Skip to main content

Advertisement

Log in

Cardiac complications in inherited mitochondrial diseases

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

BSCL2:

Berardinelli-Seip congenital lipodystrophy

CMP:

Cardiomyopathy

COX:

Cytochrome c oxidase

ECMP:

Encephalocardiomyopathy

MELAS:

Mitochondrial encephalopathy lactic acidosis and stroke-like episodes

MERRF:

Myoclonus epilepsy red ragged fibers

MID:

Mitochondrial dysfunction

MRP:

Mitochondrial ribosomal protein

MTO:

Mitochondrial tRNA translation optimization

ND1:

NADH-ubiquinone oxidoreductase chain 1

NDUFAF1:

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 1

OXPHOS:

Oxidation-phosphorylation

ROS:

Reactive oxygen species

References

  1. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566

    PubMed  CAS  Google Scholar 

  3. Jacobs L, de Wert G, Geraedts J, De Coo I, Smeets H (2005) The transmission of OXPHOS disease and methods to prevent this. Hum Reprod Update 12:119–136

    PubMed  Google Scholar 

  4. Nejati M, Atlasi MA, Karimian M, Nikzad H, Tameh AA (2018) Lipoprotein lipase gene polymorphisms as risk factors for stroke: a computational and meta-analysis. Iran J Basic Med Sci 21:701

    PubMed  PubMed Central  Google Scholar 

  5. DiMauro S, Hirano M (2011) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15:276–286

  6. Pohjoismäki JL, Goffart S, Taylor RW, Turnbull DM, Suomalainen A, Jacobs HT et al (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One 5:e10426

    PubMed  PubMed Central  Google Scholar 

  7. Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111

    PubMed  CAS  Google Scholar 

  8. Johns DR (1995) Mitochondrial DNA and disease. N Engl J Med 333:638–644

    PubMed  CAS  Google Scholar 

  9. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220

    PubMed  PubMed Central  Google Scholar 

  10. Bates MG, Bourke JP, Giordano C, d'Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Niyazov DM, Kahler SG, Frye RE (2016) Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 7:122–137

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Chinnery P, Johnson M, Wardell T, Singh-Kler R, Hayes C, Brown D et al (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48:188–193

    PubMed  CAS  Google Scholar 

  13. Pankuweit S, Richter A (2015) Mitochondrial disorders with cardiac dysfunction: an under-reported aetiology with phenotypic heterogeneity. Eur Heart J 36:2894–2897

    PubMed  CAS  Google Scholar 

  14. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta Bioenerg 1797:113–128

    CAS  Google Scholar 

  16. Luft JH (1961) Improvements in epoxy resin embedding methods. J Cell Biol 9:409–414

    CAS  Google Scholar 

  17. Chinnery PF (2015) Mitochondrial disease in adults: what's old and what’s new? EMBO Mol Med 7:1503–1512

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256:693–710

    PubMed  Google Scholar 

  19. Hamilton GC, Eilers MA, Pacholka R, Brooks T (1991) Objectives to direct the training of emergency medicine residents on off-service rotation: otolaryngology. J Emerg Med 9:75–80

    PubMed  CAS  Google Scholar 

  20. Dai D-F, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:1–22

    Google Scholar 

  21. Choi B-O, Hwang JH, Cho EM, Jeong EH, Hyun YS, Jeon HJ, Seong KM, Cho NS, Chung KW (2010) Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases. Exp Mol Med 42:446–455

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Taylor RW, Giordano C, Davidson MM, d’Amati G, Bain H, Hayes CM, Leonard H, Barron MJ, Casali C, Santorelli FM, Hirano M, Lightowlers RN, DiMauro S, Turnbull DM (2003) A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 41:1786–1796

    PubMed  CAS  Google Scholar 

  23. Perli E, Giordano C, Tuppen HA, Montopoli M, Montanari A, Orlandi M et al (2011) Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic m. 4277T> C mitochondrial tRNAIle mutation causing hypertrophic cardiomyopathy. Hum Mol Genet 21:85–100

    PubMed  CAS  Google Scholar 

  24. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW et al (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275

    PubMed  CAS  Google Scholar 

  25. Carling PJ, Cree LM, Chinnery PF (2011) The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion. 11:686–692

    PubMed  CAS  Google Scholar 

  26. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci 108:3630–3635

    PubMed  CAS  Google Scholar 

  27. Byun H-M, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi P, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu B, Du Q, Chen L, Fu G, Li S, Fu L et al (2016) CpG methylation patterns of human mitochondrial DNA. Sci Rep 6:1–10

    Google Scholar 

  29. Baccarelli AA, Byun H-M (2015) Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenetics 7:44

    PubMed  PubMed Central  Google Scholar 

  30. Iacobazzi V, Castegna A, Infantino V, Andria G (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34

    PubMed  CAS  Google Scholar 

  31. Saeedi Borujeni MJ, Esfandiary E, Baradaran A, Valiani A, Ghanadian M, Codoñer-Franch P, Basirat R, Alonso-Iglesias E, Mirzaei H, Yazdani A (2019) Molecular aspects of pancreatic β-cell dysfunction: oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 234:8411–8425

    PubMed  CAS  Google Scholar 

  32. Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR (2020) Non-coding RNAs and exosomes: their role in the pathogenesis of sepsis. Mol Ther Nucleic Acids 21:51–74

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H et al (2020) TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 18:87

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR (2020) Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 145:102854

    PubMed  Google Scholar 

  35. Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H et al (2019) Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 12:84

    PubMed  PubMed Central  Google Scholar 

  36. Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H (2019) Long non-coding RNAs as epigenetic regulators in Cancer. Curr Pharm Des 25:3563–3577

    PubMed  CAS  Google Scholar 

  37. Mirzaei H, Yazdi F, Salehi R, Mirzaei HR (2016) SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 12:498–508

    PubMed  CAS  Google Scholar 

  38. Khani P, Nasri F, Khani Chamani F, Saeidi F, Sadri Nahand J, Tabibkhooei A et al (2019) Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem 148:188–203

    PubMed  CAS  Google Scholar 

  39. Mirzaei H (2017) Stroke in women: risk factors and clinical biomarkers. J Cell Biochem 118:4191–4202

    PubMed  CAS  Google Scholar 

  40. Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR (2020) Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 18:88

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M et al (2019) microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 234:17064–17099

    PubMed  CAS  Google Scholar 

  42. Salarinia R, Sahebkar A, Peyvandi M, Mirzaei HR, Jaafari MR, Riahi MM et al (2016) Epi-drugs and Epi-miRs: moving beyond current cancer therapies. Curr Cancer Drug Targets 16:773–788

    PubMed  CAS  Google Scholar 

  43. Sadri Nahand J, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei-Salim F, Mirzaei H, Hamblin MR (2020) Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: a review. Int J Cancer 146:305–320

    PubMed  CAS  Google Scholar 

  44. Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H (2019) MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate Cancer. Crit Rev Eukaryot Gene Expr 29:127–139

    PubMed  Google Scholar 

  45. Mirzaei H, Ferns GA, Avan A, Mobarhan MG (2017) Cytokines and MicroRNA in coronary artery disease. Adv Clin Chem 82:47–70

    PubMed  CAS  Google Scholar 

  46. Geiger J, Dalgaard LT (2017) Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 74:631–646

    PubMed  CAS  Google Scholar 

  47. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6:e20220

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Bienertova-Vasku J, Sana J, Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336:1–7

    PubMed  CAS  Google Scholar 

  49. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, Steenbergen C (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596–1603

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen Y, Liu Y, Dorn GW (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109:1327–1331

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Villar P, Bretón B, García-Pavía P, González-Páramos C, Blázquez A, Gómez-Bueno M et al (2013) Cardiac dysfunction in mitochondrial disease. Circ J 77:279–286

  52. Limongelli G, Masarone D, D’Alessandro R, Elliott PM (2012) Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Futur Cardiol 8:71–88

    Google Scholar 

  53. Park S-Y, Gifford JR, Andtbacka RH, Trinity JD, Hyngstrom JR, Garten RS et al (2014) Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am J Phys Heart Circ Phys 307:H346–HH52

    CAS  Google Scholar 

  54. Meyers DE, Basha HI, Koenig MK (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40:385

    PubMed  PubMed Central  Google Scholar 

  55. Jonckheere AI, Hogeveen M, Nijtmans L, Van Den Brand M, Janssen A, Diepstra J et al (2008) A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet 45:129–133

    PubMed  CAS  Google Scholar 

  56. He R, Ding C, Yin P, He L, Xu Q, Wu Z, Shi Y, Su L (2019) MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res 378:87–97

    PubMed  CAS  Google Scholar 

  57. Mkaouar-Rebai E, Chamkha I, Mezghani N, Ayed IB, Fakhfakh F (2013) Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. Mitochondrial DNA 24:163–178

    PubMed  CAS  Google Scholar 

  58. Liu Z, Song Y, Li D, He X, Li S, Wu B et al (2014) The novel mitochondrial 16S rRNA 2336T> C mutation is associated with hypertrophic cardiomyopathy. J Med Genet 51:176–184

    PubMed  CAS  Google Scholar 

  59. Palecek T, Tesarova M, Kuchynka P, Dytrych V, Elleder M, Hulkova H et al (2012) Hypertrophic cardiomyopathy due to the mitochondrial DNA mutation m. 3303C> T diagnosed in an adult male. Int Heart J 53:383–387

    PubMed  Google Scholar 

  60. Zarrouk-Mahjoub S, Mehri S, Ouarda F, Finsterer J, Boussaada R (2015) Mitochondrial tRNA glutamine variant in hypertrophic cardiomyopathy. Herz. 40:436–441

    PubMed  CAS  Google Scholar 

  61. Bates MG, Nesbitt V, Kirk R, He L, Blakely EL, Alston CL et al (2012) Mitochondrial respiratory chain disease in children undergoing cardiac transplantation: a prospective study. Int J Cardiol 155:305–306

    PubMed  Google Scholar 

  62. Götz A, Tyynismaa H, Euro L, Ellonen P, Hyötyläinen T, Ojala T, Hämäläinen RH, Tommiska J, Raivio T, Oresic M, Karikoski R, Tammela O, Simola KOJ, Paetau A, Tyni T, Suomalainen A (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642

    PubMed  PubMed Central  Google Scholar 

  63. Echaniz-Laguna A, Chassagne M, Ceresuela J, Rouvet I, Padet S, Acquaviva C, Nataf S, Vinzio S, Bozon D, Mousson de Camaret B (2012) Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J Med Genet 49:146–150

    PubMed  CAS  Google Scholar 

  64. Ware SM, El-Hassan N, Kahler S, Zhang Q, Miller E, Wong B et al (2009) Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 46:308–314

    PubMed  CAS  Google Scholar 

  65. Hejzlarova K, Mráček T, Vrbacký M, Kaplanova V, Karbanova V, Nůsková H et al (2014) Nuclear genetic defects of mitochondrial ATP synthase. Physiol Res 63:sS57–S71

  66. Rahman OU, Khawar N, Khan MA, Ahmed J, Khattak K, Al-Aama JY et al (2013) Deletion mutation in BSCL2 gene underlies congenital generalized lipodystrophy in a Pakistani family. Diagn Pathol 8:78

    PubMed  PubMed Central  Google Scholar 

  67. Krzywanski DM, Moellering DR, Fetterman JL, Dunham-Snary KJ, Sammy MJ, Ballinger SW (2011) The mitochondrial paradigm for cardiovascular disease susceptibility and cellular function: a complementary concept to Mendelian genetics. Lab Investig 91:1122

    PubMed  Google Scholar 

  68. Van den Heuvel L, Smits P, Saada A, Wortmann S, Heister A, Miller C, et al. (2010) Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet 19:394–399

  69. Carroll CJ, Isohanni P, Pöyhönen R, Euro L, Richter U, Brilhante V, Götz A, Lahtinen T, Paetau A, Pihko H, Battersby BJ, Tyynismaa H, Suomalainen A (2013) Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J Med Genet 50:151–159

    PubMed  CAS  Google Scholar 

  70. Galmiche L, Serre V, Beinat M, Assouline Z, Lebre AS, Chretien D, Nietschke P, Benes V, Boddaert N, Sidi D, Brunelle F, Rio M, Munnich A, Rötig A (2011) Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 32:1225–1231

    PubMed  CAS  Google Scholar 

  71. Baruffini E, Dallabona C, Invernizzi F, Yarham JW, Melchionda L, Blakely EL, Lamantea E, Donnini C, Santra S, Vijayaraghavan S, Roper HP, Burlina A, Kopajtich R, Walther A, Strom TM, Haack TB, Prokisch H, Taylor RW, Ferrero I, Zeviani M, Ghezzi D (2013) MTO 1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Fassone E, Taanman J-W, Hargreaves IP, Sebire NJ, Cleary MA, Burch M et al (2011) Mutations in the mitochondrial complex I assembly factor NDUFAF1 cause fatal infantile hypertrophic cardiomyopathy. J Med Genet 48:691–697

    PubMed  CAS  Google Scholar 

  73. Ngu LH, Nijtmans LG, Distelmaier F, Venselaar H, van Emst-de Vries SE, van den Brand MA et al (2012) A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 1822:168–175

    CAS  Google Scholar 

  74. Liu H-Y, Liao P-C, Chuang K-T, Kao M-C (2011) Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy. J Biomed Sci 18:29

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, del Toro M, Labayru MT, Landa J, Font A, Garcia-Villoria J, Merinero B, Ugarte M, Gutierrez-Solana LG, Campistol J, Garcia-Cazorla A, Vaquerizo J, Riudor E, Briones P, Elpeleg O, Ribes A, Lill R (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89:656–667

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Fassone E, Rahman S (2012) Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49:578–590

    PubMed  CAS  Google Scholar 

  77. Leary SC, Antonicka H, Sasarman F, Weraarpachai W, Cobine PA, Pan M et al (2013) Novel mutations in SCO 1 as a cause of fatal infantile encephalopathy and lactic acidosis. Hum Mutat 34:1366–1370

    PubMed  CAS  Google Scholar 

  78. Joost K, Rodenburg R, Piirsoo A, van den Heuvel B, Zordania R, Õunap K (2010) A novel mutation in the SCO2 gene in a neonate with early-onset cardioencephalomyopathy. Pediatr Neurol 42:227–230

    PubMed  Google Scholar 

  79. Atay Z, Bereket A, Turan S, Haliloglu B, Memisoglu A, Khayat M, Shalev SA, Spiegel R (2013) A novel homozygous TMEM70 mutation results in congenital cataract and neonatal mitochondrial encephalo-cardiomyopathy. Gene. 515:197–199

    PubMed  CAS  Google Scholar 

  80. Shahni R, Wedatilake Y, Cleary MA, Lindley KJ, Sibson KR, Rahman S (2013) A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations. Am J Med Genet A 161:2334–2338

    PubMed Central  CAS  Google Scholar 

  81. Kabunga P, Lau AK, Phan K, Puranik R, Liang C, Davis RL, Sue CM, Sy RW (2015) Systematic review of cardiac electrical disease in Kearns–Sayre syndrome and mitochondrial cytopathy. Int J Cardiol 181:303–310

    PubMed  Google Scholar 

  82. Ayalon N, Flore LA, Christensen TG, Sam F (2013) Mitochondrial encoded NADH dehydrogenase 5 (MT-ND5) gene point mutation presents as late onset cardiomyopathy. Int J Cardiol 167:e143–e1e5

    PubMed  Google Scholar 

  83. Hollingsworth KG, Gorman GS, Trenell MI, McFarland R, Taylor RW, Turnbull DM, MacGowan GA, Blamire AM, Chinnery PF (2012) Cardiomyopathy is common in patients with the mitochondrial DNA m.3243A>G mutation and correlates with mutation load. Neuromuscul Disord 22:592–596

    PubMed  Google Scholar 

  84. Shikata C, Nemoto M, Ebisawa T, Nishiyama A, Takeda N (2011) Mitochondrial DNA and heart disease. Genes and Cardiovascular Function. Springer, Boston, p 79–84

  85. Peretto G, Durante A, Limite LR, Cianflone D (2014) Postoperative arrhythmias after cardiac surgery: incidence, risk factors, and therapeutic management.Cardiol Res Pract 2014:615987

  86. Majamaa-Voltti K, Peuhkurinen K, Kortelainen M-L, Hassinen IE, Majamaa K (2002) Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2:12

    PubMed  PubMed Central  Google Scholar 

  87. Wilmin S, De Bels D, Knecht S, Gottignies P, Gazagnes M-D, Devriendt J (2012) Torsade de pointes in Kearns–Sayre syndrome. Pract Neurol 12:199–201

    PubMed  Google Scholar 

  88. Berardo A, Musumeci O, Toscano A (2011) Cardiological manifestations of mitochondrial respiratory chain disorders. Acta Myol 30:9

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhou N, Tang L, Jiang Y, Qin S, Cui J, Wang Y et al (2019) Whole-exome sequencing reveals a novel mutation of MT-ND5 gene in a mitochondrial cardiomyopathy pedigree: patients who show biventricular hypertrophy, hyperlactacidemia, pulmonary hypertension, and decreased exercise tolerance. Anatol J Cardiol 21:18

    PubMed  CAS  Google Scholar 

  90. Khullar M, Thangaraj K. Mitochondrial DNA variations associated with hypertrophic cardiomyopathy. 2013

    Google Scholar 

  91. Vallance H, Jeven G, Wallace D, Brown M (2004) A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol 25:538–540

    PubMed  CAS  Google Scholar 

  92. Finsterer J (2009) Manifestations of the mitochondrial A3243G mutation. Int J Cardiol 137:60–62

    PubMed  Google Scholar 

  93. Wang S-B, Weng W-C, Lee N-C, Hwu W-L, Fan P-C, Lee W-T (2008) Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-White syndrome and cardiomyopathy. Pediatr Neonatol 49:145–149

    PubMed  Google Scholar 

  94. Riera ARP, Kaiser E, Levine P, Schapachnik E, Dubner S, Ferreira C et al (2008) Kearns-Sayre syndrome: electro-vectorcardiographic evolution for left septal fascicular block of the his bundle. J Electrocardiol 41:675–678

    PubMed  Google Scholar 

  95. Verhoeven WM, Egger JI, Kremer BP, de Pont BJ, Marcelis CL (2011) Recurrent major depression, ataxia, and cardiomyopathy: association with a novel POLG mutation? Neuropsychiatr Dis Treat 7:293

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Planavila A, Dominguez E, Navarro M, Vinciguerra M, Iglesias R, Giralt M, Lope-Piedrafita S, Ruberte J, Villarroya F (2012) Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol 53:521–531

    PubMed  CAS  Google Scholar 

  97. Vernengo L, Lilienbaum A, Agbulut O, Rodríguez M-M (2013) The role of genetics in cardiomyopathy. Cardiomyopathies, IntechOpen

    Google Scholar 

  98. Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F, Lombes A, Eymard B, Duboc D, Laforet P (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology. 74:674–677

    PubMed  CAS  Google Scholar 

  99. Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B et al (2013) Complex II deficiency—a case report and review of the literature. Am J Med Genet A 161:285–294

    Google Scholar 

  100. Giordano C, Perli E, Orlandi M, Pisano A, Tuppen HA, He L, Ierinò R, Petruzziello L, Terzi A, Autore C, Petrozza V, Gallo P, Taylor RW, d'Amati G (2013) Cardiomyopathies due to homoplasmic mitochondrial tRNA mutations: morphologic and molecular features. Hum Pathol 44:1262–1270

    PubMed  CAS  Google Scholar 

  101. Van Hove JL, Freehauf C, Miyamoto S, Vladutiu GD, Pancrudo J, Bonilla E et al (2008) Infantile cardiomyopathy caused by the T14709C mutation in the mitochondrial tRNA glutamic acid gene. Eur J Pediatr 167:771–776

    PubMed  Google Scholar 

  102. Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T (2010) Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 10:350–357

    PubMed  CAS  Google Scholar 

  103. Mahjoub SZ, Mehri S, Ourda F, Boussaada R, Mechmeche R, Arab SB et al (2011) Transition m. 3308T> C in the ND1 gene is associated with left ventricular hypertrabeculation/noncompaction. Cardiology. 118:153–158

    Google Scholar 

  104. Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, Wei Y (2013) Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab 109:100–106

    PubMed  CAS  Google Scholar 

  105. Finsterer J (2007) Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu (UUR) mutation. Acta Neurol Scand 116:1–14

    PubMed  CAS  Google Scholar 

  106. Malfatti E, Laforêt P, Jardel C, Stojkovic T, Behin A, Eymard B et al (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology. 80:100–105

    PubMed  CAS  Google Scholar 

  107. Karanikis P, Korantzopoulos P, Kountouris E, Dimitroula V, Patsouras D, Pappa E, Siogas K (2005) Kearns–Sayre syndrome associated with trifascicular block and QT prolongation. Int J Cardiol 101:147–150

    PubMed  Google Scholar 

  108. Ryan JJ, Marsboom G, Fang Y-H, Toth PT, Morrow E, Luo N, Piao L, Hong Z, Ericson K, Zhang HJ, Han M, Haney CR, Chen CT, Sharp WW, Archer SL (2013) PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med 187:865–878

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Hung P-C, Wang H-S, Chung H-T, Hwang M-S, Ro L-S (2012) Pulmonary hypertension in a child with mitochondrial A3243G point mutation. Brain and Development 34:866–868

    PubMed  Google Scholar 

  110. Indrieri A, Van Rahden VA, Tiranti V, Morleo M, Iaconis D, Tammaro R et al (2012) Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 91:942–949

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 88:193–200

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Fijołek J, Wiatr E, Wiechecka A, Torbicki A, Biederman A, Mickielewicz A et al (2003) Pulmonary thromboembolism as a late complication of mitochondrial myopathy (Kearns-Sayer syndrome). Pneumonol Alergol Pol 71:449–457

    PubMed  Google Scholar 

  113. Prasad GN, Vanniarajan A, Emmanuel C, Cherian KM, Singh L, Thangaraj K (2006) Novel mitochondrial DNA mutations in a rare variety of hypertrophic cardiomyopathy. Int J Cardiol 109:432–433

    PubMed  Google Scholar 

  114. Cave D, Ross DB, Bahitham W, Chan A, Sergi C, Adatia I (2013) Mitochondrial DNA depletion syndrome-an unusual reason for interstage attrition after the modified stage 1 Norwood operation. Congenit Heart Dis 8:E20–E23

    PubMed  Google Scholar 

  115. Majamaa-Voltti K, Majamaa K, Peuhkurinen K, Mäkikallio T, Huikuri H (2004) Cardiovascular autonomic regulation in patients with 3243A>G mitochondrial DNA mutation. Ann Med 36:225–231

    PubMed  CAS  Google Scholar 

  116. Brunetti-Pierri N, Pignatelli R, Fouladi N, Towbin JA, Belmont JW, Craigen WJ, Wong LJ, Jefferies JL, Scaglia F (2011) Dilation of the aortic root in mitochondrial disease patients. Mol Genet Metab 103:167–170

    PubMed  CAS  Google Scholar 

  117. Ronchi D, Di Fonzo A, Lin W, Bordoni A, Liu C, Fassone E et al (2013) Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 92:293–300

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Johnson EC, West TW, Ko NU, Strober JB (2011) A 41-year-old man with new headache and altered mental status. Neurohospitalist 1:48–54

    PubMed  PubMed Central  Google Scholar 

  119. Jia Z, Wang X, Qin Y, Xue L, Jiang P, Meng Y, Shi S, Wang Y, Qin Mo J, Guan MX (2013) Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet 22:4064–4073

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Choi J-H, Yoon H-R, Kim G-H, Park S-J, Shin Y-L, Yoo H-W (2007) Identification of novel mutations of the HADHA and HADHB genes in patients with mitochondrial trifunctional protein deficiency. Int J Mol Med 19:81–87

    PubMed  CAS  Google Scholar 

  121. Yajima N, Yazaki Y, Yoshida K, Sano K, Takahashi W, Sasaki Y, Ikeda U (2009) A case of mitochondrial cardiomyopathy with pericardial effusion evaluated by 99m Tc-MIBI myocardial scintigraphy. J Nucl Cardiol 16:989–994

    PubMed  Google Scholar 

  122. Mackenzie RM, Salt IP, Miller WH, Logan A, Ibrahim HA, Degasperi A et al (2012) Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clin Sci 124:403–411

    PubMed Central  Google Scholar 

  123. Ferres-Sanchez P, Subirana-Domenech M, Torner-Soler M (1995) Chest pain during exercise as first manifestation of Friedreich’s ataxia. Heart. 74:464–467

    CAS  Google Scholar 

  124. Sobenin IA, Sazonova MA, Ivanova MM, Zhelankin AV, Myasoedova VA, Postnov AY et al (2012) Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One 7:e46573

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S (2017) Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol 13:92–104

    PubMed  CAS  Google Scholar 

  126. Schaefer AM, Walker M, Turnbull DM, Taylor RW (2013) Endocrine disorders in mitochondrial disease. Mol Cell Endocrinol 379:2–11

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Finsterer J, Strobl W (2012) Brachydactylia as a phenotypic feature of mitochondrial disorder. Acta Med Iran 50:831–835

  128. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Brown DA, Sabbah HN, Shaikh SR (2013) Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol Ther 140:258–266

    PubMed  CAS  Google Scholar 

  130. Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, Kouhpayeh S, Salehi H, Mirzaei HR, Jaafari MR (2018) MicroRNA: relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 233:856–865

    PubMed  CAS  Google Scholar 

  131. Ahmed S, Khan H, Mirzaei H (2019) Mechanics insights of curcumin in myocardial ischemia: where are we standing? Eur J Med Chem 183:111658

    PubMed  CAS  Google Scholar 

  132. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol 233:2116–2132

    CAS  Google Scholar 

  133. Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H (2017) Anti-atherosclerotic effects of vitamins D and E in suppression of atherogenesis. J Cell Physiol 232:2968–2976

    PubMed  CAS  Google Scholar 

  134. Finsterer J (2012) Stroke and stroke-like episodes in muscle disease. Open Neurol J 6:26–36

    PubMed  PubMed Central  Google Scholar 

  135. Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R (2009) A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol 11:414–430

    PubMed  PubMed Central  Google Scholar 

  136. DiMauro S, Tanji K, Schon EA (2012) The many clinical faces of cytochrome c oxidase deficiency. Adv Exp Med Biol 341–357

  137. Chevallier JA, Koenig MK (2012) Friedreich-like ataxia as an initial manifestation of mitochondrial DNA 8344A>G mutation. J Child Neurol 27:1056–1058

    PubMed  Google Scholar 

  138. El-Hattab AW, Scaglia F (2016) Mitochondrial cardiomyopathies. Front Cardiovasc Med 3:25

    PubMed  PubMed Central  Google Scholar 

  139. Terman A, Kurz T, Gustafsson B, Brunk UT (2008) The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev 4:107–115

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E, Zani M, Feccia M, Mancini M, Petrozza V, Cossarizza A, Gallo P, Taylor RW, d’Amati G (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    PubMed  CAS  Google Scholar 

  141. Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton DA, Wibom R, Larsson NG (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci 101:3136–3141

    PubMed  CAS  Google Scholar 

  142. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE et al (2004) Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 94:525–533

    PubMed  CAS  Google Scholar 

  143. Lehman JJ, Kelly DP (2002) Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7:175–185

    PubMed  CAS  Google Scholar 

  144. Li Y, Huang T-T, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    PubMed  CAS  Google Scholar 

  145. Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9:536–544

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Grings M, Tonin AM, Knebel LA, Zanatta Â, Moura AP, Dutra Filho CS et al (2012) Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: a possible pathomechanism of cardiomyopathy in Refsum disease. Mol Cell Biochem 366:335–343

    PubMed  CAS  Google Scholar 

  147. Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR, Berthy J, Redfearn SP, Byrne BJ (2006) Cardiac and clinical phenotype in Barth syndrome. Pediatrics. 118:e337–ee46

    PubMed  Google Scholar 

  148. Paukov V, Protsenko D (1996) The intermitochondrial contacts of cardiomyocytes during cardiac adaptation under pathological conditions. Arkh Patol 58:43–50

    PubMed  CAS  Google Scholar 

  149. Catteruccia M, Verrigni D, Martinelli D, Torraco A, Agovino T, Bonafé L, D'Amico A, Donati MA, Adorisio R, Santorelli FM, Carrozzo R, Bertini E, Dionisi-Vici C (2014) Persistent pulmonary arterial hypertension in the newborn (PPHN): a frequent manifestation of TMEM70 defective patients. Mol Genet Metab 111:353–359

    PubMed  CAS  Google Scholar 

  150. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS (2004) Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 263:241–256

    PubMed  CAS  Google Scholar 

  151. Shao D, Tian R (2011) Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 6:331–351

    Google Scholar 

  152. Bulthuis EP, Adjobo-Hermans MJ, Willems PH, Koopman WJ (2019) Mitochondrial morphofunction in mammalian cells. Antioxid Redox Signal 30:2066–2109

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Spiegel R, Khayat M, Shalev SA, Horovitz Y, Mandel H, Hershkovitz E, Barghuti F, Shaag A, Saada A, Korman SH, Elpeleg O, Yatsiv I (2011) TMEM70 mutations are a common cause of nuclear encoded ATP synthase assembly defect: further delineation of a new syndrome. J Med Genet 48:177–182

    PubMed  Google Scholar 

  154. Vydt TC, de Coo RF, Soliman OI, Folkert J, van Geuns R-JM, Vletter WB et al (2007) Cardiac involvement in adults with m.3243A>G MELAS gene mutation. Am J Cardiol 99:264–269

    PubMed  CAS  Google Scholar 

  155. Rahman S (2015) Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis 38:641–653

    PubMed  CAS  Google Scholar 

  156. Bit-Avragim N, Perrot A, Schöls L, Hardt C, Kreuz FR, Zühlke C, Bubel S, Laccone F, Vogel HP, Dietz R, Osterziel KJ (2001) The GAA repeat expansion in intron 1 of the frataxin gene is related to the severity of cardiac manifestation in patients with Friedreich's ataxia. J Mol Med 78:626–632

    PubMed  CAS  Google Scholar 

  157. Albano LMJ, Nishioka SAD, Moysés RL, Wagenführ J, Bertola D, Sugayama SMM, Chong AK (2002) Friedreich's ataxia: cardiac evaluation of 25 patients with clinical diagnosis and literature review. Arq Bras Cardiol 78:448–451

    Google Scholar 

  158. Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, Santambrogio P, Garrick MD, Lamarche JB (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173

    PubMed  CAS  Google Scholar 

  159. Regner SR, Lagedrost SJ, Plappert T, Paulsen EK, Friedman LS, Snyder ML, Perlman SL, Mathews KD, Wilmot GR, Schadt KA, Sutton MSJ, Lynch DR (2012) Analysis of echocardiograms in a large heterogeneous cohort of patients with Friedreich ataxia. Am J Cardiol 109:401–405

    PubMed  Google Scholar 

  160. Meyer C, Schmid G, Görlitz S, Ernst M, Wilkens C, Wilhelms I et al (2007) Cardiomyopathy in Friedreich's ataxia-assessment by cardiac MRI. Mov Disord 22:1615–1622

    PubMed  Google Scholar 

  161. Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158

    PubMed  CAS  Google Scholar 

  162. Al-Enezi M, Al-Saleh H, Nasser M (2008) Mitochondrial disorders with significant ophthalmic manifestations. Middle East Afr J Ophthalmol 15:81–86

    PubMed  Google Scholar 

  163. O’Toole JF (2014) Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renov Dis 7:57

    Google Scholar 

  164. Finsterer J, Zarrouk-Mahjoub S (2016) Mitochondrial vasculopathy. World J Cardiol 8:333–339

    PubMed  PubMed Central  Google Scholar 

  165. Lorenzoni PJ, Werneck LC, Kay CSK, Silvado CES, Scola RH (2015) When should MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) be the diagnosis? Arq Neuropsiquiatr 73:959–967

    PubMed  Google Scholar 

  166. Diegoli M, Grasso M, Favalli V, Serio A, Gambarin FI, Klersy C, Pasotti M, Agozzino E, Scelsi L, Ferlini A, Febo O, Piccolo G, Tavazzi L, Narula J, Arbustini E (2011) Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J Am Coll Cardiol 58:925–934

    PubMed  Google Scholar 

  167. White KL, Chen JM, Margot NA, Wrin T, Petropoulos CJ, Naeger LK, Swaminathan S, Miller MD (2004) Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob Agents Chemother 48:992–1003

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N et al (2013) Barth syndrome. Orphanet J Rare Dis 8:23

    PubMed  PubMed Central  Google Scholar 

  169. Laurent D, Edwards JG (2014) Alcoholic cardiomyopathy: multigenic changes underlie cardiovascular dysfunction. J Cardiol Clin Res 2:1

  170. Finsterer J, Llberger CS (2009) Neuromuscular disorders associated with apical hypertrophic cardiomyopathy. Acta Cardiol 64:85–89

    PubMed  Google Scholar 

  171. Buda P, Wieteska-Klimczak A, Ksiazyk J, Smorczewska-Kiljan A, Gietka P, Czartoryska B, Tylki-Szymańska A (2011) Diagnostic problems in a 17-year-old patient with gastrointestinal manifestations of Fabry disease. Med Wieku Rozwoj 15:69–72

    PubMed  Google Scholar 

  172. Baik R, Chae JH, Lee YM, Kang HC, Lee JS, Kim HD (2010) Electrocardiography as an early cardiac screening test in children with mitochondrial disease. Korean J Pediatr 53:644–647

    PubMed  PubMed Central  Google Scholar 

  173. Berkman N, Henderson J, Fiordalisi C, Hartling L, Newberry S, Guise J et al (1993–2019) In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews®[Internet]. University of Washington, Seattle, Seattle. Available from http://www.ncbi.nlm.nih.gov/books/NBK1116/PubMed Mol Imaging Biol. 2012;14:4–13

  174. Gobu P, Karthikeyan B, Prasath A, Santhosh S, Balachander J (2010) Kearns Sayre syndrome (KSS)-a rare cause for cardiac pacing. Indian Pacing Electrophysiol J 10:547

    Google Scholar 

  175. Puri A, Pradhan A, Chaudhary G, Singh V, Sethi R, Narain VS (2012) Symptomatic complete heart block leading to a diagnosis of Kearns–Sayre syndrome. Indian Heart J 64:515–517

    PubMed  PubMed Central  Google Scholar 

  176. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NM et al (2013) 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol 61:e6–e75

    PubMed  Google Scholar 

  177. Vardas PE, Auricchio A, Blanc J-J, Daubert J-C, Drexler H, Ector H et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: the task force for cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295

    PubMed  Google Scholar 

  178. Panas M, Gialafos E, Spengos K, Papaioannou TG, Aggeli K, Kladi A et al (2010) Prevalence of interatrial block in patients with Friedreich’s ataxia. Int J Cardiol 145:386–387

    PubMed  Google Scholar 

  179. Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287

    PubMed  CAS  Google Scholar 

  180. Dedkova EN, Blatter LA (2012) Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 52:48–61

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nejati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behjati, M., Sabri, M.R., Etemadi Far, M. et al. Cardiac complications in inherited mitochondrial diseases. Heart Fail Rev 26, 391–403 (2021). https://doi.org/10.1007/s10741-020-10009-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10009-1

Keywords

Navigation