

    CAS  PubMed  Article  Google Scholar 

  69. Vogels RL et al (2007) Neuroimaging and correlates of cognitive function among patients with heart failure. Dement Geriatr Cogn Disord 24(6):418–23

    PubMed  Article  Google Scholar 

  70. Cannon JA et al (2017) Cognitive impairment and heart failure: systematic review and meta-analysis. J Card Fail 23(6):464–475

    PubMed  Article  Google Scholar 

  71. Almeida OP, Flicker L (2001) The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J 31(5):290–5

    CAS  PubMed  Article  Google Scholar 

  72. Callegari S et al (2002) Relationship between cognitive impairment and clinical status in chronic heart failure patients. Monaldi Arch Chest Dis 58(1):19–25

    CAS  PubMed  Google Scholar 

  73. Pressler SJ et al (2010) Cognitive deficits in chronic heart failure. Nurs Res 59(2):127–39

    PubMed  PubMed Central  Article  Google Scholar 

  74. Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14

    PubMed  Article  Google Scholar 

  75. Kerr B, Condon SM, McDonald LA (1985) Cognitive spatial processing and the regulation of posture. J Exp Psychol Hum Percept Perform 11(5):617–22

    CAS  PubMed  Article  Google Scholar 

  76. Lajoie Y et al (1993) Attentional demands for static and dynamic equilibrium. Exp Brain Res 97(1):139–44

    CAS  PubMed  Article  Google Scholar 

  77. Li KZ, Lindenberger U (2002) Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev 26(7):777–83

    PubMed  Article  Google Scholar 

  78. Huxhold O et al (2006) Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 69(3):294–305

    PubMed  Article  Google Scholar 

  79. Inzitari M et al (2007) Impaired attention predicts motor performance decline in older community-dwellers with normal baseline mobility: results from the Italian Longitudinal Study on Aging (ILSA). J Gerontol A Biol Sci Med Sci 62(8):837–43

    PubMed  Article  Google Scholar 

  80. Rajan KB et al (2013) Disability in basic and instrumental activities of daily living is associated with faster rate of decline in cognitive function of older adults. J Gerontol A Biol Sci Med Sci 68(5):624–30

    PubMed  Article  Google Scholar 

  81. Shimada H et al (2016) Cognitive impairment and disability in older Japanese adults. PLoS One 11(7):e0158720

  82. de Paula JJ et al (2016) Impairment of fine motor dexterity in mild cognitive impairment and Alzheimer’s disease dementia: association with activities of daily living. Braz J Psychiatry 38(3):235–8

    PubMed  PubMed Central  Article  Google Scholar 

  83. Deschamps T et al (2014) Postural control and cognitive decline in older adults: position versus velocity implicit motor strategy. Gait Posture 39(1):628–30

    PubMed  Article  Google Scholar 

  84. Voelcker-Rehage C, Stronge AJ, Alberts JL (2006) Age-related differences in working memory and force control under dual-task conditions. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 13(3–4):366–84

    PubMed  Article  Google Scholar 

  85. Montero-Odasso M, Muir SW, Speechley M (2012) Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil 93(2):293–9

    PubMed  Article  Google Scholar 

  86. Li KZH et al (2018) Cognitive involvement in balance, gait and dual-tasking in aging: a focused review from a neuroscience of aging perspective. Front Neurol 9:913

    PubMed  PubMed Central  Article  Google Scholar 

  87. Kaufman MP et al (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir Environ Exerc Physiol 55(1 Pt 1):105–12

    CAS  PubMed  Google Scholar 

  88. Raven PB, Fadel PJ, Ogoh S (2006) Arterial baroreflex resetting during exercise: a current perspective. Exp Physiol 91(1):37–49

    PubMed  Article  Google Scholar 

  89. Amann M (2012) Significance of group III and IV muscle afferents for the endurance exercising human. Clin Exp Pharmacol Physiol 39(9):831–5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Wilson JR et al (1984) Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation 69(6):1079–87

    CAS  PubMed  Article  Google Scholar 

  91. Amann M et al (2014) Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. Int J Cardiol 174(2):368–75

    PubMed  PubMed Central  Article  Google Scholar 

  92. Pina IL et al (2003) Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation 107(8):1210–25

    PubMed  Article  Google Scholar 

  93. Piepoli M et al (1996) Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93(5):940–52

    CAS  PubMed  Article  Google Scholar 

  94. Middlekauff HR et al (2004) Muscle mechanoreceptor sensitivity in heart failure. Am J Physiol Heart Circ Physiol 287(5):H1937-43

    CAS  PubMed  Article  Google Scholar 

  95. Cody FW, Schwartz MP, Smit GP (1990) Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration. J Physiol 427:455–70

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Cordo P et al (1995) Proprioceptive consequences of tendon vibration during movement. J Neurophysiol 74(4):1675–88

    CAS  PubMed  Article  Google Scholar 

  97. Johansson RS, Hger C, Backstrom L (1992), Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res 89(1):204–213

  98. Monzee J, Lamarre Y, Smith AM (2003) The effects of digital anesthesia on force control using a precision grip. J Neurophysiol 89(2):672–83

    PubMed  Article  Google Scholar 

  99. Kavounoudias A, Roll R, Roll JP (1998) The plantar sole is a “dynamometric map” for human balance control. Neuroreport 9(14):3247–52

    CAS  PubMed  Article  Google Scholar 

  100. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92(4):1651–97

    CAS  PubMed  Article  Google Scholar 

  101. Johansson RS, Vallbo ÅB (1983) Tactile sensory coding in the glabrous skin of the human hand. Trends in neurosciences 6:27–32

    Article  Google Scholar 

  102. Röijezon U, Clark NC, Treleaven J (2015) Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Man Ther 20(3):368–377

  103. Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639

    CAS  PubMed  Article  Google Scholar 

  104. Hunt CC (1990) Mammalian muscle spindle: peripheral mechanisms. Physiol Rev 70(3):643–63

    CAS  PubMed  Article  Google Scholar 

  105. Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72(3):623–66

    CAS  PubMed  Article  Google Scholar 

  106. Vallbo AB et al (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59(4):919–57

    CAS  PubMed  Article  Google Scholar 

  107. Peterka RJ (2018) Sensory integration for human balance control. Handb Clin Neurol 159:27–42

    PubMed  Article  Google Scholar 

  108. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345–59

    CAS  PubMed  Article  Google Scholar 

  109. Shaffer SW, Harrison AL (2007) Aging of the somatosensory system: a translational perspective. Phys Ther 87(2):193–207

    PubMed  Article  Google Scholar 

  110. Goble DJ et al (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev 33(3):271–8

    PubMed  Article  Google Scholar 

  111. Verrillo RT (1979) Change in vibrotactile thresholds as a function of age. Sens Processes 3(1):49–59

    CAS  PubMed  Google Scholar 

  112. Aydoğ ST et al (2006) Decrease in the numbers of mechanoreceptors in rabbit ACL: the effects of ageing. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 14(4):325–329

    Article  Google Scholar 

  113. Swash M, Fox KP (1972) The effect of age on human skeletal muscle. Studies of the morphology and innervation of muscle spindles. J Neurol Sci 16(4):417–432

  114. Kararizou E et al (2005) Morphometric study of the human muscle spindle. Anal Quant Cytol Histol 27(1):1–4

    PubMed  Google Scholar 

  115. Bolton CF, Winkelmann RK, Dyck PJ (1966) A quantitative study of Meissner’s corpuscles in man. Neurology 16(1):1–9

    CAS  PubMed  Article  Google Scholar 

  116. García-Piqueras J et al (2019) Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anatom 234(6):839–852

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Fundin, BT, Bergman E, Ulfhake B (1997) Alterations in mystacial pad innervation in the aged rat. Exp Brain Res 117(2):324–40

    CAS  PubMed  Article  Google Scholar 

  118. Skedung L et al (2018) Mechanisms of tactile sensory deterioration amongst the elderly. Sci Rep 8(1):5303

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. Tremblay F et al (2003) Tactile spatial acuity in elderly persons: assessment with grating domes and relationship with manual dexterity. Somatosens Mot Res 20(2):127–32

    PubMed  Article  Google Scholar 

Download references

Funding

Funding for this project was provided by the Basic Biomedical Research Grant (2019) from the HEALTH Research Institute at the University of Houston.

Author information

Authors and Affiliations

Authors

Contributions

HH conceptualized, wrote the first draft, and edited the manuscript. SLG reviewed, critiqued, and edited the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Stacey L. Gorniak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hibino, H., Gorniak, S.L. Dependence and reduced motor function in heart failure: future directions for well-being. Heart Fail Rev 27, 1043–1051 (2022). https://doi.org/10.1007/s10741-021-10145-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10145-2

Keywords

  • Cardiovascular disease
  • Brain
  • Somatosensory system
  • Hand
  • Posture