Skip to main content

Advertisement

Log in

Diagnostic algorithm for HFpEF: how much is the recent consensus applicable in clinical practice?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) represents an important cardiovascular entity with increasing prevalence and relatively high mortality. The agreement about diagnostic algorithm for HFpEF is still missing. Echocardiographic approach remains the cornerstone in HFpEF diagnosis. Echocardiographic diastolic stress test provides numerous useful parameters that correlated well with indexes obtained by cardiac catheterization. Recently published consensus recommended new scoring system that included functional and structural echocardiographic parameters, as well as biomarkers. The new score for evaluation of HFpEF introduces a new set of parameters and proposed novel cutoff values for some of them. There are several important points that need to be resolved before full acceptance and clinical usage. First, some cutoff values are new and represent the result of expert consensus, without previous validation. Second, many patients with hypertension, obesity, and diabetes would be referred for further investigations as the result of this scoring, which is difficult to achieve in clinical circumstances. Third, the consensus equalized non-invasive and invasive diastolic stress tests in diagnosing of HFpEF, which is not a small issue. Namely, even though cardiac catheterization provides the final confirmation of elevated left ventricular filling pressures, it is still an invasive method, associated with procedural risk and other limitations. The aim of this review was to summarize the current knowledge diagnosis of HFpEF, as well as the recent consensus about diagnostic algorithm in patients with suspected HFpEF with its advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200

    Article  PubMed  Google Scholar 

  2. Loai S, Cheng HM (2020) Heart failure with preserved ejection fraction: the missing pieces in diagnostic imaging. Heart Fail Rev 25(2):305–319

    Article  PubMed  Google Scholar 

  3. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3:588–595

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360

    Article  PubMed  Google Scholar 

  5. Buggey J, Alenezi F, Yoon HJ, Phelan M, DeVore AD, Khouri MG, Schulte PJ, Velazquez EJ (2017) Left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: outcomes following an acute heart failure hospitalization. ESC Heart Fail 4(4):432–439

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ha JW, Andersen OS, Smiseth OA (2020) Diastolic stress test: invasive and noninvasive testing. JACC Cardiovasc Imaging 13:272–282

    Article  PubMed  Google Scholar 

  7. Lam CSP, Gamble GD, Ling LH, Sim D, Leong KTG, Yeo PSD, Ong HY, Jaufeerally F, Ng TP, Cameron VA, Poppe K, Lund M, Devlin G, Troughton R, Richards AM, Doughty RN (2018) Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur Heart J 39(20):1770–1780

    Article  CAS  PubMed  Google Scholar 

  8. Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679

    Article  PubMed  Google Scholar 

  9. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  10. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  CAS  PubMed  Google Scholar 

  11. MAGGIC Collaborative Group (2012) The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 33:1750–1757

    Article  Google Scholar 

  12. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40(40):3297–3317

    Article  PubMed  Google Scholar 

  13. Park JJ, Park CS, Mebazaa A, Oh IY, Park HA, Cho HJ, Lee HY, Kim KH, Yoo BS, Kang SM, Baek SH, Jeon ES, Kim JJ, Cho MC, Chae SC, Oh BH, Choi DJ (2020) Characteristics and outcomes of HFpEF with declining ejection fraction. Clin Res Cardiol 109(2):225–234

    Article  CAS  PubMed  Google Scholar 

  14. Tadic M, Cuspidi C, Frydas A, Grassi G (2018) The role of arterial hypertension in development heart failure with preserved ejection fraction: just a risk factor or something more? Heart Fail Rev 23(5):631–639

    Article  PubMed  Google Scholar 

  15. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A, Italian Society of Hypertension (2012) Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens 26(6):343–349

    Article  CAS  PubMed  Google Scholar 

  16. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O’Meara E, Heitner JF, Sopko G, Li G, Assmann SF, McKinlay SM, Pitt B, Pfeffer MA, Solomon SD, TOPCAT Investigators (2014) Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail 7(1):104–115

    Article  CAS  PubMed  Google Scholar 

  17. de Simone G, Gottdiener JS, Chinali M, Maurer MS (2008) Left ventricular mass predicts heart failure not related to previous myocardial infarction: the cardiovascular health study. Eur Heart J 29(6):741–747

    Article  PubMed  Google Scholar 

  18. Tadic M, Cuspidi C, Celic V, Pencic B, Mancia G, Grassi G, Stankovic G, Ivanovic B (2019) The prognostic effect of circadian blood pressure pattern on long-term cardiovascular outcome is independent of left ventricular remodeling. J Clin Med 8(12)

  19. Świerblewska E, Wolf J, Kunicka K, Graff B, Polonis K, Hoffmann M, Chrostowska M, Szyndler A, Bandosz P, Graff B, Narkiewicz K (2018) Prevalence and distribution of left ventricular diastolic dysfunction in treated patients with long-lasting hypertension. Blood Press 27(6):376–384

    Article  PubMed  Google Scholar 

  20. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE, I-PRESERVE Investigators (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 124(23):2491–2501

    Article  PubMed  Google Scholar 

  21. Talreja DR, Nishimura RA, Oh JK (2007) Estimation of left ventricular filling pressure with exercise by Doppler echocardiography in patients with normal systolic function: a simultaneous echocardiographic-cardiac catheterization study. J Am Soc Echocardiogr 20:477–479

    Article  PubMed  Google Scholar 

  22. Burgess MI, Jenkins C, Sharman JE, Marwick TH (2006) Diastolic stress echocardiography: hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise. J Am Coll Cardiol 47:1891–1900

    Article  PubMed  Google Scholar 

  23. Obokata M, Kane GC, Reddy YN, Olson TP, Melenovsky V, Borlaug BA (2017) Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction: a simultaneous invasive-echocardiographic study. Circulation 135:825–838

    Article  PubMed  Google Scholar 

  24. Sharifov OF, Gupta H (2017) What is the evidence that tissue-Doppler index E/e reflects left ventricular filling pressure changes after exercise or pharmacological intervention for evaluating diastolic function? A systematic review. J Am Heart Assoc 6:e004766

    Article  PubMed  PubMed Central  Google Scholar 

  25. Belyavskiy E, Morris DA, Url-Michitsch M, Verheyen N, Meinitzer A, Radhakrishnan AK, Kropf M, Frydas A, Ovchinnikov AG, Schmidt A, Tadic M, Genger M, Lindhorst R, Bobenko A, Tschöpe C, Edelmann F, Pieske-Kraigher E, Pieske B (2019) Diastolic stress test echocardiography in patients with suspected heart failure with preserved ejection fraction: a pilot study. ESC Heart Fail 6(1):146–153

    Article  PubMed  Google Scholar 

  26. Holland DJ, Prasad SB, Marwick TH (2010) Prognostic implications of left ventricular filling pressure with exercise. Circ Cardiovasc Imaging 3(2):149–156

    Article  PubMed  Google Scholar 

  27. Luong CPR, Oh J, Pellikka P, McCully R, Kane G (2019) Assessment of left ventricular filling pressure with exercise is independently associated with all-cause mortality in a cohort of 14,446 patients. American Society of Echocardiography Scientific Sessions. JASE 32(6):B138–B161

    Google Scholar 

  28. Ballo P, Nistri S, Cameli M, Papesso B, Dini FL, Galderisi M, Zuppiroli A, Mondillo S, Working Group Nucleus on Echocardiography of the Italian Society of Cardiology (2014) Association of left ventricular longitudinal and circumferential systolic dysfunction with diastolic function in hypertension: a nonlinear analysis focused on the interplay with left ventricular geometry. J Card Fail 20(2):110–120

    Article  PubMed  Google Scholar 

  29. Rønningen PS, Berge T, Solberg MG, Enger S, Nygard S, Pervez MO et al (2020) Sex differences and higher upper normal limits for left atrial end-systolic volume in individuals in their mid-sixties: data from the ACE 1950 study. Eur Heart J Cardiovasc Imaging

  30. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322(22):1561–1566

    Article  CAS  PubMed  Google Scholar 

  31. Cuspidi C, Rescaldani M, Sala C, Grassi G (2014) Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens 32(1):16–25

    Article  CAS  PubMed  Google Scholar 

  32. Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, Di Tullio MR (2008) Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol 101(12):1787–1791

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  34. Tadic M, Cuspidi C, Pencic B, Andric A, Pavlovic SU, Iracek O, Celic V (2016) The interaction between blood pressure variability, obesity, and left ventricular mechanics: findings from the hypertensive population. J Hypertens 34(4):772–780

    Article  CAS  PubMed  Google Scholar 

  35. Tadic M, Ilic S, Cuspidi C, Stojcevski B, Ivanovic B, Bukarica L, Jozika L, Celic V (2015) Left ventricular mechanics in untreated normotensive patients with type 2 diabetes mellitus: a two- and three-dimensional speckle tracking study. Echocardiography. 32(6):947–955

    Article  PubMed  Google Scholar 

  36. Tadic M, Cuspidi C, Vukomanovic V, Ilic S, Obert P, Kocijancic V, Celic V (2018) Layer-specific deformation of the left ventricle in uncomplicated patients with type 2 diabetes and arterial hypertension. Arch Cardiovasc Dis 111(1):17–24

    Article  PubMed  Google Scholar 

  37. Saito M, Khan F, Stoklosa T, Iannaccone A, Negishi K, Marwick TH (2016) Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC Cardiovasc Imaging 9(8):911–921

    Article  PubMed  Google Scholar 

  38. Karlsen S, Dahlslett T, Grenne B, Sjøli B, Smiseth O, Edvardsen T, Brunvand H (2019) Global longitudinal strain is more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc Ultrasound 17(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11(2 Pt 1):260–274

    Article  PubMed  Google Scholar 

  40. Anand IS, Rector TS, Cleland JG, Kuskowski M, McKelvie RS, Persson H, McMurray JJ, Zile MR, Komajda M, Massie BM, Carson PE (2011) Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE trial. Circ Heart Fail 4(5):569–577

    Article  CAS  PubMed  Google Scholar 

  41. Salah K, Stienen S, Pinto YM, Eurlings LW, Metra M, Bayes-Genis A, Verdiani V, Tijssen JGP, Kok WE (2019) Prognosis and NT-proBNP in heart failure patients with preserved versus reduced ejection fraction. Heart. 105(15):1182–1189

    CAS  PubMed  Google Scholar 

  42. de Boer RA, Nayor M, deFilippi CR, Enserro D, Bhambhani V, Kizer JR, Blaha MJ, Brouwers FP, Cushman M, JAC L, Bahrami H, van der Harst P, Wang TJ, Gansevoort RT, Fox CS, Gaggin HK, Kop WJ, Liu K, Vasan RS, Psaty BM, Lee DS, Hillege HL, Bartz TM, Benjamin EJ, Chan C, Allison M, Gardin JM, Januzzi JL Jr, Shah SJ, Levy D, Herrington DM, Larson MG, van Gilst WH, Gottdiener JS, Bertoni AG, Ho JE (2018) Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol 3(3):215–224

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kosmala W, Przewlocka-Kosmala M, Rojek A, Marwick TH (2019) Comparison of the diastolic stress test with a combined resting echocardiography and biomarker approach to patients with exertional dyspnea: diagnostic and prognostic implications. JACC Cardiovasc Imaging 12(5):771–780

    Article  PubMed  Google Scholar 

  44. Nedeljkovic I, Banovic M, Stepanovic J, Giga V, Djordjevic-Dikic A, Trifunovic D, Nedeljkovic M, Petrovic M, Dobric M, Dikic N, Zlatar M, Beleslin B (2016) The combined exercise stress echocardiography and cardiopulmonary exercise test for identification of masked heart failure with preserved ejection fraction in patients with hypertension. Eur J Prev Cardiol 23(1):71–77

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Tadic.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

The paper “Diagnostic algorithm for HFpEF: how much is the recent consensus applicable in clinical practice?” has not been submitted elsewhere, it is not under review, or published previously.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadic, M., Cuspidi, C., Calicchio, F. et al. Diagnostic algorithm for HFpEF: how much is the recent consensus applicable in clinical practice?. Heart Fail Rev 26, 1485–1493 (2021). https://doi.org/10.1007/s10741-020-09966-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09966-4

Keywords

Navigation