Skip to main content

Cardiac imaging in cardiotoxicity: a focus on clinical practice

Abstract

Cancer therapeutics induced cardiotoxicity has emerged as an important factor of long-term adverse cardiovascular outcomes in survivors of various malignant diseases. Early detection of myocardial injury in the setting of cancer treatment is important for the initiation of targeted cardioprotective therapy, in order to prevent irreversible cardiac dysfunction and heart failure, while not withholding a potentially life-saving cancer therapy. Cardiac imaging techniques including echocardiography, cardiac magnetic resonance, and nuclear cardiac imaging are the main tools for the identification of cardiotoxicity. There is also growing evidence for the detection of subclinical cardiac dysfunction in cancer patients by speckle tracking echocardiography. In this review article, we focus on current and emerging data regarding the role of cardiac imaging for the detection of changes in myocardial function related with cancer treatment in clinical practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

LV:

Left ventricular

CMR:

Cardiac magnetic resonance

GLS:

Global longitudinal strain

ECV:

Extracellular volume

LGE:

Late gadolinium enhancement

MUGA:

Multigated radionuclide angiography

SPECT:

Single photon emission tomography

PET:

Positron emission tomography

References

  1. Miller KD, Siegel RL, Lin CC et al (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin. 66:271–289

    Article  PubMed  Google Scholar 

  2. Mavrogeni SI, Sfendouraki E, Markousis-Mavrogenis G, Rigopoulos A, Noutsias M, Kolovou G, Angeli C, Tousoulis D (2019) Cardio-oncology, the myth of Sisyphus, and cardiovascular disease in breast cancer survivors. Heart Fail Rev 24:977–987

    Article  PubMed  Google Scholar 

  3. Ewer MS, Ewer SM (2015) Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 12:62

    Google Scholar 

  4. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 37:2768–2801

    Article  PubMed  Google Scholar 

  5. Abdel-Qadir H, Austin PC, Lee DS et al (2017) A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol 2:88–93

    Article  PubMed  Google Scholar 

  6. Armstrong GT, Oeffinger KC, Chen Y et al (2013) Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol 31:3673–3680

    Article  PubMed  PubMed Central  Google Scholar 

  7. Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschope C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22(6):743–752

    Article  PubMed  Google Scholar 

  8. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R, Chen CL, Gupta D, Kirchberger MC, Awadalla M, Hassan MZO, Moslehi JJ, Shah SP, Ganatra S, Thavendiranathan P, Lawrence DP, Groarke JD, Neilan TG (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71(16):1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the ASE and the EACVI. J Am Soc Echocardiogr. 27:911–939

    Article  PubMed  Google Scholar 

  10. Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988

    Article  CAS  PubMed  Google Scholar 

  11. Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23:2900–2902

    Article  CAS  PubMed  Google Scholar 

  12. Ghatalia P, Morgan CJ, Je Y, Nguyen PL, Trinh QD, Choueiri TK, Sonpavde G (2015) Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Crit Rev Oncol Hematol 94:228–237

    Article  PubMed  Google Scholar 

  13. Ewer MS, Suter TM, Lenihan DJ, Niculescu L, Breazna A, Demetri GD, Motzer RJ (2014) Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: a comprehensive adjudicated database analysis demonstrating clinically meaningful reversibility of cardiac events. Eur J Cancer 50:2162–2170

    Article  CAS  PubMed  Google Scholar 

  14. Khouri MG, Douglas PS, Mackey JR et al (2012) Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation 126:2749–2763

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the ASE and the EACVI. J Am Soc Echocardiogr. 28:1–39

    Article  PubMed  Google Scholar 

  16. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 61:77–84

    Article  PubMed  Google Scholar 

  17. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH (2009) Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 30:98–106

    Article  PubMed  Google Scholar 

  18. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 59(20):1799–1808

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toro-Salazar OH, Ferranti J, Lorenzoni R et al (2016) Feasibility of echocardiographic techniques to detect subclinical cancer therapeutics-related cardiac dysfunction among high-dose patients when compared with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 29:119–131

    Article  PubMed  Google Scholar 

  20. Mor-Avi V, Lang RM (2013) Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? J Am Coll Cardiol 61:85–87

    Article  PubMed  Google Scholar 

  21. Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. J Am Coll Cardiol Imaging 9:769–782

    Article  Google Scholar 

  22. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  PubMed  Google Scholar 

  23. Cardinale D, Colombo A, Lamantia G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220

    Article  CAS  PubMed  Google Scholar 

  24. Eidem BW (2008) Identification of anthracycline cardiotoxicity: left ventricular ejection fraction is not enough. J Am Soc Echocardiogr 21:1290–1292

    Article  PubMed  Google Scholar 

  25. Ohtani K, Ide T, Hiasa KI, Sakamoto I, Yamashita N, Kubo M, Tsutsui H (2019) Cardioprotective effect of renin–angiotensin inhibitors and β-blockers in trastuzumab-related cardiotoxicity. Clin Res Cardiol. 108(10):1128–1139

    Article  CAS  PubMed  Google Scholar 

  26. Ohtani K, Fujino T, Ide T, Funakoshi K, Sakamoto I, Hiasa KI, Higo T, Kamezaki K, Akashi K, Tsutsui H (2019) Recovery from left ventricular dysfunction was associated with the early introduction of heart failure medical treatment in cancer patients with anthracycline-induced cardiotoxicity. Clin Res Cardiol. 108(6):600–611

    Article  CAS  PubMed  Google Scholar 

  27. Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the japanese society of echocardiography. J Am Soc Echocardiogr. 24:277–313

    Article  PubMed  Google Scholar 

  28. Ikonomidis I, Makavos G, Papadavid E et al (2015) Similarities in coronary function and myocardial deformation between psoriasis and coronary artery disease: the role of oxidative stress and inflammation. Can J Cardiol 31:287–295

    Article  PubMed  Google Scholar 

  29. Phelan D, Collier P, Thavendiranathan P et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 98(19):1442–1448

    Article  PubMed  Google Scholar 

  30. Ikonomidis I, Tzortzis S, Lekakis J et al (2009) Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart. 95(18):1502–1507

    Article  CAS  PubMed  Google Scholar 

  31. Paraskevaidis IA, Ikonomidis I, Simitsis P, Parissis J, Stasinos V, Makavos G, Lekakis J (2017) Multidimensional contractile reserve predicts adverse outcome in patients with severe systolic heart failure: a 4-year follow-up study. Eur J Heart Fail. 19(7):846–861

    Article  CAS  PubMed  Google Scholar 

  32. Stoodley PW, Richards DA, Hui R et al (2011) Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur J Echocardiogr 12:945–952

    Article  PubMed  Google Scholar 

  33. Florescu M, Magda LS, Enescu OA, Jinga D, Vinereanu D (2014) Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. J Am Soc Echocardiogr 27:83–92

    Article  PubMed  Google Scholar 

  34. Poterucha JT, Kutty S, Lindquist RK, Li L, Eidem BW (2012) Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr 25:733–740

    Article  PubMed  Google Scholar 

  35. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH (2013) Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 26:493–498

    Article  PubMed  Google Scholar 

  36. Paraskevaidis IA, Makavos G, Tsirigotis P et al (2017) Deformation analysis of myocardial layers detects early cardiac dysfunction after chemotherapy in bone marrow transplantation patients: a continuous and additive cardiotoxicity process. J Am Soc Echocardiogr. 30:1091–1102

    Article  PubMed  Google Scholar 

  37. Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH (2014) Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging 15:324–331

    Article  PubMed  Google Scholar 

  38. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 26:185–191

    Article  PubMed  Google Scholar 

  39. Farsalinos KE, Daraban AM, Unlu S, Thomas JD, Badano LP, Voigt JU (2015) Head-to-head comparison of global longitudinal strain measurements among nine different vendors. The EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr 28:1171–1181

    Article  PubMed  Google Scholar 

  40. Voigt J, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 16:1–11

    Article  CAS  PubMed  Google Scholar 

  41. Yang H, Marwick TH, Fukuda N et al (2015) Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr. 28:642–648

    Article  PubMed  Google Scholar 

  42. Negareh M, Tan TC, Ali M, Halpern EF, Wang L, Scherrer-Crosbie M (2015) Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50–59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 16:977–984

    Google Scholar 

  43. Narayan HK, French B, Khan AM et al (2016) Noninvasive measures of ventricular-arterial coupling and circumferential strain predict cancer therapeutics-related cardiac dysfunction. JACC Cardiovasc Imaging. 9:1131–1141

    Article  PubMed  PubMed Central  Google Scholar 

  44. Laufer-Perl M, Arnold JH, Mor L, Amrami N, Derakhshesh M, Moshkovits Y, Sadeh B, Arbel Y, Topilsky Y, Rozenbaum Z (2019) The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. Clin Res Cardiol. 109(2):255–262

    Article  PubMed  CAS  Google Scholar 

  45. Armenian SH, Hudson MM, Mulder RL et al (2015) International Late Effects of Childhood Cancer Guideline Harmonization Group. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 16:123–136

    Article  Google Scholar 

  46. Valbuena-Lop’ez S, Hinojar R, Puntmann VO (2016) Cardiovascular magnetic resonance in cardiology practice: a concise guide to image acquisition and clinical interpretation. Rev Esp Cardiol. 69:202–210

    Article  Google Scholar 

  47. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5:837–848

    Article  PubMed  PubMed Central  Google Scholar 

  48. Drafts BC, Twomley KM, D’Agostino R et al (2013) Low to moderate dose anthracycline based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 6:877–885

    Article  PubMed  PubMed Central  Google Scholar 

  49. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) International Consensus Group on Cardiovascular Magnetic Resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 53:1475–1487

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  PubMed  Google Scholar 

  51. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  52. Nakamori S, Dohi K, Ishida M et al (2018) Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. J Am Coll Cardiol Intv 11:48–59

    Article  Google Scholar 

  53. Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 2: Initial clinical experience. J Cardiovasc Magn Reson. 14:64

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lightfoot JC, D’Agostino RB Jr, Hamilton CA et al (2010) Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging. 3:550–558

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thavendiranathan P, Walls M, Giri S et al (2012) Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging. 5:102–110

    Article  PubMed  Google Scholar 

  56. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP et al (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73:779–791

    Article  PubMed  Google Scholar 

  57. Neilan TG, Coelho-Filho OR, Pena-Herrera D et al (2012) Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol 110:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stamouli M, Gkirkas M, Antoniades A, Kaklamanis L, Gkodopoulos K, Palios J, Karagiannidou A, Makavos G, Ikonomidis I, Tsirigotis P (2019) Isolated extramedullary leukemic involvement of the heart presenting as fulminant heart failure. Ann Hematol 98(7):1775–1776

    Article  PubMed  Google Scholar 

  59. Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722

    Article  CAS  PubMed  Google Scholar 

  60. Tham EB, Haykowsky MJ, Chow K et al (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48

    Article  PubMed  PubMed Central  Google Scholar 

  61. Choi BW, BergerHJ SPE et al (1983) Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J 106:638–643

    Article  CAS  PubMed  Google Scholar 

  62. Schwartz RG, McKenzie WB, Alexander J et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  CAS  PubMed  Google Scholar 

  63. Jiji RS, Kramer CM, Salerno M (2012) Non-invasive imaging andmonitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol 19:377–388

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  65. Carri’o IM, Estorch M, Bern’a L, L’opez-Pousa J, Tabernero J, Torres G (1995) Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 36:2044–2049

    Google Scholar 

  66. Estorch M, Carrió I, Martínez-Duncker D, Berná L, Torres G, Alonso C, Ojeda B (1993) Myocyte cell damage after administration of doxorubicin or mitoxantrone in breast cancer patients assessed by indium 111 antimyosin monoclonal antibody studies. J Clin Oncol 11:1264–1268

    Article  CAS  PubMed  Google Scholar 

  67. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA (2009) Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 10:391–399

    Article  CAS  PubMed  Google Scholar 

  68. de Korte MA, de Vries EG, Lub-de Hooge MN et al (2007) 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer 43:2046–2051

    Article  PubMed  CAS  Google Scholar 

  69. Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, Kosterink JG, van Veldhuisen DJ, Sleijfer DT, Jager PL, de Vries EG (2006) Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 24:2276–2282

    Article  CAS  PubMed  Google Scholar 

  70. Borde C, Kand P, Basu S (2012) Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: evidence of early chemotherapeutic cardiotoxicity? World J Radiol 4:220–223

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sarocchi M, Bauckneht M, Arboscello E et al (2018) An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med. 16(1):295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laursen A, Elming M, Hasbak P et al (2018, 2018) Rubidium-82 positron emission tomography for detection of acute doxorubicininduced cardiac effects in lymphoma patients. J Nucl Cardiol. https://doi.org/10.1007/s12350-018-1458-6

  73. Westermann D, Neumann JT, Sorensen NA, Blankenberg S (2017) High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol 14(8):472–483

    Article  CAS  PubMed  Google Scholar 

  74. Michel L, Rassaf T, Totzeck M (2018) Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J Thorac Dis 10(Suppl 35):S4282–S4295

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yusuf SW, Daraban N, Abbasi N, Lei X, Durand JB, Daher IN (2012) Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol 35(7):443–450

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimsky P, Group ESCSD (2018) 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST segment elevation of the European Society of Cardiology (ESC). Eur Heart J 39(2):119–177

    Article  PubMed  Google Scholar 

  77. Velders MA, Boden H, Hofma SH, Osanto S, van der Hoeven BL, Heestermans AA, Cannegieter SC, Jukema JW, Umans VA, Schalij MJ, van Boven AJ (2013) Outcome after ST elevation myocardial infarction in patients with cancer treated with primary percutaneous coronary intervention. Am J Cardiol 112(12):1867–1872

    Article  PubMed  Google Scholar 

  78. Cardinale D, Sandri MT, Colombo A et al (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754

    Article  CAS  PubMed  Google Scholar 

  79. Cardinale D, Colombo A, Torrisi R et al (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28:3910–3916

    Article  CAS  PubMed  Google Scholar 

  80. Ky B, Putt M, Sawaya H et al (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 63(8):809–816

    Article  CAS  PubMed  Google Scholar 

  81. Li-Ling Tan LL, Lyon AR (2018) Role of biomarkers in prediction of cardiotoxicity during cancer treatment. Curr Treat Options Cardiovasc Med 20:55

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang YD, Chen SX, Ren LQ (2016) Serum B-type natriuretic peptide levels as a marker for anthracycline-induced cardiotoxicity. Oncol Lett 11(5):3483–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, Colan SD, Neuberg DS, Dahlberg SE, Henkel JM, Asselin BL, Athale UH, Clavell LA, Laverdiere C, Michon B, Schorin MA, Sallan SE (2012) Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol 30(10):1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang C, Shi D, Yang P (2019) BNP as a potential biomarker for cardiac damage of breast cancer after radiotherapy: a meta-analysis. Medicine (Baltimore) 98(29):e16507

    Article  CAS  Google Scholar 

  86. Pavo N, Raderer M, Hulsmann M, Neuhold S, Adlbrecht C, Strunk G, Goliasch G, Gisslinger H, Steger GG, Hejna M, Kostler W, Zochbauer-Muller S, Marosi C, Kornek G, Auerbach L, Schneider S, Parschalk B, Scheithauer W, Pirker R, Drach J, Zielinski C, Pacher R (2015) Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart 101(23):1874–1880

    Article  CAS  PubMed  Google Scholar 

  87. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 55(3):213–220

    Article  CAS  PubMed  Google Scholar 

  88. Nakamae H, Tsumura K, Terada Y et al (2005) Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 104(11):2492–2498

    Article  CAS  PubMed  Google Scholar 

  89. Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, Gravdehaug B, von Knobelsdorff-Brenkenhoff F, Bratland Å, Storås TH, Hagve TA, Røsjø H, Steine K, Geisler J, Omland T (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 37(21):1671–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, Kalay N, Dikilitas M, Yarlioglues M, Karaca H, Berk V, Ardic I, Ergin A, Lam YY (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int Cardiol. 167(5):2306–2310

    Article  Google Scholar 

  91. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr et al (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: The CECCY Trial. J Am Coll Cardiol. 71(20):2281–2290

    Article  CAS  PubMed  Google Scholar 

  92. Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A, Los M, Smit WM, Nieboer P, Smorenburg CH, Mandigers CM, van der Wouw AJ, Kessels L, van der Velden AW, Ottevanger PB, Smilde T, de Boer J, van Veldhuisen DJ, Kema IP, de Vries EG, Schellens JH (2016) Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2(8):1030–1037

    Article  PubMed  Google Scholar 

  93. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, Berk V, Karaca H, Kalay N, Oguzhan A, Ergin A (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 17(1):81–89

    Article  CAS  PubMed  Google Scholar 

  94. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study.J. Am Coll Cardiol. 60(23):2384–2390

    Article  CAS  Google Scholar 

  95. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, Ruddy K, Lenihan D (2017) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 35(8):893–911

    Article  PubMed  Google Scholar 

  96. Cardinale D, Ciceri F, Latini R et al (2018) Anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur J Cancer. 94:126–137

    Article  CAS  PubMed  Google Scholar 

  97. Michel G, Mulder RL, van der Pal HJH, Skinner R, Bárdi E, Brown MC, Vetsch J, Frey E, Windsor R, LCM K, Levitt G (2019) Evidence-based recommendations for the organization of long-term follow-up care for childhood and adolescent cancer survivors: a report from the PanCareSurFup Guidelines Working Group. J Cancer Surviv (5):759–772

Download references

Funding

MN has received grants by the Deutsche Forschungsgemeinschaft (DFG) through the Sonderforschungsbereich Transregio 19 “Inflammatory Cardiomyopathy” (SFB TR19) (TP B2), and by the University Hospital Giessen and Marburg Foundation Grant “T cell functionality” (UKGM 10/2009). MN has been consultant to the IKDT (Institute for Cardiac Diagnosis and Therapy GmbH, Berlin) 2004–2008, and has received honoraria for presentations and/or participated in advisory boards from Abbot, Abiomed, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Fresenius, Miltenyi Biotech, Novartis, Pfizer, Roche, and Zoll. AGR has received honoraria for presentations from Astra-Zeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Makavos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makavos, G., Ikonomidis, I., Palios, J. et al. Cardiac imaging in cardiotoxicity: a focus on clinical practice. Heart Fail Rev 26, 1175–1187 (2021). https://doi.org/10.1007/s10741-020-09952-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09952-w

Keywords

  • Cardiotoxicity
  • Cardiac imaging
  • Three dimensional echocardiography
  • Global longitudinal strain
  • Cardiac magnetic resonance