Skip to main content

Paradigm shift in heart failure treatment: are cardiologists ready to use gliflozins?

Abstract

Despite recent advances in chronic heart failure (HF) therapy, the prognosis of HF patients remains poor, with high rates of HF rehospitalizations and death in the early months after discharge. This emphasizes the need for incorporating novel HF drugs, beyond the current approach (that of modulating the neurohumoral response). Recently, new antidiabetic oral medications (sodium-glucose cotransporter 2 inhibitors (SGLT2i)) have been shown to improve prognosis in diabetic patients with previous cardiovascular (CV) events or high CV risk profile. Data from DAPA-HF study showed that dapaglifozin is associated with a significant reduction in mortality and HF hospitalization as compared with placebo regardless of diabetes status. Recently, results from EMPEROR-Reduced HF trial were consistent with DAPA-HF trial findings, showing significant beneficial effect associated with empagliflozin use in a high-risk HF population with markedly reduced ejection fraction. Results from the HF with preserved ejection fraction trials using these same agents are eagerly awaited. This review summarizes the evidence for the use of gliflozins in HF treatment.

This is a preview of subscription content, access via your institution.

Abbreviations

Ca2 + :

Calcium

CI:

Confidence interval

FDA:

US Food and Drug Administration

GFR:

Glomerular filtration rate

GLP:

Glucagon-like peptide

HF:

Heart failure

HR:

Hazard ratio

Na+ :

Sodium

NHE:

Sodium/hydrogen exchanger

RAAS:

Renin–angiotensin–aldosterone system

SGLT:

Sodium-glucose co-transporter

SGLT2i:

Sodium-glucose co-transporter 2 inhibitor

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

References

  1. World Health Organization. Diabetes. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed April 8, 2019

  2. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study JAMA 241(19):2035–2038

    CAS  PubMed  Google Scholar 

  3. Shah AD, Langenberg C, Rapsomaniki E et al (2015)Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 3(2):105–113

  4. Bertoni AG, Tsai A, Kasper EK, Brancati FL (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 26(10):2791–2795

    Article  Google Scholar 

  5. Nichols GA, Hillier TA, Erbey JR, Brown JB (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24(9):1614–1619

    CAS  Article  Google Scholar 

  6. Aronow WS, Ahn C (1999) Incidence of heart failure in 2,737 older persons with and without diabetes mellitus. Chest 115(3):867–868

    CAS  Article  Google Scholar 

  7. Thrainsdottir IS, Aspelund T, Hardarson T et al (2005) Glucose abnormalities and heart failure predict poor prognosis in the population-based Reykjavik Study. Eur J Cardiovasc Prev Rehabil 12:465–471

    Article  Google Scholar 

  8. Thrainsdottir IS, Aspelund T, Thorgeirsson G et al (2005) The association between glucose abnormalities and heart failure in the population based Reykjavik study. Diabetes Care 28:612–616

    Article  Google Scholar 

  9. Selvin E, Lazo M, Chen Y et al (2014) Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation 130(16):1374–1382

    CAS  Article  Google Scholar 

  10. van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P (2011) Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 92(1):10–18

    Article  Google Scholar 

  11. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    CAS  Article  Google Scholar 

  12. Dennis VW, Brazy PC (1978) Phosphate and glucose transport in the proximal convoluted tubule: mutual dependency on sodium. Adv Exp Med Biol 103:79–80

    CAS  Article  Google Scholar 

  13. Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol 300:C14–C21

    CAS  Article  Google Scholar 

  14. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434

    CAS  Article  Google Scholar 

  15. Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60(2):215–225

    CAS  Article  Google Scholar 

  16. Merovci A, Solis-Herrera C, Daniele G et al (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 124:509–514

    CAS  Article  Google Scholar 

  17. Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508

    CAS  Article  Google Scholar 

  18. Bolinder J, Ljunggren O, Kullberg J et al (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031

    CAS  Article  Google Scholar 

  19. Takeuchi T, Dohi K, Omori T et al (2015) Diuretic effects of sodium-glucose cotransporter 2 inhibitor in patients with type 2 diabetes mellitus and heart failure. Int J Cardiol 201:1–3

  20. Mazidi M, Rezaie P, Gao HK, Kengne AP (2017) Effect of sodium–glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22,528 patients. J Am Heart Assoc 6:e004007

  21. Chilton RJ, Gullestad L, Fitchett D, Inzucchi SE, Mattheus M, Woerle HJ et al (2016) Empagliflozin reduces markers of arterial stiffness, vascular resistance and cardiac workload in EMPA-REG OUTCOME. Circulation 134(25):A13520

  22. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335-346

  23. Ribola FA, Cancado FB, Schoueri JH et al (2017) Effects of SGLT2 inhibitors on weight loss in patients with type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci 21:199–211

    CAS  PubMed  Google Scholar 

  24. Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, Salim HM, Maimaituxun G, Nishio S, Takagawa Y, Hama S, Matsuura T, Yamaguchi K, Tobiume T, Soeki T, Wakatsuki T, Aihara KI, Akaike M, Shimabukuro M, Sata M (2017) Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 9:78. https://doi.org/10.1186/s13098-017-0275-4. PMID: 29034006; PMCID: PMC5628447

  25. Zhao Y, Xu L, Tian D et al (2017) Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab 20:458–462

    Article  Google Scholar 

  26. McMurray J (2016) EMPA-REG—the “diuretic hypothesis.” J Diabetes Complications 30(1):3–4

  27. Rahman A, Hitomi H, Nishiyama A (2017) Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure. Hypertens Res 40:535–540

  28. Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME trial: a ‘‘thrifty substrate’’ hypothesis. Diabetes Care 39:1108–14

  29. Kimura T, Sanada J, Shimoda M et al (2017) Switching from low-dose thiazide diuretics to sodium-glucose cotransporter 2 inhibitor improves various metabolic parameters without affecting blood pressure in patients with type 2 diabetes and hypertension. J Diabetes Investig 9:875–881

  30. Ojima A, Matsui T, Nishino Y et al (2015) Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 47:686–692

  31. Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP (2017) Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens 35(10):2059-2068

  32. Bertero E, Prates Roma L, Ameri P et al (2018) Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res 114:12–18

    CAS  Article  Google Scholar 

  33. Bell RM, Yellon DM (2018) SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol 6(6):435-437

  34. Takeuchi T, Dohi K, Omori T, Moriwaki K, Sato Y, Nakamori S, Fujimoto N, Fujii E, Yamada N, Ito M (2015) Diuretic effects of sodium-glucose cotransporter 2 inhibitor in patients with type 2 diabetes mellitus and heart failure. Int J Cardiol 201:1-3

  35. Zinman B, Inzucchi SE, Lachin JM, Wanner C, Ferrari R, Fitchett D, Bluhmki E, Hantel S, Kempthorne-Rawson J, Newman J, Johansen OE, Woerle HJ, Broedl UC (2014) Rationale, design, and baseline characteristics of a randomized, placebocontrolled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME). Cardiovasc Diabetol 13:102

  36. Neal B, Perkovic V, Matthews DR, Mahaffey KW, Fulcher G, Meininger G, Erondu N, Desai M, Shaw W, Vercruysse F, Yee J, Deng H, de Zeeuw D (2017) CANVAS-R Trial Collaborative Group. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes Metab 19:387-393

  37. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644-657

  38. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation 134(10):752-72

  39. Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, Dai ZK, Chen WY, Chen YF, Lee AS (2019) The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol 18(1):45

  40. Loutradis C, Papadopoulou E, Theodorakopoulou M, Karagiannis A, Sarafidis P (2019) The effect of SGLT-2 inhibitors on blood pressure: a pleiotropic action favoring cardio- and nephroprotection. Future Med Chem 11(11):1285-1303

  41. Neal B, Perkovic V, Matthews DR, Mahaffey KW, Fulcher G, Meininger G, Erondu N, Desai M, Shaw W, Vercruysse F, Yee J, Deng H, de Zeeuw D (2017) CANVAS-R Trial Collaborative Group. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes Metab 19:387-393

  42. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644-657

  43. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Bansilal S, Bhatt DL, Leiter LA, McGuire DK, Wilding JP, Gause-Nilsson IA, Langkilde AM, Johansson PA, Sabatine MS (2018) The design and rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. Am Heart J 200:83–89. https://doi.org/10.1016/j.ahj.2018.01.012 (Epub 2018 Feb 7 PMID: 29898853)

    CAS  Article  PubMed  Google Scholar 

  44. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31-39

  45. Cosentino F, Cannon CP, Cherney DZI, Masiukiewicz U, Pratley R, Dagogo Jack S, Frederich R, Charbonnel B, Mancuso J, Shih WJ, Terra SG, Cater NB, Gantz I, McGuire DK (2020) VERTIS CV Investigators. efficacy of ertugliflozin on heart failure-related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: results of the VERTIS CV trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.050255. Epub ahead of print. PMID: 33026243

  46. Packer M, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, Kimura K, Zeller C, George J, Brueckmann M, Anker SD, Zannad F (2019) EMPEROR-reduced trial committees and investigators. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial. Eur J Heart Fail 21(10):1270–1278

  47. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F (2020) EMPEROR-reduced trial investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. https://doi.org/10.1056/NEJMoa2022190. Epub ahead of print. (PMID:32865377)

  48. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, van Eck JWM, Heerspink HJL, Voors AA (2020) Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail 22(4):713–722

    CAS  Article  Google Scholar 

  49. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S (2019) Held C1, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM; DAPA-HF trial committees and investigators dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    CAS  Article  Google Scholar 

  50. Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett J, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Vinh PN, Schou M, Tereshchenko S, Køber L, Kosiborod MN, Langkilde AM, Martinez FA, Ponikowski P, Sabatine MS, Sjöstrand M, Solomon SD, Johanson P, Greasley PJ, Boulton D, Bengtsson O, Jhund PS, McMurray JJV. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. 2020 Mar 27. https://doi.org/10.1001/jama.2020.1906. [Epub ahead of print]

  51. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, Sjöstrand M, Solomon SD (2019) DAPA-HF committees and investigators. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail 21(11):1402–1411

  52. Solomon SD, Jhund PS, Claggett BL, Dewan P, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Inzucchi SE, Desai AS, Bengtsson O, Lindholm D, Sjostrand M, Langkilde AM, McMurray JJV (2020) Effect of dapagliflozin in patients with HFrEF treated with sacubitril/valsartan: the DAPA-HF Trial. JACC Heart Fail S2213–1779(20):30254–30257. https://doi.org/10.1016/j.jchf.2020.04.008

    Article  Google Scholar 

  53. Kosiborod MN, Jhund P, Docherty KF, Diez M, Petrie MC, Verma S, Nicolau JC, Merkely B, Kitakaze M, DeMets DL, Inzucchi SE, Køeber L, Martinez FA, Ponikowski P, Sabatine MS, Solomon SD, Bengtsson O, Lindholm D, Niklasson A, Sjöstrand M, Langkilde AM, McMurray JJV (2019) Effects of dapagliflozin on symptoms, function and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.119.044138. [Epub ahead of print]

  54. Docherty KF, Jhund PS, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, DeMets DL, Sabatine MS, Bengtsson O, Sjöstrand M, Langkilde AM, Desai AS, Diez M, Howlett JG, Katova T, Ljungman CEA, O'Meara E, Petrie MC, Schou M, Verma S, Vinh PN, Solomon SD, McMurray JJV (2020) Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J pii: ehaa183. https://doi.org/10.1093/eurheartj/ehaa183. [Epub ahead of print]

  55. Serenelli M, Böhm M, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Solomon SD, DeMets DL, Bengtsson O, Sjöstrand M, Langkilde AM, Anand IS, Chiang CE, Chopra VK, de Boer RA, Diez M, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Verma S, Docherty KF, Jhund PS, McMurray JJV (2020) Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF). Eur Heart J ehaa496

  56. Jackson AM, Dewan P, Anand IS, Bělohlávek J, Bengtsson O, de Boer RA, Böhm M, Boulton DW, Chopra VK, Demets DL, Docherty KF, Dukát A, Greasley PJ, Howlett JG, Inzucchi SE, Katova T, Køber L, Kosiborod MN, Langkilde AM, Lindholm D, Ljungman CEA, Martinez FA, O’Meara E, Sabatine MS, Sjöstrand M, Solomon SD, Tereshchenko S, Verma S, Jhund PS, McMurray JJV (2020) Dapagliflozin and diuretic usein patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.047077

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nassif ME, Windsor SL, Tang F, Khariton Y, Husain M, Inzucchi SE, Mc-Guire DK, Pitt B, Scirica BM, Austin B, Drazner MH, Fong MW, Givertz MM, Gordon RA, Jermyn R, Katz SD, Lamba S, Lanfear DE, LaRue SJ, Lindenfeld J, Malone M, Margulies K, Mentz RJ, Mutharasan RK, Pursley M, Umpierrez G, Kosiborod M (2019) Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction: the DEFINE-HF trial. Circulation 140(18):1463–1476

    CAS  Article  Google Scholar 

  58. Zannad F et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396(10254):819–829

    Article  Google Scholar 

  59. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW; CREDENCE trial investigators. canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295–2306

  60. Ryan PB, Buse JB, Schuemie MJ, DeFalco F, Yuan Z, Stang PE, Berlin JA, Rosenthal N (2018) Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: a real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab 20(11):2585–2597

    CAS  Article  Google Scholar 

  61. Cannon CP et al (2018) Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am Heart J 206:11–23. https://doi.org/10.1016/j.ahj.2018.08.016 (Epub 2018 Sep 5)

    CAS  Article  PubMed  Google Scholar 

  62. Heerspink HJL, Stefansson BV, Chertow GM, Correa-Rotter R, Greene T, Hou FF, Lindberg M, McMurray J, Rossing P, Toto R, Langkilde AM, Wheeler DC, Investigators D-C (2020) Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant 35(2):274–282

    Article  Google Scholar 

  63. Jenifer M Brown, Brendan M Everett (2019) Cardioprotective diabetes drugs: what cardiologists need to know. Cardiovasc Endocrinol Metab 8(4):96–105

  64. Sun H Kim, Tara I Chang, Kenneth W Mahaffey (2020) A call for a new paradigm for diabetes care in the era of sodium-glucose cotransporter 2 inhibitors (SGLT2i). Cardiol Ther.

  65. Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41:2669–701

  66. Arnold SV, Inzucchi SE, Tang F et al (2017) Real-world use and modeled impact of glucose-lowering therapies evaluated in recent cardio-vascular outcomes trials: an NCDR research to practice project. Eur J Prev Cardiol 24:1637–1645

    Article  Google Scholar 

  67. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin G, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC (2020) ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 7;41(2):255–323.

  68. Vaduganathan M, Sathiyakumar V, Singh A et al (2018) Prescriber patterns of SGLT2i after expansions of U.S. Food and Drug Administration labeling. J Am Coll Cardiol 72:3370–2

  69. Sattar N, Petrie MC, Zinman B et al (2017) Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 69:2646–2656

    CAS  Article  Google Scholar 

  70. Butler J, Zannad F, Filippatos G, Anker SD, Packer M (2020) Totality of evidence in trials of sodium-glucose co-transporter-2 inhibitors in the patients with heart failure with reduced ejection fraction: implications for clinical practice. Eur Heart J ehaa731. https://doi.org/10.1093/eurheartj/ehaa731. Epub ahead of print. PMID: 32935133.

  71. Santos-Gallego CG, Garcia-Ropero A, Mancini D, Pinney SP, Contreras JP, Fergus I, Abascal V, Moreno P, Atallah-Lajam F, Tamler R, Lala A, Sanz J, Fuster V, Badimon JJ (2019) Rationale and design of the EMPA-TROPISM Trial (ATRU-4): Are the “cardiac benefits” of empagliflozin independent of its hypoglycemic activity? Cardiovasc Drugs Ther 33(1):87–95

    Article  Google Scholar 

  72. Jensen J, Omar M, Kistorp C, Poulsen MK, Tuxen C, Gustafsson I, Køber L, Gustafsson F, Fosbøl E, Bruun NE, Videbæk L, Frederiksen PH, Møller JE, Schou M (2019) Empagliflozin in heart failure patients with reduced ejection fraction: a randomized clinical trial (Empire HF). Trials 20(1):374

    Article  Google Scholar 

  73. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, van Eck JWM, Heerspink HJL (2020) Voors AA Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail 22(4):713–722

    CAS  Article  Google Scholar 

  74. Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, Alber H, Berger R, Kaulfersch C, Leitner K, Lichtenauer M, Mader A, Moertl D, Oulhaj A, Reiter C, Rieder T, Saely CH, Siller-Matula J, Weidinger F, Zechner PM, von Lewinski D, Sourij H (2020) EMMY study group. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. Am Heart J 221:39–47

  75. Williams DM, Evans M (2020) Dapagliflozin for Heart Failure with Preserved Ejection Fraction: Will the DELIVER Study Deliver? Diabetes Ther. https://doi.org/10.1007/s13300-020-00911-0

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yoshihara F, Imazu M, Hamasaki T, Anzai T, Yasuda S, Ito S, Yamamoto H, Hashimura K, Yasumura Y, Mori K, Watanabe M, Asakura M, Kitakaze M (2018) DAPPER investigators and study coordinators. An Exploratory Study of Dapagliflozin for the Attenuation of Albuminuria in Patients with Heart Failure and Type 2 Diabetes Mellitus (DAPPER). Cardiovasc Drugs Ther 32(2):183–190

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Correale.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

On behalf of Master Program Group on Drug Development for Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Correale, M., Petroni, R., Coiro, S. et al. Paradigm shift in heart failure treatment: are cardiologists ready to use gliflozins?. Heart Fail Rev 27, 1147–1163 (2022). https://doi.org/10.1007/s10741-021-10107-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10107-8

Keywords

  • Chronic heart failure
  • Diabetes mellitus
  • Gliflozin
  • Empagliflozin
  • Dapagliflozin
  • Canagliflozin
  • Sodium-glucose cotransporter 2 inhibitors (SGLT2i)