Skip to main content

Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: a meta-analysis


Many studies have reported various minimally invasive techniques for continuous-flow left ventricular assist device implantation. There is no consensus on whether minimally invasive techniques can bring more benefits for patients compared with the conventional technique, due to the limited number of patients and diverse results in current studies. Our meta-analysis mainly discussed the comparison of minimally invasive and conventional techniques. We searched controlled trials from PubMed, Cochrane Library, and Embase databases until Dec 11, 2020. Perioperative and postoperative outcomes were analyzed among 10 included studies. The protocol has been registered with PROSPERO (CRD42020221532). There were no statistical differences in the 30-day mortality (OR 0.57; 95% CI 0.29 to 1.14), 6-month mortality (OR 0.66; 95% CI 0.41 to 1.05), neurological dysfunction (OR 1.10; 95% CI 0.69 to 1.76), major infection (OR 0.68; 95% CI 0.36 to 1.28), and pump thrombus (OR 1.49; 95% CI 0.63 to 3.52) among the cohorts. Minimally invasive techniques were associated with lower incidences of major bleeding (OR 0.39; 95% CI 0.22 to 0.68), severe right heart failure (OR 0.43; 95% CI 0.23 to 0.81), and less blood-product utilization (SMD −0.44). Sensitivity analysis suggested that minimally invasive techniques were associated with a lower incidence of respiratory failure (OR 0.50; 95% CI 0.26 to 0.96) and shorter mechanical ventilation time (SMD −0.53). Subgroup analysis demonstrated that patients, implanted with a centrifugal pump by minimally invasive techniques, were associated with a shorter length of intensive care unit (ICU) stay (SMD −0.27) and hospital stay (SMD −0.42), and less blood-product utilization (SMD −0.26). In conclusion, minimally invasive techniques can reduce the risks of major bleeding, severe right heart failure, and blood-product utilization, as well as have positive impacts on reducing mechanical ventilation time and the risk of respiratory failure. Minimally invasive centrifugal pump implantation can reduce the length of ICU and hospital stay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Body mass index


Continuous-flow left ventricular assist device


Cardiopulmonary bypass


Confidence interval


Central venous pressure


Intensive care unit


Interagency Registry of Mechanically Assisted Circulatory Support


Left ventricular ejection fraction


Left ventricular assist device


Meta-analysis of Observational Studies in Epidemiology


Not available


Newcastle–Ottawa Scale


Odds ratio


Standard deviation


Standardized mean difference


  1. Kormos RL, Cowger J, Pagani FD, Teuteberg JJ, Goldstein DJ, Jacobs JP, Higgins RS, Stevenson LW, Stehlik J, Atluri P, Grady KL, Kirklin JK (2019) The Society of Thoracic Surgeons Intermacs database annual report: evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant 38(2):114–126.

    Article  PubMed  Google Scholar 

  2. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Study G (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443.

    Article  Google Scholar 

  3. Wiedemann D, Haberl T, Riebandt J, Simon P, Laufer G, Zimpfer D (2014) Ventricular assist devices—evolution of surgical heart failure treatment. Eur Cardiol 9(1):54–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sileshi B, Haglund NA, Davis ME, Tricarico NM, Stulak JM, Khalpey Z, Danter MR, Deegan R, Kennedy J, Keebler ME, Maltais S (2015) In-hospital outcomes of a minimally invasive off-pump left thoracotomy approach using a centrifugal continuous-flow left ventricular assist device. J Heart Lung Transplant 34(1):107–112.

    Article  PubMed  Google Scholar 

  5. El-Sayed Ahmed MM, Aftab M, Singh SK, Mallidi HR, Frazier OH (2014) Left ventricular assist device outflow graft: alternative sites. Ann Cardiothorac Surg 3(5):541–545.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Makdisi G, Wang IW (2015) Minimally invasive is the future of left ventricular assist device implantation. J Thorac Dis 7(9):E283-288.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Riebandt J, Sandner S, Mahr S, Haberl T, Rajek A, Laufer G, Schima H, Zimpfer D (2013) Minimally invasive thoratec Heartmate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg 96(3):1094–1096.

    Article  PubMed  Google Scholar 

  8. Riebandt J, Schloglhofer T, Moayedifar R, Wiedemann D, Wittmann F, Angleitner P, Dimitrov K, Tschernko E, Laufer G, Zimpfer D (2020) Less invasive left ventricular assist device implantation is safe and reduces intraoperative blood product use: a propensity score analysis VAD implantation techniques and blood product use. ASAIO J.

    Article  Google Scholar 

  9. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283 (15):2008–2012.

  10. Nawata K, Nishimura T, Kyo S, Hisagi M, Kinoshita O, Saito A, Motomura N, Takamoto S, Ono M (2010) Outcomes of midterm circulatory support by left ventricular assist device implantation with descending aortic anastomosis. J Artif Organs 13(4):197–201.

    Article  PubMed  Google Scholar 

  11. Krabatsch T, Drews T, Potapov E, Weng Y, Pasic M, Hetzer R (2014) Different surgical strategies for implantation of continuous-flow VADs—experience from Deutsches Herzzentrum Berlin. Ann Cardiothorac Surg 3(5):472–474.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB, Naftel DC (2017) Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 36(10):1080–1086.

    Article  PubMed  Google Scholar 

  13. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2007) Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat Med 26(25):4544–4562.

    Article  PubMed  Google Scholar 

  15. Carrozzini M, Bejko J, Guariento A, Rubino M, Bianco R, Tarzia V, Gregori D, Bottio T, Gerosa G (2019) Minimally invasive implantation of continuous flow left ventricular assist devices: the evolution of surgical techniques in a single-center experience. Artif Organs 43(3):E41–E52.

    Article  PubMed  Google Scholar 

  16. Cheung A, Soon JL, Bashir J, Kaan A, Ignaszewski A (2014) Minimal-access left ventricular assist device implantation. Innovations (Phila) 9(4):281–285.

    Article  Google Scholar 

  17. Gosev I, Wood K, Ayers B, Barrus B, Knight P, Alexis JD, Vidula H, Lander H, Wyrobek J, Cheyne C, Goldenberg I, McNitt S, Prasad S (2020) Implantation of a fully magnetically levitated left ventricular assist device using a sternal-sparing surgical technique. J Heart Lung Transplant 39(1):37–44.

    Article  PubMed  Google Scholar 

  18. Maltais S, Anwer LA, Tchantchaleishvili V, Haglund NA, Dunlay SM, Aaronson KD, Pagani FD, Cowger J, Salerno CT, Shah P, Khalpey Z, Schmitto J, Stulak JM (2018) Left lateral thoracotomy for centrifugal continuous-flow left ventricular assist device placement: an analysis from the mechanical circulatory support research network. ASAIO J 64(6):715–720.

    Article  PubMed  Google Scholar 

  19. Mohite PN, Sabashnikov A, Raj B, Hards R, Edwards G, Garcia-Saez D, Zych B, Husain M, Jothidasan A, Fatullayev J, Zeriouh M, Weymann A, Popov AF, De Robertis F, Simon AR (2018) Minimally invasive left ventricular assist device implantation: a comparative study. Artif Organs 42(12):1125–1131.

    Article  PubMed  Google Scholar 

  20. Ozer T, Gunay D, Hancer H, Altas Yerlikhan O, Ozgur MM, Aksut M, Sarikaya S, Kirali K (2020) Transition from conventional technique to less invasive approach in left ventricular assist device implantations. ASAIO J 66(9):1000–1005.

    Article  PubMed  Google Scholar 

  21. Pasrija C, Sawan MA, Sorensen E, Voorhees H, Shah A, Strauss E, Ton VK, DiChiacchio L, Kaczorowski DJ, Griffith BP, Pham SM, Kon ZN (2019) Less invasive left ventricular assist device implantation may reduce right ventricular failure. Interact Cardiovasc Thorac Surg 29(4):592–598.

    Article  PubMed  Google Scholar 

  22. Reichart D, Brand CF, Bernhardt AM, Schmidt S, Schaefer A, Blankenberg S, Reichenspurner H, Wagner FM, Deuse T, Barten MJ (2019) Analysis of minimally invasive left thoracotomy HVAD implantation—a single-center experience. Thorac Cardiovasc Surg 67(3):170–175.

    CAS  Article  PubMed  Google Scholar 

  23. Wert L, Chatterjee A, Dogan G, Hanke JS, Boethig D, Tumler KA, Napp LC, Berliner D, Feldmann C, Kuehn C, Martens A, Shrestha ML, Haverich A, Schmitto JD (2018) Minimally invasive surgery improves outcome of left ventricular assist device surgery in cardiogenic shock. J Thorac Dis 10(Suppl 15):S1696–S1702.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wachter K, Franke UFW, Rustenbach CJ, Baumbach H (2019) Minimally invasive versus conventional LVAD—implantation-an analysis of the literature. Thorac Cardiovasc Surg 67(3):156–163.

    Article  PubMed  Google Scholar 

  25. Colvin M, Smith JM, Hadley N, Skeans MA, Uccellini K, Goff R, Foutz J, Israni AK, Snyder JJ, Kasiske BL (2020) OPTN/SRTR 2018 annual data report: heart. Am J Transplant 20 Suppl s1:340–426.

  26. Lampert BC, Teuteberg JJ (2015) Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant 34(9):1123–1130.

    Article  PubMed  Google Scholar 

  27. Kilic A, Seese L, Pagani F, Kormos R (2020) Identifying temporal relationships between in-hospital adverse events after implantation of durable left ventricular assist devices. J Am Heart Assoc 9(8):e015449.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Borgi J, Tsiouris A, Hodari A, Cogan CM, Paone G, Morgan JA (2013) Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg 95(1):163–169.

    Article  PubMed  Google Scholar 

  29. Chen CY, Zhou Y, Wang P, Qi EY, Gu WJ (2020) Elevated central venous pressure is associated with increased mortality and acute kidney injury in critically ill patients: a meta-analysis. Crit Care 24(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Arfaras-Melainis A, Polyzogopoulou E, Triposkiadis F, Xanthopoulos A, Ikonomidis I, Mebazaa A, Parissis J (2020) Heart failure and sepsis: practical recommendations for the optimal management. Heart Fail Rev 25(2):183–194.

    Article  PubMed  Google Scholar 

  31. Anyanwu AC, Itagaki S, Pinney S, Adams DH (2014) Initial experience with routine less invasive implantation of HeartMate II left ventricular assist device without median sternotomy. Eur J Cardiothorac Surg 46(6):985–990.

    Article  PubMed  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Tianjin City [18JCZDJC36200 to Zhigang Liu].

Author information

Authors and Affiliations



BZ, SG, and ZL accomplished the study design. BZ, SG, and ZL contributed to study screening. BZ, SG, and ZL extracted the data and performed the quality assessment. BZ, SG, and ZF contributed to the statistical analysis. BZ, SG, ZF, and ZL wrote and revised the manuscript. All authors have full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the analysis.

Corresponding author

Correspondence to Zhigang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Guo, S., Fu, Z. et al. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: a meta-analysis. Heart Fail Rev 27, 1053–1061 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Continuous-flow left ventricular assist device
  • Minimally invasive techniques
  • The conventional technique
  • Heart failure