Skip to main content

Social and environmental risks as contributors to the clinical course of heart failure

Abstract

Heart failure is a major contributor to healthcare expenditures. Many clinical risk factors for the development and exacerbation of heart failure had been reported, including diabetes, renal dysfunction, and respiratory disease. In addition to these clinical parameters, the effects of social factors, such as occupation or lifestyle, and environmental factors may have a great impact on disease development and progression of heart failure. However, the current understanding of social and environmental factors as contributors to the clinical course of heart failure is insufficient. To present the knowledge of these factors to date, this comprehensive review of the literature sought to identify the major contributors to heart failure within this context. Social factors for the risk of heart failure included occupation and lifestyle, specifically in terms of the effects of specific occupations, occupational exposure to toxicities, work style, and sleep deprivation. Socioeconomic factors focused on income and education level, social status, the neighborhood environment, and marital status. Environmental factors included traffic and noise, air pollution, and other climate factors. In addition, psychological stress and behavior traits were investigated. The development of heart failure may be closely related to these factors; therefore, these data should be summarized for the context to improve their effects on patients with heart failure. The present study reviews the literature to summarize these influences.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) American heart association statistics committee and stroke statistics subcommittee; American heart association statistics committee and stroke statistics subcommittee. executive summary: heart disease and stroke statistics-2010 update: a report from the American heart association. Circulation 121:948–954. https://doi.org/10.1161/CIRCULATIONAHA.109.192666

    Article  PubMed  Google Scholar 

  2. Nowrouzi-Kia B, Li AKC, Nguyen C, Casole J (2018) Heart disease and occupational risk factors in the Canadian population: an exploratory study using the Canadian community health survey. Saf Health Work 9:144–148. https://doi.org/10.1016/j.shaw.2017.07.008

    Article  PubMed  Google Scholar 

  3. Väisänen D, Kallings LV, Andersson G, Wallin P, Hemmingsson E, Ekblom-Bak E (2020) Lifestyle-associated health risk indicators across a wide range of occupational groups: a cross-sectional analysis in 72,855 workers. BMC Public Health 20:1656. https://doi.org/10.1186/s12889-020-09755-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Costello S, Neophytou AM, Brown DM, Noth EM, Hammond SK, Cullen MR, Eisen EA (2016) Incident ischemic heart disease after long-term occupational exposure to fine particulate matter: accounting for 2 forms of survivor bias. Am J Epidemiol 183:861–868. https://doi.org/10.1093/aje/kwv218

    Article  PubMed  PubMed Central  Google Scholar 

  5. Costello S, Picciotto S, Rehkopf DH, Eisen EA (2015) Social disparities in heart disease risk and survivor bias among autoworkers: an examination based on survival models and g-estimation. Occup Environ Med 72:138–144. https://doi.org/10.1136/oemed-2014-102168

    Article  PubMed  Google Scholar 

  6. Gilson ND, Hall C, Holtermann A, van der Beek AJ, Huysmans MA, Mathiassen SE, Straker L (2019) Sedentary and physical activity behavior in “blue-collar” workers: a systematic review of accelerometer studies. J Phys Act Health 16:1060–1069. https://doi.org/10.1123/jpah.2018-0607

    Article  PubMed  Google Scholar 

  7. Wamala SP, Wolk A, Orth-Gomér K (1997) Determinants of obesity in relation to socioeconomic status among middle-aged Swedish women. Prev Med 26:734–744. https://doi.org/10.1006/pmed.1997.0199

    CAS  Article  PubMed  Google Scholar 

  8. Schumann B, Seidler A, Kluttig A, Werdan K, Haerting J, Greiser KH (2011) Association of occupation with prevalent hypertension in an elderly East German population: an exploratory cross-sectional analysis. Int Arch Occup Environ Health 84:361–369. https://doi.org/10.1007/s00420-010-0584-5

    Article  PubMed  Google Scholar 

  9. McCurdy SA, Sunyer J, Zock JP, Antó JM, Kogevinas M (2003) European community respiratory health survey study group smoking and occupation from the European community respiratory health survey Occup Environ Med 60:643–648 https://doi.org/10.1136/oem.60.9.643

  10. Holtermann A, Krause N, van der Beek AJ, Straker L (2018) The physical activity paradox: six reasons why occupational physical activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. Br J Sports Med 52:149–150. https://doi.org/10.1136/bjsports-2017-097965

    Article  PubMed  Google Scholar 

  11. Hunter AH, Cox AT, D’Arcy J, Rooms M, Camm AJ (2015) Atrial fibrillation in the military patient: a review. J R Army Med Corps 161:237–243. https://doi.org/10.1136/jramc-2015-000505

    Article  PubMed  Google Scholar 

  12. Hood S, Northcote RJ (1999) Cardiac assessment of veteran endurance athletes: a 12 year follow up study. Br J Sports Med 33:239–243. https://doi.org/10.1136/bjsm.33.4.239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Mont L, Elosua R, Brugada J (2009) Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 11:11–17. https://doi.org/10.1093/europace/eun289

    Article  PubMed  Google Scholar 

  14. Wilson M, O’Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, Godfrey R, Smith G, Maceira A, Sharma S, George K, Whyte G (2011) Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol 110; 110:1622Y6. https://doi.org/10.1152/japplphysiol.01280.2010

  15. Parry-Williams G, Sharma S (2020) The effects of endurance exercise on the heart: panacea or poison? Nat Rev Cardiol 17:402–412. https://doi.org/10.1038/s41569-020-0354-3

    CAS  Article  PubMed  Google Scholar 

  16. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, Gaze D, Thompson PD (2010) Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol 56:169–176. https://doi.org/10.1016/j.jacc.2010.03.037

    CAS  Article  PubMed  Google Scholar 

  17. Aengevaeren VL, Hopman MTE, Thompson PD, Bakker EA, George KP, Thijssen DHJ, Eijsvogels TMH (2019) Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation 140:804–814. https://doi.org/10.1161/CIRCULATIONAHA.119.041627

    Article  PubMed  Google Scholar 

  18. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378:1244–1253. https://doi.org/10.1016/S0140-6736(11)60749-6

    Article  PubMed  Google Scholar 

  19. Veglio M, Maule S, Cametti G, Cogo A, Lussiana L, Madrigale G, Pecchio O (1999) The effects of exposure to moderate altitude on cardiovascular autonomic function in normal subjects. Clin Auton Res 9:123–127. https://doi.org/10.1007/BF02281624

    CAS  Article  PubMed  Google Scholar 

  20. Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, Festi L, Giardini G, Lironcurti A, Luks AM, Maggiorini M, Modesti PA, Swenson ER, Williams B, Bärtsch P, Torlasco C (2018) Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J 39:1546–1554. https://doi.org/10.1093/eurheartj/ehx720

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ingle L, Hobkirk J, Damy T, Nabb S, Clark AL, Cleland JG (2012) Experiences of air travel in patients with chronic heart failure. Int J Cardiol 158:66–70. https://doi.org/10.1016/j.ijcard.2010.12.101

    Article  PubMed  Google Scholar 

  22. Possick SE, Barry M (2004) Air travel and cardiovascular disease. J Travel Med 11:243–248. https://doi.org/10.2310/7060.2004.19009

    Article  PubMed  Google Scholar 

  23. Roubinian N, Elliott CG, Barnett CF, Blanc PD, Chen J, De Marco T, Chen H (2012) Effects of commercial air travel on patients with pulmonary hypertension air travel and pulmonary hypertension. Chest 142:885–892. https://doi.org/10.1378/chest.11-2016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y, Richalet JP (2000) Operation Everest III (Comex ’97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med 161:264–270. https://doi.org/10.1164/ajrccm.161.1.9902096

    CAS  Article  PubMed  Google Scholar 

  25. Osculati G, Revera M, Branzi G, Faini A, Malfatto G, Bilo G, Giuliano A, Gregorini F, Ciambellotti F, Lombardi C, Agostoni P, Mancia G, Parati G (2016) Effects of hypobaric hypoxia exposure at high altitude on left ventricular twist in healthy subjects: data from HIGHCARE study on Mount Everest. Eur Heart J Cardiovasc Imaging 17:635–643. https://doi.org/10.1093/ehjci/jev166

    Article  PubMed  Google Scholar 

  26. Schmid JP, Noveanu M, Gaillet R, Hellige G, Wahl A, Saner H (2006) Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart 92:921–925. https://doi.org/10.1136/hrt.2005.072520

    CAS  Article  PubMed  Google Scholar 

  27. Hanada R, Hisada T, Tsujimoto T, Ohashi K (2004) Arrhythmias observed during high-G training: proposed training safety criterion. Aviat Space Environ Med 75:688–691

    PubMed  Google Scholar 

  28. Germonpre P, Balestra C (2004) Risk of decompression illness among 230 divers in relation to the presence and size of patent foramen ovale. Eur Heart J 25(23):2173–4. https://doi.org/10.1016/j.ehj.2004.07.042

  29. Honěk J, Šrámek M, Honěk T, Tomek A, Šefc L, Januška J, Fiedler J, Horváth M, Novotný Š, Veselka J (2020) Patent foramen ovale closure is effective in divers: long-term results from the DIVE-PFO Registry. J Am Coll Cardiol 76(9):1149–1150. https://doi.org/10.1016/j.jacc.2020.06.072

  30. Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP (2016) Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 28:95–139. https://doi.org/10.3109/08958378.2016.1145771

    CAS  Article  PubMed  Google Scholar 

  31. Soteriades ES, Smith DL, Tsismenakis AJ, Baur DM, Kales SN (2011) Cardiovascular disease in US firefighters: a systematic review. Cardiol Rev 19:202–215. https://doi.org/10.1097/CRD.0b013e318215c105

    Article  PubMed  Google Scholar 

  32. Kales SN, Soteriades ES, Christophi CA, Christiani DC (2007) Emergency duties and deaths from heart disease among firefighters in the United States. N Engl J Med 356:1207–1215. https://doi.org/10.1056/NEJMoa060357

    CAS  Article  PubMed  Google Scholar 

  33. Allen RW, Carlsten C, Karlen B, Leckie S, van Eeden S, Vedal S, Wong I, Brauer M (2011) An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am J Respir Crit Care Med 183:1222–1230. https://doi.org/10.1164/rccm.201010-1572OC

    Article  PubMed  Google Scholar 

  34. Manfredi S, Federici C, Picano E, Botto N, Rizza A, Andreassi MG (2007) GSTM1, GSTT1 and CYP1A1 detoxification gene polymorphisms and susceptibility to smoking-related coronary artery disease: a case-only study. Mutat Res 621:106–112. https://doi.org/10.1016/j.mrfmmm.2007.02.014

    CAS  Article  PubMed  Google Scholar 

  35. Yang A-M, Lo K, Zheng T-Z, Yang JL, Bai Y-N, Feng Y-Q, Cheng N, Liu S-M (2020) Environmental heavy metals and cardiovascular diseases: status and future direction. Chronic Dis Transl Med 6:251–259. https://doi.org/10.1016/j.cdtm.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bulka CM, Daviglus ML, Persky VW, Durazo-Arvizu RA, Lash JP, Elfassy T, Lee DJ, Ramos AR, Tarraf W, Argos M (2019) Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. Heart 105:439–448. https://doi.org/10.1136/heartjnl-2018-313463

    CAS  Article  PubMed  Google Scholar 

  37. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, D’Agostino RB, Murabito JM, Kannel WB, Benjamin EJ (2003) Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation 107:2920–2925. https://doi.org/10.1161/01.CIR.0000072767.89944.6E

    Article  PubMed  Google Scholar 

  38. Burroughs Peña MS, Uwamungu JC, Bulka CM, Swett K, Perreira KM, Kansal MM, Loop MS, Hurwitz BE, Daviglus M, Rodriguez CJ (2020) Occupational exposures and cardiac structure and function: ECHO-SOL (echocardiographic study of Latinos). J Am Heart Assoc 9:e016122. https://doi.org/10.1161/JAHA.120.016122

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang WY, Zhang ZY, Thijs L, Cauwenberghs N, Wei FF, Jacobs L, Luttun A, Verhamme P, Kuznetsova T, Nawrot TS, Staessen JA (2017) Left ventricular structure and function in relation to environmental exposure to lead and cadmium. J Am Heart Assoc 6:e004692. https://doi.org/10.1161/JAHA.116.004692

    Article  PubMed  PubMed Central  Google Scholar 

  40. Linna A, Uitti J, Oksa P, Toivio P, Virtanen V, Lindholm H, Halkosaari M, Sauni R (2020) Effects of occupational cobalt exposure on the heart in the production of cobalt and cobalt compounds: a 6-year follow-up. Int Arch Occup Environ Health 93:365–374. https://doi.org/10.1007/s00420-019-01488-3

    CAS  Article  PubMed  Google Scholar 

  41. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. https://doi.org/10.1016/j.tox.2011.03.001

    CAS  Article  PubMed  Google Scholar 

  42. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. https://doi.org/10.2174/0929867053764635

    CAS  Article  PubMed  Google Scholar 

  43. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168:812–822. https://doi.org/10.1016/j.ahj.2014.07.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B 12:206–223. https://doi.org/10.1080/10937400902902062

    CAS  Article  Google Scholar 

  45. Omanwar S, Fahim M (2015) Mercury exposure and endothelial dysfunction: an interplay between nitric oxide and oxidative stress. Int J Toxicol 34:300–307. https://doi.org/10.1177/1091581815589766

    CAS  Article  PubMed  Google Scholar 

  46. Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, Tang WY, Redon J, Ordovas JM, Navas-Acien A, Tellez-Plaza M (2015) Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenet 7:55. https://doi.org/10.1186/s13148-015-0055-7

    CAS  Article  Google Scholar 

  47. Dai H, Wang Z (2014) Histone modification patterns and their responses to environment. Curr Environ Heal Rep 1:11–21. https://doi.org/10.1007/s40572-013-0008-2

    CAS  Article  Google Scholar 

  48. Mills KT, Blair A, Freeman LE, Sandler DP, Hoppin JA (2009) Pesticides and myocardial infarction incidence and mortality among male pes- ticide applicators in the Agricultural Health Study. Am J Epidemiol 170:892–900. https://doi.org/10.1093/aje/kwp214

    Article  PubMed  PubMed Central  Google Scholar 

  49. Berg ZK, Rodriguez B, Davis J, Katz AR, Cooney RV, Masaki K (2019) Association between occupational exposure to pesticides and cardiovascular disease incidence: the Kuakini Honolulu heart program. J Am Heart Assoc 8:e012569. https://doi.org/10.1161/jaha.119.012569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Dayton SB, Sandler DP, Blair A, Alavanja M, Beane Freeman LE, Hoppin JA (2010) Pesticide use and myocardial infarction incidence among farm women in the Agricultural Health Study. J Occup Environ Med 52:693–697. https://doi.org/10.1097/JOM.0b013e3181e66d25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Wafa T, Nadia K, Amel N, Ikbal C, Insaf T, Asma K, Hedi MA, Mohamed H (2013) Oxidative stress, hematological and biochemical al- terations in farmers exposed to pesticides. J Environ Sci Health B 48:1058–1069. https://doi.org/10.1080/03601234.2013.824285

    CAS  Article  PubMed  Google Scholar 

  52. Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A (2017) High pesticide exposure events and DNA methylation among pesticide applicators in the Agricultural Health Study. Environ Mol Mutagen 58:19–29. https://doi.org/10.1002/em.22067

    CAS  Article  PubMed  Google Scholar 

  53. Hung DZ, Yang HJ, Li YF, Lin CL, Chang SY, Sung FC, Tai SC (2015) The long-term effects of organophosphates poisoning as a risk factor of CVDs: a nationwide population-based cohort study. PLoS One 10:e0137632. https://doi.org/10.1371/journal.pone.0137632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Tsutsumi A (2015) Prevention and management of work-related cardiovascular disorders. Int J Occup Med Environ Health 28:4–7. https://doi.org/10.2478/s13382-014-0319-z

  55. Steinhauer SR, Morrow LA, Condray R, Scott AJ (2001) Respiratory sinus arrhythmia in persons with organic solvent exposure: comparisons with anxiety patients and controls. Arch Environ Health 56:175–180

    CAS  Article  Google Scholar 

  56. Kaufman JD, Silverstein MA, Moure-Eraso R (1994) Atrial fibrillation and sudden death related to occupational solvent exposure. Am J Ind Med 25:731–735

    CAS  Article  Google Scholar 

  57. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7. https://doi.org/10.1056/NEJM199607043350101

    CAS  Article  PubMed  Google Scholar 

  58. Dandoy C, Gereige RS (2012) Performance-enhancing drugs. Pediatr Rev 33:265–271; quiz 271–272. https://doi.org/10.1542/pir.33-6-265

  59. Baggish AL, Weiner RB, Kanayama G, Hudson JI, Picard MH, Hutter AM Jr, Pope HG Jr (2010) Long-term anabolic-androgenic steroid use is associated with left ventricular dysfunction. Circ Heart Fail 3:472–476. https://doi.org/10.1161/CIRCHEARTFAILURE.109.931063

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mewis C, Spyridopoulos I, Kühlkamp V, Seipel L (1996) Manifestation of severe coronary heart disease after anabolic drug abuse. Clin Cardiol 19:153–155. https://doi.org/10.1002/clc.4960190216

    CAS  Article  PubMed  Google Scholar 

  61. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ (1998) Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation 98:256–261. https://doi.org/10.1161/01.cir.98.3.256

    CAS  Article  PubMed  Google Scholar 

  62. Melchert RB, Welder AA (1995) Cardiovascular effects of androgenic-anabolic steroids. Med Sci Sports Exerc 27:1252–1262. https://doi.org/10.1249/00005768-199509000-00004

    CAS  Article  PubMed  Google Scholar 

  63. Conway SH, Pompeii LA, Roberts RE, Follis JL, Gimeno D (2016) Dose-response relation between work hours and cardiovascular disease risk: findings From the panel study of income dynamics. J Occup Environ Med 58:221–226. https://doi.org/10.1097/JOM.0000000000000654

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kivimäki M, Nyberg ST, Batty GD, Kawachi I, Jokela M, Alfredsson L, Bjorner JB, Borritz M, Burr H, Dragano N, Fransson EI, Heikkilä K, Knutsson A, Koskenvuo M, Kumari M, Madsen IEH, Nielsen ML, Nordin M, Oksanen T, Pejtersen JH, Pentti J, Rugulies R, Salo P, Shipley MJ, Suominen S, Theorell T, Vahtera J, Westerholm P, Westerlund H, Steptoe A, Singh-Manoux A, Hamer M, Ferrie JE, Virtanen M, Tabak AG, IPD-Work consortium, (2017) Long working hours as a risk factor for atrial fibrillation: a multi-cohort study. Eur Heart J 38:2621–2628. https://doi.org/10.1093/eurheartj/ehx324

    Article  PubMed  PubMed Central  Google Scholar 

  65. Charles LE, Zhao S, Fekedulegn D, Violanti JM, Andrew ME, Burchfiel CM (2016) Shiftwork and decline in endothelial function among police officers. Am J Ind Med 59:1001–1008. https://doi.org/10.1002/ajim.22611

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ishii N, Iwata T, Dakeishi M, Murata K (2004) Effects of shift work on autonomic and neuromotor functions in female nurses. J Occup Health 46:352–358. https://doi.org/10.1539/joh.46.352

    Article  PubMed  Google Scholar 

  67. Knutsson A (1989) Shift work and coronary heart disease. Scand J Soc Med Suppl 44:1–36

    CAS  PubMed  Google Scholar 

  68. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, Hennekens CH (1995) Prospective study of shift work and risk of coronary heart disease in women. Circulation 92:3178–3182. https://doi.org/10.1161/01.cir.92.11.3178

    CAS  Article  PubMed  Google Scholar 

  69. Fujino Y, Iso H, Tamakoshi A, Inaba Y, Koizumi A, Kubo T, Yoshimura T (2006) Japanese Collaborative Cohort Study Group, for the Japanese Collaborative A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers Am J Epidemiol 164:128–135 https://doi.org/10.1093/aje/kwj185

  70. Thosar SS, Butler MP, Shea SA (2018) Role of the circadian system in cardiovascular disease. J Clin Invest 128:2157–2167. https://doi.org/10.1172/JCI80590

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509. https://doi.org/10.1080/07420520500545979

    Article  PubMed  Google Scholar 

  72. Rutters F, Lemmens SG, Adam TC, Bremmer MA, Elders PJ, Nijpels G, Dekker JM (2014) Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile? J Biol Rhythms 29:377–383. https://doi.org/10.1177/0748730414550199

    Article  PubMed  Google Scholar 

  73. Nagai M, Hoshide S, Kario K (2010) Sleep duration as a risk factor for cardiovascular disease—a review of the recent literature. Curr Cardiol Rev 6:54–61. https://doi.org/10.2174/157340310790231635

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hurtado-Alvarado G, Pavón L, Castillo-García SA, Hernández ME, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B (2013) Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clin Dev Immunol 2013:801341. https://doi.org/10.1155/2013/801341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Mills PJ, von Känel R, Norman D, Natarajan L, Ziegler MG, Dimsdale JE (2007) Inflammation and sleep in healthy individuals. Sleep 30:729–735. https://doi.org/10.1093/sleep/30.6.729

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cakici M, Dogan A, Cetin M, Suner A, Caner A, Polat M, Kaya H, Abus AS, Akturk E (2015) Negative effects of acute sleep deprivation on left ventricular functions and cardiac repolarization in healthy young adults. Pacing Clin Electrophysiol 38:713–722. https://doi.org/10.1111/pace.12534

    Article  PubMed  Google Scholar 

  77. Cincin A, Sari I, Sunbul M, Kepez A, Oguz M, Sert S, Sahin A, Ozben B, Tigen K, Basaran Y (2016) Effect of acute sleep deprivation on left atrial mechanics assessed by three-dimensional echocardiography. Sleep Breath 20:227–235; discussion 235. https://doi.org/10.1007/s11325-015-1211-1

  78. Lusardi P, Zoppi A, Preti P, Pesce RM, Piazza E, Fogari R (1999) Effects of insufficient sleep on blood pressure in hypertensive patients: a 24-h study. Am J Hypertens 12:63–68. https://doi.org/10.1016/s0895-7061(98)00200-3

    CAS  Article  PubMed  Google Scholar 

  79. Leung RS, Bowman ME, Parker JD, Newton GE, Bradley TD (2003) Avoidance of the left lateral decubitus position during sleep in patients with heart failure: relationship to cardiac size and function. J Am Coll Cardiol 41:227–230. https://doi.org/10.1016/s0735-1097(02)02717-1

    Article  PubMed  Google Scholar 

  80. Ingelsson E, Lind L, Arnlöv J, Sundström J (2006) Socioeconomic factors as predictors of incident heart failure. J Card Fail 12:540–545. https://doi.org/10.1016/j.cardfail.2006.05.010

    Article  PubMed  Google Scholar 

  81. Abdalla SM, Yu S, Galea S (2020) Trends in cardiovascular disease prevalence by income level in the United States. JAMA Netw Open 3:e2018150. https://doi.org/10.1001/jamanetworkopen.2020.18150

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hung CL, Chao TF, Su CH, Liao JN, Sung KT, Yeh HI, Chiang CE (2021) Income level and outcomes in patients with heart failure with universal health coverage. Heart. 107(3):208–216. https://doi.org/10.1136/heartjnl-2020-316793

  83. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC (2000) Predictors of congestive heart failure in the elderly: the cardiovascular Health Study. J Am Coll Cardiol 35:1628–1637. https://doi.org/10.1016/s0735-1097(00)00582-9

    CAS  Article  PubMed  Google Scholar 

  84. Dewan P, Rørth R, Jhund PS, Ferreira JP, Zannad F, Shen L, Køber L, Abraham WT, Desai AS, Dickstein K, Packer M, Rouleau JL, Solomon SD, Swedberg K, Zile MR, McMurray JJV, PARADIGM-HF and ATMOSPHERE Investigators (2019) Income inequality and outcomes in heart failure: a global Between-Country Analysis. JACC Heart Fail 7:336–346. https://doi.org/10.1016/j.jchf.2018.11.005

    Article  PubMed  Google Scholar 

  85. Stewart S, Murphy NF, McMurray JJ, Jhund P, Hart CL, Hole D (2006) Effect of socioeconomic deprivation on the population risk of incident heart failure hospitalisation: an analysis of the Renfrew/Paisley Study. Eur J Heart Fail 8:856–863. https://doi.org/10.1016/j.ejheart.2006.02.008

    CAS  Article  PubMed  Google Scholar 

  86. Shen JJ, Wan TT, Perlin JB (2001) An exploration of the complex relationship of socioecologic factors in the treatment and outcomes of acute myocardial infarction in disadvantaged populations. Health Serv Res 36:711–732

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kargoli F, Shulman E, Aagaard P, Briceno DF, Hoch E, Di Biase L, Fisher JD, Gross J, Kim SG, Krumerman A, Ferrick KJ (2017) Socioeconomic status as a predictor of mortality in patients admitted with atrial fibrillation. Am J Cardiol 119:1378–1381. https://doi.org/10.1016/j.amjcard.2017.01.041

    Article  PubMed  Google Scholar 

  88. Mackenbach JP, Stirbu I, Roskam AJ, Schaap MM, Menvielle G, Leinsalu M, Kunst AE (2008) European Union Working Group on Socioeconomic Inequalities in Health Socioeconomic inequalities in health in 22 European countries. N Engl J Med 358:2468–2481. https://doi.org/10.1056/NEJMsa0707519

    CAS  Article  PubMed  Google Scholar 

  89. Friedman EM, Herd P (2010) Income, education, and inflammation: differential associations in a national probability sample (the MIDUS study). Psychosom Med 72:290–300. https://doi.org/10.1097/PSY.0b013e3181cfe4c2

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brydon L, Edwards S, Mohamed-Ali V, Steptoe A (2004) Socioeconomic status and stress-induced increases in interleukin-6. Brain Behav Immun 18:281–290. https://doi.org/10.1016/j.bbi.2003.09.011

    CAS  Article  PubMed  Google Scholar 

  91. Steptoe A, Kunz-Ebrecht S, Owen N, Feldman PJ, Rumley A, Lowe GD, Marmot M (2003) Influence of socioeconomic status and job control on plasma fibrinogen responses to acute mental stress. Psychosom Med 65:137–144. https://doi.org/10.1097/01.psy.0000039755.23250.a7

    CAS  Article  PubMed  Google Scholar 

  92. Hawkins NM, Scholes S, Bajekal M, Love H, O’Flaherty M, Raine R, Capewell S (2012) Community care in England: reducing socioeconomic inequalities in heart failure. Circulation 126:1050–1057. https://doi.org/10.1161/CIRCULATIONAHA.111.088047

    Article  PubMed  Google Scholar 

  93. Hawkins NM, Jhund PS, McMurray JJ, Capewell S (2012) Heart failure and socioeconomic status: accumulating evidence of inequality. Eur J Heart Fail 14:138–146. https://doi.org/10.1093/eurjhf/hfr168

    Article  PubMed  Google Scholar 

  94. Borné Y, Engström G, Essén B, Sundquist J, Hedblad B (2011) Country of birth and risk of hospitalization due to heart failure: a Swedish population-based cohort study. Eur J Epidemiol 26:275–283. https://doi.org/10.1007/s10654-010-9536-3

    Article  PubMed  Google Scholar 

  95. Schaufelberger M, Rosengren A (2007) Heart failure in different occupational classes in Sweden. Eur Heart J 28:212–218. https://doi.org/10.1093/eurheartj/ehl435

    Article  PubMed  Google Scholar 

  96. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK (2001) Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med 161:996–1002. https://doi.org/10.1001/archinte.161.7.996

    CAS  Article  PubMed  Google Scholar 

  97. Fretz A, Schneider AL, McEvoy JW, Hoogeveen R, Ballantyne CM, Coresh J, Selvin E (2016) The association of socioeconomic status with subclinical myocardial damage, incident cardiovascular events, and mortality in the ARIC study. Am J Epidemiol 183:452–461. https://doi.org/10.1093/aje/kwv253

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rosengren A, Smyth A, Rangarajan S, Ramasundarahettige C, Bangdiwala SI, AlHabib KF, Avezum A, Bengtsson Boström K, Chifamba J, Gulec S, Gupta R, Igumbor EU, Iqbal R, Ismail N, Joseph P, Kaur M, Khatib R, Kruger IM, Lamelas P, Lanas F, Lear SA, Li W, Wang C, Quiang D, Wang Y, Lopez-Jaramillo P, Mohammadifard N, Mohan V, Mony PK, Poirier P, Srilatha S, Szuba A, Teo K, Wielgosz A, Yeates KE, Yusoff K, Yusuf R, Yusufali AH, Attaei MW, McKee M, Yusuf S (2019) Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: the Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob Health. 7(6):e748-e760. https://doi.org/10.1016/S2214-109X(19)30045-2

  99. Roberts CB, Couper DJ, Chang PP, James SA, Rosamond WD, Heiss G (2010) Influence of life-course socioeconomic position on incident heart failure in blacks and whites: the Atherosclerosis Risk in Communities Study. Am J Epidemiol 172:717–727. https://doi.org/10.1093/aje/kwq193

    Article  PubMed  PubMed Central  Google Scholar 

  100. Steptoe A, Marmot M (2002) The role of psychobiological pathways in socio-economic inequalities in cardiovascular disease risk. Eur Heart J 23:13–25. https://doi.org/10.1053/euhj.2001.2611

    CAS  Article  PubMed  Google Scholar 

  101. Bikdeli B, Wayda B, Bao H, Ross JS, Xu X, Chaudhry SI, Spertus JA, Bernheim SM, Lindenauer PK, Krumholz HM (2014) Place of residence and outcomes of patients with heart failure: analysis from the telemonitoring to improve heart failure outcomes trial. Circ Cardiovasc Qual Outcomes 7:749–756. https://doi.org/10.1161/CIRCOUTCOMES.113.000911

    Article  PubMed  PubMed Central  Google Scholar 

  102. Akwo EA, Kabagambe EK, Harrell FE, Blot WJ, Bachmann JM, Wang TJ, Gupta DK, Lipworth L (2018) Neighborhood deprivation predicts heart failure risk in a low-income population of blacks and whites in the Southeastern United States. Circ Cardiovasc Qual Outcomes 11:e004052. https://doi.org/10.1161/CIRCOUTCOMES.117.004052

    Article  PubMed  PubMed Central  Google Scholar 

  103. Diez Roux AV (2007) Neighborhoods and health: where are we and were do we go from here? Environnement residentiel et sante at de la question et perspectives pour le futur. Rev Epidemiol S Publ 5:13–21. https://doi.org/10.1016/j.respe.2006.12.003

    Article  Google Scholar 

  104. Howell NA, Tu JV, Moineddin R, Chu A, Booth GL (2019) Association Between neighborhood Walkability and predicted 10-year cardiovascular disease risk: the CANHEART (cardiovascular health in Ambulatory Care Research Team) cohort. J Am Heart Assoc 8:e013146. https://doi.org/10.1161/JAHA.119.013146

    Article  PubMed  PubMed Central  Google Scholar 

  105. Claudel SE, Adu-Brimpong J, Banks A, Ayers C, Albert MA, Das SR, de Lemos JA, Leonard T, Neeland IJ, Rivers JP, Powell-Wiley TM (2018) Association between neighborhood-level socioeconomic deprivation and incident hypertension: a longitudinal analysis of data from the Dallas heart study. Am Heart J 204:109–118. https://doi.org/10.1016/j.ahj.2018.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  106. Powell-Wiley TM, Cooper-McCann R, Ayers C, Berrigan D, Lian M, McClurkin M, Ballard-Barbash R, Das SR, Hoehner CM, Leonard T (2015) Change in neighborhood socioeconomic status and weight gain: Dallas heart study. Am J Prev Med 49:72–79. https://doi.org/10.1016/j.amepre.2015.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li X, Sundquist J, Forsberg PO, Sundquist K (2020) Association between neighborhood deprivation and heart failure among patients with diabetes mellitus: a 10-year follow-up study in Sweden. J Card Fail 26:193–199. https://doi.org/10.1016/j.cardfail.2019.04.017

    Article  PubMed  Google Scholar 

  108. Roe JJ, Aspinall PA, Ward Thompson C (2017) Coping with stress in deprived urban neighborhoods: what is the role of Green space according to life stage? Front Psychol 8:1760. https://doi.org/10.3389/fpsyg.2017.01760

    Article  PubMed  PubMed Central  Google Scholar 

  109. Primm K, Ferdinand AO, Callaghan T, Akinlotan MA, Towne SD Jr, Bolin J (2019) Congestive heart failure-related hospital deaths across the urban-rural continuum in the United States. Prev Med Rep 16:101007. https://doi.org/10.1016/j.pmedr.2019.101007

    Article  PubMed  PubMed Central  Google Scholar 

  110. Muñoz MA, Garcia R, Navas E, Duran J, Del Val-Garcia JL, Verdú-Rotellar JM (2020) Relationship between the place of living and mortality in patients with advanced heart failure. BMC Fam Pract 21:145. https://doi.org/10.1186/s12875-020-01213-x

    Article  PubMed  PubMed Central  Google Scholar 

  111. Narita K, Amiya E, Hatano M, Ishida J, Maki H, Minatsuki S, Tsuji M, Saito A, Bujo C, Ishii S, Kakuda N, Shimbo M, Hosoya Y, Endo M, Kagami Y, Imai H, Itoda Y, Ando M, Shimada S, Kinoshita O, Ono M, Komuro I (2020) Differences in the prognoses of patients referred to an advanced heart failure center from hospitals with different bed volumes. Sci Rep.:21071. Sci Rep December 3 10:21071. https://doi.org/10.1038/s41598-020-78162-z

  112. Gamble JM, Eurich DT, Ezekowitz JA, Kaul P, Quan H, McAlister FA (2011) Patterns of care and outcomes differ for urban versus rural patients with newly diagnosed heart failure, even in a universal healthcare system. Circ Heart Fail 4:317–323. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959262

    Article  PubMed  Google Scholar 

  113. Smith MW, Owens PL, Andrews RM, Steiner CA, Coffey RM, Skinner HG, Miyamura J, Popescu I (2016) Differences in severity at admission for heart failure between rural and urban patients: the value of adding laboratory results to administrative data. BMC Health Serv Res 16:133. https://doi.org/10.1186/s12913-016-1380-z

    Article  PubMed  PubMed Central  Google Scholar 

  114. Molloy GJ, Stamatakis E, Randall G, Hamer M (2009) Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. Soc Sci Med 69:223–228. https://doi.org/10.1016/j.socscimed.2009.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dhindsa DS, Khambhati J, Schultz WM, Tahhan AS, Quyyumi AA (2020) Marital status and outcomes in patients with cardiovascular disease. Trends Cardiovasc Med. 30(4):215–220. https://doi.org/10.1016/j.tcm.2019.05.012

  116. Dunbar SB, Clark PC, Quinn C, Gary RA, Kaslow NJ (2008) Family influences on heart failure self-care and outcomes. J Cardiovasc Nurs 23:258–265. https://doi.org/10.1097/01.JCN.0000305093.20012.b8. Erratum in: Dunbar SB, Clark PC, Quinn C, Gary RA, Kaslow NJJ Cardiovasc Nurs (2008) 23:258–265. https://doi.org/10.1097/01.JCN.0000305093.20012.b8

  117. Kang X, Li Z, Nolan MT (2011) Informal caregivers’ experiences of caring for patients with chronic heart failure: systematic review and metasynthesis of qualitative studies. J Cardiovasc Nurs 26:386–394. https://doi.org/10.1097/JCN.0b013e3182076a69

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rohrbaugh MJ, Shoham V, Coyne JC (2006) Effect of marital quality on eight-year survival of patients with heart failure. Am J Cardiol 15;98(8):1069–72. https://doi.org/10.1016/j.amjcard.2006.05.034

  119. Watkins T, Mansi M, Thompson J, Mansi I, Parish R (2013) Effect of marital status on clinical outcome of heart failure. J Investig Med 61(5):835–41. https://doi.org/10.2310/JIM.0b013e31828c823e

  120. Gallagher R, Luttik ML, Jaarsma T (2011) Social support and self-care in heart failure. J Cardiovasc Nurs 26(6):439Y445.

  121. Kitko L, McIlvennan CK, Bidwell JT, Dionne-Odom JN, Dunlay SM, Lewis LM, Meadows G, Sattler ELP, Schulz R, Strömberg A (2020) American Heart Association Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; Council on Clinical Cardiology Family caregiving for individuals with heart failure: a scientific statement From the American Heart Association. Circulation 141:e864–e878. https://doi.org/10.1161/CIR.0000000000000768

    Article  PubMed  Google Scholar 

  122. Bai L, Shin S, Oiamo TH, Burnett RT, Weichenthal S, Jerrett M, Kwong JC, Copes R, Kopp A, Chen H (2020) Exposure to road traffic noise and incidence of acute myocardial infarction and congestive heart failure: a population-based cohort study in Toronto. Canada Environ Health Perspect 128:87001. https://doi.org/10.1289/EHP5809

    CAS  Article  PubMed  Google Scholar 

  123. Münzel T, Gori T, Babisch W, Basner M (2014) Cardiovascular effects of environmental noise exposure. Eur Heart J 35:829–836. https://doi.org/10.1093/eurheartj/ehu030

    Article  PubMed  PubMed Central  Google Scholar 

  124. Van Kempen E, Babisch W (2012) The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J Hypertens 30:1075–1086. https://doi.org/10.1097/HJH.0b013e328352ac54

    CAS  Article  PubMed  Google Scholar 

  125. Charakida M, Deanfield JE (2013) Nighttime aircraft noise exposure: flying towards arterial disease. Eur Heart J 34:3472–3474. https://doi.org/10.1093/eurheartj/eht339

    Article  PubMed  Google Scholar 

  126. Münzel T, Sørensen M, Gori T, Schmidt FP, Rao X, Brook FR, Chen LC, Brook RD, Rajagopalan S (2017) Environmental stressors and cardio-metabolic disease: part II—mechanistic insights. Eur Heart J 38:557–564. https://doi.org/10.1093/eurheartj/ehw294

    CAS  Article  PubMed  Google Scholar 

  127. Mu¨nzel T, Daiber A, Steven S, Tran LP, Ullmann E, Kossmann S, Schmidt FP, Oelze M, Xia N, Li H, Pinto A, Wild P, Pies K, Schmidt ER, Rapp S, Kröller-Schön S (2017) Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J 38:2838–2849. https://doi.org/10.1093/eurheartj/ehx081

    CAS  Article  Google Scholar 

  128. Dzhambov AM, Dimitrova DD (2016) Heart disease attributed to occupational noise, vibration and other co-exposure: self-reported population-based survey among Bulgarian workers. Med Pr 67(4):435–445

    Article  Google Scholar 

  129. Björ B, Burström L, Nilsson T, Reuterwall C (2006) Vibration exposure and myocardial infarction incidence: the VHEEP case-control study. Occup Med (Lond). 56(5):338–44. https://doi.org/10.1093/occmed/kql024

  130. Wellenius GA, Bateson TF, Mittleman MA, Schwartz J (2005) Particulate air pollution and the rate of hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh, Pennsylvania. Am J Epidemiol 161:1030–1036. https://doi.org/10.1093/aje/kwi135

    Article  PubMed  Google Scholar 

  131. Wellenius GA, Yeh GY, Coull BA, Suh HH, Phillips RS, Mittleman MA (2007) Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: a repeated-measures study. Environ Health 6:26. https://doi.org/10.1186/1476-069x-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382:1039–1048. https://doi.org/10.1016/s0140-6736(13)60898-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. Medina-Ramón M, Goldberg R, Melly S, Mittleman MA, Schwartz J (2008) Residential exposure to traffic-related air pollution and survival after heart failure. Environ Health Perspect 116:481–485. https://doi.org/10.1289/ehp.10918

    Article  PubMed  PubMed Central  Google Scholar 

  134. Aung N, Sanghvi MM, Zemrak F, Lee AM, Cooper JA, Paiva JM, Thomson RJ, Fung K, Khanji MY, Lukaschuk E, Carapella V, Kim YJ, Munroe PB, Piechnik SK, Neubauer S, Petersen SE (2018) Association between ambient air pollution and cardiac morpho-functional phenotypes: insights from the UK Biobank Population Imaging Study. Circulation. 138(20):2175–2186. https://doi.org/10.1161/CIRCULATIONAHA.118.034856

  135. Florido R, Kwak L, Lazo M, Michos ED, Nambi V, Blumenthal RS, Gerstenblith G, Palta P, Russell SD, Ballantyne CM, Selvin E, Folsom AR, Coresh J, Ndumele CE (2020) Physical activity and incident heart failure in high-risk subgroups: the ARIC study. J Am Heart Assoc 9:e014885. https://doi.org/10.1161/JAHA.119.014885

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yang CY (2008) Air pollution and hospital admissions for congestive heart failure in a subtropical city: Taipei. Taiwan J Toxicol Environ Health A 71:1085–1090. https://doi.org/10.1080/15287390802114428

    CAS  Article  PubMed  Google Scholar 

  137. Tepper D (2002) Frontiers in congestive heart failure: heart failure in a cold climate. Seasonal variation in heart failure-related morbidity and mortality. Congest Heart Fail 8:90. https://doi.org/10.1111/j.1527-5299.2002.00757.x

  138. Vanasse A, Talbot D, Chebana F, Bélanger D, Blais C, Gamache P, Giroux JX, Dault R, Gosselin P (2017) Effects of climate and fine particulate matter on hospitalizations and deaths for heart failure in elderly: A population-based cohort study. Environ Int 106:257–266. https://doi.org/10.1016/j.envint.2017.06.001

  139. Wilker EH, Yeh G, Wellenius GA, Davis RB, Phillips RS, Mittleman MA (2012) Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Environ Health Perspect 120:1083–1087. https://doi.org/10.1289/ehp.1104380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, Boykoff M, Byass P, Cai W, Campbell-Lendrum D, Capstick S, Chambers J, Coleman S, Dalin C, Daly M, Dasandi N, Dasgupta S, Davies M, Di Napoli C, Dominguez-Salas P, Drummond P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Golder S, Grace D, Graham H, Haggar P, Hamilton I, Hartinger S, Hess J, Hsu SC, Hughes N, Jankin Mikhaylov S, Jimenez MP, Kelman I, Kennard H, Kiesewetter G, Kinney PL, Kjellstrom T, Kniveton D, Lampard P, Lemke B, Liu Y, Liu Z, Lott M, Lowe R, Martinez-Urtaza J, Maslin M, McAllister L, McGushin A, McMichael C, Milner J, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Sewe MO, Oreszczyn T, Otto M, Owfi F, Pearman O, Pencheon D, Quinn R, Rabbaniha M, Robinson E, Rocklöv J, Romanello M, Semenza JC, Sherman J, Shi L, Springmann M, Tabatabaei M, Taylor J, Triñanes J, Shumake-Guillemot J, Vu B, Wilkinson P, Winning M, Gong P, Montgomery H, Costello A (2021) The 2020 report of the Lancet Countdown on health and climate change: responding to converging crises. Lancet 397:129–170. https://doi.org/10.1016/S0140-6736(20)32290-X

    Article  PubMed  Google Scholar 

  141. Rowell LB, Brengelmann GL, Murray JA (1969) Cardiovascular responses to sustained high skin temperature in resting man. J Appl Physiol 27:673–680. https://doi.org/10.1152/jappl.1969.27.5.673

    CAS  Article  PubMed  Google Scholar 

  142. Nelson MD, Haykowsky MJ, Petersen SR, DeLorey DS, Cheng-Baron J, Thompson RB (2010) Increased left ventricular twist, untwisting rates, and suction maintain global diastolic function during passive heat stress in humans. Am J Physiol Heart Circ Physiol 298:H930–H937. https://doi.org/10.1152/ajpheart.00987.2009

    CAS  Article  PubMed  Google Scholar 

  143. Cui J, Arbab-Zadeh A, Prasad A, Durand S, Levine BD, Crandall CG (2005) Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 112:2286–2292. https://doi.org/10.1161/CIRCULATIONAHA.105.540773

    Article  PubMed  Google Scholar 

  144. Peters A, Schneider A (2021) Cardiovascular risks of climate change. Nat Rev Cardiol 18:1–2. https://doi.org/10.1038/s41569-020-00473-5

    Article  PubMed  Google Scholar 

  145. Gallerani M, Boari B, Manfredini F, Manfredini R (2011) Seasonal variation in heart failure hospitalization. Clin Cardiol 34(6):389–94. https://doi.org/10.1002/clc.20895

  146. Zittermann A, Schleithoff SS, Koerfer R (2006) Vitamin D insufficiency in congestive heart failure: why and what to do about it? Heart Fail Rev 25–33. https://doi.org/10.1007/s10741-006-9190-8

  147. Bansal N, Zelnick L, Robinson-Cohen C, Hoofnagle AN, Ix JH, Lima JA, Shoben AB, Peralta CA, Siscovick DS, Kestenbaum B, de Boer IH (2014) Serum parathyroid hormone and 25-hydroxyvitamin D concentrations and risk of incident heart failure: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 3(6):e001278. https://doi.org/10.1161/JAHA.114.001278

  148. van Ballegooijen AJ, Snijder MB, Visser M, van den Hurk K, Kamp O, Dekker JM, Nijpels G, Stehouwer CD, Henry RM, Paulus WJ, Brouwer IA (2012) Vitamin D in relation to myocardial structure and function after eight years of follow-up: the Hoorn study. Ann Nutr Metab 60(1):69–77. https://doi.org/10.1159/000336173

  149. Weller RB (2016) Sunlight has cardiovascular benefits independently of vitamin D. Blood Purif 41(1–3):130–4. https://doi.org/10.1159/000441266

  150. Sara JD, Prasad M, Eleid MF, Zhang M, Widmer RJ, Lerman A (2018) Association Between work-related stress and coronary heart disease: a review of prospective studies through the job strain, effort-reward balance, and organizational justice models. J Am Heart Assoc 7:e008073. https://doi.org/10.1161/JAHA.117.008073

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li J, Zhang M, Loerbroks A, Angerer P, Siegrist J (2015) Work stress and the risk of recurrent coronary heart disease events: a systematic review and meta-analysis. Int J Occup Med Environ Health 28:8–19. https://doi.org/10.2478/s13382-014-0303-7

    Article  PubMed  Google Scholar 

  152. Lamontagne AD, Keegel T, Louie AM, Ostry A, Landsbergis PA (2007) A systematic review of the job-stress intervention evaluation literature, 1990–2005. Int J Occup Environ Health 13:268–280. https://doi.org/10.1179/oeh.2007.13.3.268

    Article  PubMed  Google Scholar 

  153. Montano D, Hoven H, Siegrist J (2014) Effects of organisational-level interventions at work on employees’ health: a systematic review. BMC Public Health 14:135. https://doi.org/10.1186/1471-2458-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  154. Crestani CC (2016) Emotional stress and cardiovascular complications in animal models: a review of the influence of stress type. Front Physiol 7:251. https://doi.org/10.3389/fphys.2016.00251

    Article  PubMed  PubMed Central  Google Scholar 

  155. Steptoe A, Kunz-Ebrecht S, Owen N, Feldman PJ, Willemsen G, Kirschbaum C, Marmot M (2003) Socioeconomic status and stress-related biological responses over the working day. Psychosom Med 65:461–470. https://doi.org/10.1097/01.psy.0000035717.78650.a1

    Article  PubMed  Google Scholar 

  156. Rozanski A, Blumenthal JA, Kaplan J (1999) Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99:2192–2217. https://doi.org/10.1161/01.cir.99.16.2192

    CAS  Article  PubMed  Google Scholar 

  157. Fransson EI, Nordin M, Magnusson Hanson LL, Westerlund H (2018) Job strain and atrial fibrillation—results from the Swedish Longitudinal Occupational Survey of Health and meta-analysis of three studies. Eur J Prev Cardiol 25:1142–1149. https://doi.org/10.1177/2047487318777387

    Article  PubMed  Google Scholar 

  158. Harris KM, Gottdiener JS, Gottlieb SS, Burg MM, Li S, Krantz DS (2020) Impact of mental stress and anger on indices of diastolic function in patients with heart failure. J Card Fail 26:1006–1010. https://doi.org/10.1016/j.cardfail.2020.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jain D, Shaker SM, Burg M, Wackers FJ, Soufer R, Zaret BL (1998) Effects of mental stress on left ventricular and peripheral vascular performance in patients with coronary artery disease. J Am Coll Cardiol 31:1314–1322. https://doi.org/10.1016/s0735-1097(98)00092-8

    CAS  Article  PubMed  Google Scholar 

  160. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ, Calcagno C, Mani V, Tang CY, Mulder WJ, Murrough JW, Hoffmann U, Nahrendorf M, Shin LM, Fayad ZA, Pitman RK (2017) Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389:834–845. https://doi.org/10.1016/S0140-6736(16)31714-7

    Article  PubMed  PubMed Central  Google Scholar 

  161. MacMahon KM, Lip GY (2002) Psychological factors in heart failure: a review of the literature. Arch Intern Med 162:509–516. https://doi.org/10.1001/archinte.162.5.509

    Article  PubMed  Google Scholar 

  162. Li CC, Chang SR, Shun SC (2019) The self-care coping process in patients with chronic heart failure: a qualitative study. J Clin Nurs 28:509–519. https://doi.org/10.1111/jocn.14640

    Article  PubMed  Google Scholar 

  163. Bernardi L, Sleight P, Bandinelli G, Cencetti S, Fattorini L, Wdowczyc-Szulc J, Lagi A (2001) Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study. BMJ 323:1446–1449. https://doi.org/10.1136/bmj.323.7327.1446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Peng CK, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL (1999) Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol 70:101–107. https://doi.org/10.1016/s0167-5273(99)00066-2

    CAS  Article  PubMed  Google Scholar 

  165. Taylor CB, Youngblood ME, Catellier D, Veith RC, Carney RM, Burg MM, Kaufmann PG, Shuster J, Mellman T, Blumenthal JA, Krishnan R, Jaffe AS, Investigators ENRICHD (2005) Effects of antidepressant medication on morbidity and mortality in depressed patients after myocardial infarction. Arch Gen Psychiatry 62:792–798. https://doi.org/10.1001/archpsyc.62.7.792

    CAS  Article  PubMed  Google Scholar 

  166. Joseph NT, Muldoon MF, Manuck SB, Matthews KA, MacDonald LA, Grosch J, Kamarck TW (2016) The role of occupational status in the association between job strain and ambulatory blood pressure during working and nonworking days. Psychosom Med 78:940–949. https://doi.org/10.1097/PSY.0000000000000349

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wang Y, Tuomilehto J, Jousilahti P, Antikainen R, Mähönen M, Katzmarzyk PT, Hu G (2010) Occupational, commuting, and leisure-time physical activity in relation to heart failure among finnish men and women. J Am Coll Cardiol 28;56(14):1140–8. https://doi.org/10.1016/j.jacc.2010.05.035

  168. Kessing D, Denollet J, Widdershoven J, Kupper N (2016) Self-care and all-cause mortality in patients with chronic heart failure. JACC Heart Fail 4:176–183. https://doi.org/10.1016/j.jchf.2015.12.006

    Article  PubMed  Google Scholar 

  169. Dunbar SB, Reilly CM, Gary R, Higgins MK, Culler S, Butts B, Butler J (2015) Randomized clinical trial of an integrated self-care intervention for persons with heart failure and diabetes: quality of life and physical functioning outcomes. J Card Fail 21:719–729. https://doi.org/10.1016/j.cardfail.2015.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dunbar SB, Clark PC, Stamp KD, Reilly CM, Gary RA, Higgins M, Kaslow N (2016) Family partnership and education interventions to reduce dietary sodium by patients with heart failure differ by family functioning. Heart Lung 45:311–318. https://doi.org/10.1016/j.hrtlng.2016.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang Y, Tuomilehto J, Jousilahti P, Antikainen R, Mähönen M, Katzmarzyk PT, Hu G (2011) Lifestyle factors in relation to heart failure among Finnish men and women. Circ Heart Fail 4:607–612. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962589

    Article  PubMed  Google Scholar 

  172. Djoussé L, Gaziano JM (2007) Alcohol consumption and risk of heart failure in the Physicians’ Health Study I. Circulation 115:34–39. https://doi.org/10.1161/CIRCULATIONAHA.106.661868

    Article  PubMed  Google Scholar 

  173. Aguilar D, Skali H, Moyé LA, Lewis EF, Gaziano JM, Rutherford JD, Hartley LH, Randall OS, Geltman EM, Lamas GA, Rouleau JL, Pfeffer MA, Solomon SD (2004) Alcohol consumption and prognosis in patients with left ventricular systolic dysfunction after a MI. J Am Coll Cardiol 43:2015–2021. https://doi.org/10.1016/j.jacc.2004.01.042

    CAS  Article  PubMed  Google Scholar 

  174. Cooper HA, Exner DV, Domanski MJ (2000) Light-to-moderate alcohol consumption and prognosis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol 35:1753–1759. https://doi.org/10.1016/s0735-1097(00)00625-2

    CAS  Article  PubMed  Google Scholar 

  175. Dickson VV, Knafl GJ, Wald J, Riegel B (2015) Racial differences in clinical treatment and self-care behaviors of adults With chronic heart failure. J Am Heart Assoc 4:e001561. https://doi.org/10.1161/JAHA.114.001561

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Koichi Narita: collecting literature data, writing, a manuscript and table design. Eisuke Amiya: collecting literature data, writing, a manuscript, text supervising, and final approval.

Corresponding author

Correspondence to Eisuke Amiya.

Ethics declarations

Conflict of interest

EA belongs to the Department of Therapeutic Strategy for Heart Failure, Graduate School of Medicine, University of Tokyo, which is endowed by Actelion Pharmaceuticals Japan Ltd., Otsuka Pharmaceutical, NIPRO CORPORATION, Terumo Corp., Senko Medical Instrument Mfg., Century Medical Inc., Kinetic Concepts Inc., and St. Jude Medical. The other author has no conflicts of interest to disclose. There are no patents, products in development, or marketed products to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 89.5 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narita, K., Amiya, E. Social and environmental risks as contributors to the clinical course of heart failure. Heart Fail Rev 27, 1001–1016 (2022). https://doi.org/10.1007/s10741-021-10116-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10116-7

Keywords

  • Heart failure
  • Occupation
  • Socioeconomic factor
  • Environmental factor
  • Air pollution
  • Psychological stress