Cavitation in left ventricular assist device patients: a potential early sign of pump thrombosis

Abstract

Mechanical ventricular support with left ventricular assist device (LVAD) has emerged as a durable and safe therapy, both as bridge-to-transplant (BTT) or destination therapy (DT), in patients with advanced heart failure (HF). However, the occurrence of pump thrombosis (PT) still represents a serious complication, especially when LVADs of first or second generation are implanted. During the latest years, some investigations have recognized the occurrence of cavitation, evidenced through transthoracic echocardiography (TTE), as a potential early and indirect sign of PT. In the present manuscript, we reviewed the available data on the occurrence of cavitation in LVAD patients as an early potential marker of PT, also presenting the hemodynamic mechanisms involved.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2
Figure 3.

Abbreviations

BTT:

Bridge-to-transplant

DT:

Destination therapy

HITS:

High-intensity transient signals

LVAD:

Left ventricular assist device

LVEDD:

Left ventricular end diastolic diameter

P:

Pressure

PT:

Pump thrombosis

PV:

Vapor pressure

TCD:

Transcranial Doppler

TTE:

Transthoracic echocardiography

References

  1. 1.

    Li X, Kondray V, Tavri S, Ruhparwar A, Azeze S, Dey A, Partovi S, Rengier F (2019) Role of imaging in diagnosis and management of left ventricular assist device complications. Int J Cardiovasc Imaging 35:1365–1377. https://doi.org/10.1007/s10554-019-01562-4

    Article  PubMed  Google Scholar 

  2. 2.

    Rigatelli G, Santini F, Faggian G (2012) Past and present of cardiocirculatory assist devices: a comprehensive critical review. J Geriatr Cardiol 9:389–400

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Han JJ, Acker MA, Atluri P (2018) Left ventricular assist devices. Circulation 138:2841–2851

    Article  Google Scholar 

  4. 4.

    Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B (2016) Left ventricular assist devices-current state and perspectives. J Thorac Dis 8:E660–E666

    Article  Google Scholar 

  5. 5.

    Uriel N, Han J, Morrison KA, Nahumi N, Yuzefpolskaya M, Garan AR, Duong J, Colombo PC, Takayama H, Thomas S, Naka Y, Jorde UP (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant 33:51–59

    Article  Google Scholar 

  6. 6.

    Girod G, Jaussi A, Rosset C, De Werra P, Hirt F, Kappenberger L (2002) Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves. Echocardiography 19:531–536

    Article  Google Scholar 

  7. 7.

    Johansen P (2004) Mechanical heart valve cavitation. Expert Rev Med Devices 1:95–104

    Article  Google Scholar 

  8. 8.

    Johansen P, Andersen TS, Hasenkam JM, Nygaard H, Paulsen PK (2014) Mechanical heart valve cavitation in patients with bileaflet valves. Conf Proc IEEE Eng Med Biol Soc:5655–5658

  9. 9.

    Davis MK, Ha R, Banerjee D (2014) The presence of air bubbles in the aorta of a patient with a HeartMate II left ventricular assist device: a novel sign of outflow graft obstruction. ASAIO J 60:600–602

    Article  Google Scholar 

  10. 10.

    Raina A, Agarwal R, Benza RL (2014) Spontaneous microbubbles in the aortic root and thrombosis of a continuous-flow left ventricular assist device. J Heart Lung Transplant 33:550–551

    Article  Google Scholar 

  11. 11.

    Nguyen TN, Tri Nguyen NM, Truong VT, Vo VM, Rigatelli G (2018) Cavitation phenomenon creating bubbles and their explosion in the coronary arteries causes damage to the endothelium and start the atherosclerotic process. JACC 71:A269. https://doi.org/10.1016/S0735-1097(18)30810-6

    Article  Google Scholar 

  12. 12.

    Andersen TS, Johansen P, Christensen BO, Paulsen PK, Nygaard H, Hasenkam JM (2006) Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients. Ann Thorac Surg 81:34–41

    Article  Google Scholar 

  13. 13.

    Zong YJ, Liu G,Long J, Zhou D, Zhang L, Feng Y, Wan M (2017) Focused ultrasound cavitation induced injury and localized atherosclerosis plaques of rabbit abdominal arterial endothelium. Conference: 2017 IEEE International Ultrasonics Symposium (IUS). 1-4. https://doi.org/10.1109/ULTSYM.2017.8092766

  14. 14.

    Zong YJ, Wang R, Zhang L, Liu G, Zou X, Feng Y, Wan M (2015) Local cavitation induced vessel wall injury and its potential application in developing atherosclerosis model, 2015 IEEE International Ultrasonics Symposium (IUS) 1-4 https://doi.org/10.1109/ULTSYM.2015.0226

  15. 15.

    Graf T, Fischer H, Reul H, Rau G (1991) Cavitation potential of mechanical heart valve prostheses. Int J Artif Organs 14:169–174

    CAS  Article  Google Scholar 

  16. 16.

    Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R (1994) Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve 3:2–7

    Google Scholar 

  17. 17.

    Barak M, Katz Y (2005) Microbubbles: pathophysiology and clinical implications. Chest 128:2918–2932

    Article  Google Scholar 

  18. 18.

    Dhillon SS, Khoo NS, Quinonez L, Buchholz H (2013) Spontaneous endogenous microbubbles in a child with Berlin heart ventricular assist device. ASAIO J 59:181–182

    Article  Google Scholar 

  19. 19.

    Malik AB, Johnson A, Tahamont MV (1982) Mechanisms of lung vascular injury after intravascular coagulation. Ann N Y Acad Sci 384:213–234

    CAS  Article  Google Scholar 

  20. 20.

    Kolla KR, Maltais S, Pereira NL, Chaliki HP (2018) Microbubbles in the aorta and left ventricle of a patient with a left ventricular assist device: a unique presentation of pump thrombosis leading to urgent surgery. Cureus 10:e2463

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Palaniswamy C, Garg J, Dutta T, Shah A, Gass A, Lanier GM (2014) Cavitation phenomenon: a novel echocardiographic finding in pump thrombosis. J Card Fail 20:874–875

    Article  Google Scholar 

  22. 22.

    Dimitrov K, Riebandt J, Haberl T, Wiedemann D, Simon P, Laufer G, Schima H, Zimpfer D (2016) High-intensity transient signals in the outflow graft and thrombosis of a HeartWare left ventricular assist device. Ann Thorac Surg 101:e83–e85

    Article  Google Scholar 

  23. 23.

    Letarte L, Sears-Rogan P, Boyce S, Tyson M, Wang Z (2015) Spontaneous microbubble formation is an indicator of LVAD pump thrombosis. J Heart Lung Transplant 34:S110–S111

    Article  Google Scholar 

  24. 24.

    Letarte L, Wang Z, Rodrigo ME, Sheikh FH, Hofmeyer M, Boyce SW, Najjar SS, Majure DT (2016) Microbubbles in patients with LVADs: echocardiographic markers for LVAD pump thrombosis? J Heart Lung Transplnat 35:S241

    Article  Google Scholar 

  25. 25.

    Stainback RF, Estep JD, Agler DA, Birks EJ, Bremer M, Hung J, Kirkpatrick JN, Rogers JG, Shah NR, American Society of Echocardiography (2015) Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 28:853–909

    Article  Google Scholar 

  26. 26.

    Ammar KA, Umland MM, Kramer C, Sulemanjee N, Jan MF, Khandheria BK, Seward JB, Paterick TE (2012) The ABCs of left ventricular assist device echocardiography: a systematic approach. Eur Heart J Cardiovasc Imaging 13:885–899

    Article  Google Scholar 

  27. 27.

    Kato TS, Colombo PC, Nahumi N, Kitada S, Takayama H, Naka Y, Di Tullio MR, Homma S, Mancini D, Jorde UP, Uriel N (2014) Value of serial echo-guided ramp studies in a patient with suspicion of device thrombosis after left ventricular assist device implantation. Echocardiography 31:E5–E9

    Article  Google Scholar 

  28. 28.

    Imamura T, Jeevanandam V, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, Rodgers D, Besser S, Chung B, Nguyen A, Narang N, Ota T, Song T, Juricek C, Mehra M, Costanzo MR, Jorde UP, Burkhoff D, Sayer G, Uriel N (2019) Optimal hemodynamics during left ventricular assist device support are associated with reduced readmission rates. Circ Heart Fail 12:e005094

    Article  Google Scholar 

  29. 29.

    Yang F, Kormos RL, Antaki JF (2015) High-speed visualization of disturbed pathlines in axial flow ventricular assist device under pulsatile conditions. J Thorac Cardiovasc Surg 150:938–944

    Article  Google Scholar 

  30. 30.

    Chiu AH, Haluszkiewicz E, McAuliffe W (2015) High-speed visualization of disturbed pathlines in axial flow ventricular assist device under pulsatile conditions. J Thorac Cardiovasc Surg 150:938–944

    Article  Google Scholar 

  31. 31.

    Rigatelli G, Bacich D, Zuin M, Braggion G, Dell'Avvocata F (2019) Cardiac pump-induced platypnea-orthodeoxia. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jey228

  32. 32.

    Ferns J, Dowling R, Bhat G (2001) Evaluation of a patient with left ventricular assist device dysfunction. ASAIO J 47:696–698

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianluca Rigatelli.

Ethics declarations

Conflict of interest

None of the authors have conflict of interest to declare

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuin, M., Rigatelli, G., Braggion, G. et al. Cavitation in left ventricular assist device patients: a potential early sign of pump thrombosis. Heart Fail Rev 25, 965–972 (2020). https://doi.org/10.1007/s10741-019-09884-0

Download citation

Keywords

  • Left ventricular assist device
  • Pump thrombosis
  • Cavitation
  • Microbubbles
  • Echocardiography