Skip to main content

Advertisement

Log in

Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiac injuries, like heart attacks, drive the secondary pathology with advanced heart failure. In this process, non-resolving inflammation is a prime component of accelerated cardiovascular disease and subsequent fatal events associated with imbalanced diet, physical inactivity, disrupted circadian rhythms, neuro-hormonal stress, and poly- or co-medication. Laboratory rodents have established that splenic leukocyte–directed resolution mechanisms are essential for cardiac repair after injury. Here, we discuss the impact of three lifestyle-related factors that are prime causes of derailed cardiac healing, putative non-resolving inflammation-resolution mechanisms in cardiovascular diseases, and progressive heart failure after cardiac injury. The presented review resurfaces the lifestyle-related risks and future research directions required to understand the molecular and cellular mechanisms between the causes of cardiovascular disease and their related consequences of non-resolving inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Budi Siswanto B, Sliwa K, Filippatos G (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1(1):4–25

    PubMed  Google Scholar 

  2. Nabeebaccus A, Zheng S, Shah AM (2016) Heart failure—potential new targets for therapy. Br Med Bull 119(1):99–110

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Driscoll A, Meagher S, Kennedy R, Hay M, Banerji J, Campbell D, Cox N, Gascard D, Hare D, Page K, Nadurata V, Sanders R, Patsamanis H (2016) What is the impact of systems of care for heart failure on patients diagnosed with heart failure: a systematic review. BMC Cardiovasc Disord 16:195

    PubMed  PubMed Central  Google Scholar 

  4. A AO, Shah SJ (2015) Diagnosis and management of heart failure with preserved ejection frac-tion: 10 key lessons. Curr Cardiol Rev 11(1):42–52

    PubMed Central  Google Scholar 

  5. Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62

    PubMed Central  Google Scholar 

  6. Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P (2016) Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep 6:29901

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ade CJ et al (2017) Incidence rate of cardiovascular disease end points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc 6(8):e005564

    PubMed  PubMed Central  Google Scholar 

  8. Ross R (1986) The pathogenesis of atherosclerosis--an update. N Engl J Med 314(8):488–500

    CAS  PubMed  Google Scholar 

  9. Tromp J, MacDonald MR, Tay WT, Teng THK, Hung CL, Narasimhan C, Shimizu W, Ling LH, Ng TP, Yap J, McMurray JJV, Zile MR, Richards AM, Anand IS, Lam CSP (2018) Heart failure with preserved ejection fraction in the young. Circulation 138(24):2763–2773

    PubMed  Google Scholar 

  10. Halade GV, Kain V (2017) Obesity and cardiometabolic defects in heart failure pathology. Compr Physiol 7(4):1463–1477

    PubMed  PubMed Central  Google Scholar 

  11. Tourki B, Halade GV (2018) The failing of the obesity paradox in the failing heart. Am J Physiol Heart Circ Physiol 315:H1353–H1355

    CAS  PubMed Central  Google Scholar 

  12. Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschöpe C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22(6):743–752

    Google Scholar 

  13. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, Marwick T, Pinney S, Bellazzi R, Favalli V, Kramer C, Roberts R, Zoghbi WA, Bonow R, Tavazzi L, Fuster V, Narula J (2013) The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol 62(22):2046–2072

    PubMed  Google Scholar 

  14. Segovia Cubero J et al (2004) Heart failure: etiology and approach to diagnosis. Rev Esp Cardiol (English Edition) 57(03):250–259

    Google Scholar 

  15. Follath F (2001) Ischemic versus non-ischemic heart failure: should the etiology be determined? Heart Fail Monit 1(4):122–125

    CAS  PubMed  Google Scholar 

  16. Van Linthout S, Tschöpe C (2017) Inflammation – cause or consequence of heart failure or both? Curr Heart Fail Rep 14(4):251–265

    PubMed  PubMed Central  Google Scholar 

  17. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060

    PubMed  Google Scholar 

  18. Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119(1):159–176

    CAS  PubMed  Google Scholar 

  19. Yndestad A, Kristian Damås J, Øie E, Ueland T, Gullestad L, Aukrust P (2006) Systemic inflammation in heart failure--the whys and wherefores. Heart Fail Rev 11(1):83–92

    CAS  PubMed  Google Scholar 

  20. Sansbury BE, Spite M (2016) Resolution of acute inflammation and the role of resolvins in immunity, thrombosis and vascular biology. Circ Res 119(1):113–130

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109(6):444

    PubMed  Google Scholar 

  22. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185

    CAS  PubMed  Google Scholar 

  23. Lopez EF, Kabarowski JH, Ingle KA, Kain V, Barnes S, Crossman DK, Lindsey ML, Halade GV (2015) Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol 308(4):H269–H280

    CAS  PubMed  Google Scholar 

  24. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    CAS  PubMed  Google Scholar 

  25. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670

    CAS  PubMed  Google Scholar 

  26. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 272(11):6972–6978

    CAS  PubMed  Google Scholar 

  28. Shih H et al (2010) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57(1):9–17

    PubMed Central  Google Scholar 

  29. Woulfe KC, Bruns DR (2018) From pediatrics to geriatrics: mechanisms of heart failure across the life-course. J Mol Cell Cardiol 126:70–76

    PubMed  PubMed Central  Google Scholar 

  30. Halade GV, Kain V, Black LM, Prabhu SD, Ingle KA (2016) Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging 8(11):2611–2634

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dzau V, Braunwald E (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121(4 Pt 1):1244–1263

    CAS  PubMed  Google Scholar 

  32. Halade GV, Kain V, Ingle KA (2018) Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol 314(2):H255–h267

    PubMed  Google Scholar 

  33. Halade GV et al (2018) Splenic leukocytes define the resolution of inflammation in heart failure. Sci Signal 11(520):eaao1818

    PubMed  PubMed Central  Google Scholar 

  34. Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD, Serhan CN, Joshi M, Halade GV (2015) Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol 84:24–35

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Halade GV, Kain V, Serhan CN (2018) Immune responsive resolvin D1 programs myocardial infarction-induced cardiorenal syndrome in heart failure. FASEB J 32(7):3717–3729

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jadapalli JK, Halade GV (2018) Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB J 32(10):5227–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Halade GV, Kain V, Tourki B, Jadapalli JK (2019) Lipoxygenase drives Lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism 96:22–32

    CAS  PubMed  Google Scholar 

  38. Kain V, Ingle KA, Kabarowski J, Barnes S, Limdi NA, Prabhu SD, Halade GV (2018) Genetic deletion of 12/15 lipoxygenase promotes effective resolution of inflammation following myocardial infarction. J Mol Cell Cardiol 118:70–80

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Halade GV, Kain V, Ingle KA, Prabhu SD (2017) Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol 313(1):H89–h102

    PubMed  PubMed Central  Google Scholar 

  40. Neckar J et al (2019) Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin Sci (Lond) 133(8):939–951

    CAS  Google Scholar 

  41. Neckar J et al (2018) Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1alpha via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol 315(5):H1148–h1158

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brake R, Jones ID (2017) Chronic heart failure part 1: pathophysiology, signs and symptoms. Nurs Stand 31(19):54–63

    PubMed  Google Scholar 

  43. Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschöpe C, van Bilsen M, Zannad F, McMurray J, Shah AM (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11(2):119–129

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481

    CAS  PubMed  Google Scholar 

  45. Altabas V (2015) Diabetes, endothelial dysfunction, and vascular repair: what should a diabetologist keep his eye on? Int J Endocrinol 2015:14

    Google Scholar 

  46. Burr, G.O. and M.M. Burr, Nutrition classics from The Journal of Biological Chemistry 82:345-67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet. Nutr Rev, 1973 31(8): p. 248–249

    Google Scholar 

  47. Hu S et al (2018) Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab 28(3):415–431.e4

    CAS  PubMed  Google Scholar 

  48. Kain V et al (2019) Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophil:lymphocyte ratio, leading to inflamed milieu in acute heart failure. Faseb j:fj201802477R

  49. Kain V, Ingle KA, Kachman M, Baum H, Shanmugam G, Rajasekaran NS, Young ME, Halade GV (2018) Excess omega-6 fatty acids influx in aging drives metabolic dysregulation, electrocardiographic alterations, and low-grade chronic inflammation. Am J Physiol Heart Circ Physiol 314(2):H160–h169

    PubMed  Google Scholar 

  50. Halade GV, el Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46(1):43–52

    CAS  PubMed  Google Scholar 

  51. Kain V, Halade GV (2017) Metabolic and biochemical stressors in diabetic cardiomyopathy. Front Cardiovasc Med 4:31

    PubMed  PubMed Central  Google Scholar 

  52. Nuttall FQ (2015) Body mass index: obesity, BMI, and health a critical review. Nutr Today 50(3):117–128

    PubMed  PubMed Central  Google Scholar 

  53. Lai M, Chandrasekera PC, Barnard ND (2014) You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 4(9):e135

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Obesity and overweight. 2016 [Cited 2018; World Health Organization (WHO)]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 24 March 2019

  55. International Diabetes Federation. 2012 [cited 2018; 5th Edition]. Available from: http://www.idf.org/diabetesatlas. Accessed 24 March 2019

  56. DiNicolantonio JJ, O’Keefe JH (2017) Good fats versus bad fats: a comparison of fatty acids in the promotion of insulin resistance, inflammation, and obesity. Mo Med 114(4):303–307

    PubMed  PubMed Central  Google Scholar 

  57. Russo, L. and C.N. Lumeng, Properties and functions of adipose tissue macrophages in obesity. Immunology. 0(ja)

  58. Dadvar S, Ferreira DMS, Cervenka I, Ruas JL (2018) The weight of nutrients: kynurenine metabolites in obesity and exercise. J Intern Med 284(5):519–533

    CAS  PubMed  Google Scholar 

  59. Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes 32:1256–1263

    CAS  Google Scholar 

  60. Haslam DW, James WPT (2005) Obesity. Lancet 366(9492):1197–1209

    PubMed  Google Scholar 

  61. Carvalheira JBC, Qiu Y, Chawla A (2013) Blood spotlight on leukocytes and obesity. Blood 122(19):3263–3267

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hower IM, Harper SA, Buford TW (2018) Circadian rhythms, exercise, and cardiovascular health. J Circadian Rhythms 16:7

    PubMed  PubMed Central  Google Scholar 

  63. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O’Keefe JH, Milani RV, Blair SN (2015) Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res 117(2):207–219

    CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Keefe JH, O’Keefe EL, Lavie CJ (2018) The Goldilocks Zone for exercise: not too little, Not Too Much. Mo Med 115(2):98–105

    PubMed  PubMed Central  Google Scholar 

  65. Díaz BB, González DA, Gannar F, Pérez MCR, de León AC (2018) Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol Lett 203:1–5

    PubMed  Google Scholar 

  66. Eijsvogels TMH, Thompson PD, Franklin BA (2018) The “extreme exercise hypothesis”: recent findings and cardiovascular health implications. Curr Treat Options Cardiovasc Med 20(10):84

    PubMed  PubMed Central  Google Scholar 

  67. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    CAS  PubMed  Google Scholar 

  68. Lavie CJ, Johannsen N, Swift D, Sénéchal M, Earnest C, Church T, Hutber A, Sallis R, Blair SN (2014) Exercise is medicine – the importance of physical activity, exercise training, cardiorespiratory fitness and obesity in the prevention and treatment of type 2 diabetes. Eur Endocrinol 10(1):18–22

    PubMed  PubMed Central  Google Scholar 

  69. Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ (2018) Promoting physical activity and exercise: JACC health promotion series. J Am Coll Cardiol 72(14):1622–1639

    PubMed  Google Scholar 

  70. Cattadori G et al (2017) Exercise and heart failure: an update. ESC Heart Fail 5(2):222–232

    PubMed  PubMed Central  Google Scholar 

  71. Brinker SK et al (2014) Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function: the Cooper Center Longitudinal Study. JACC Heart Fail 2(3):238–246

    PubMed  PubMed Central  Google Scholar 

  72. León-Latre M et al (2014) Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile. Rev Esp Cardiol (English Edition) 67(06):449–455

    Google Scholar 

  73. Morrison BN, McKinney J, Isserow S, Lithwick D, Taunton J, Nazzari H, de Souza AM, Heilbron B, Cater C, MacDonald M, Hives BA, Warburton DER (2018) Assessment of cardiovascular risk and preparticipation screening protocols in masters athletes: the Masters Athlete Screening Study (MASS): a cross-sectional study. BMJ Open Sport Exerc Med 4(1):e000370

    PubMed  PubMed Central  Google Scholar 

  74. Peake JM, Neubauer O, Walsh NP, Simpson RJ (2017) Recovery of the immune system after exercise. J Appl Physiol 122(5):1077–1087

    CAS  PubMed  Google Scholar 

  75. Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, Papanikolaou K, Tsimeas P, Chatzinikolaou A, Avloniti A, Tsiokanos A, Koutedakis Y (2018) The effects of acute low-volume HIIT and aerobic exercise on leukocyte count and redox status. J Sports Sci Med 17(3):501–508

    PubMed  PubMed Central  Google Scholar 

  76. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythm 29(4):257–276

    CAS  Google Scholar 

  77. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the CLOCK components CLOCK and BMAL1 leads to hypoinsulinemia and diabetes. Nature 466(7306):627–631

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang XS et al (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med (Oxford, England) 61(2):78–89

    Google Scholar 

  79. Ingle KA, Kain V, Goel M, Prabhu SD, Young ME, Halade GV (2015) Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol 309(11):H1827–H1836

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Colas RA, Souza PR, Walker ME, Burton M, Zasłona Z, Curtis AM, Marques RM, Dalli J (2018) Impaired production and diurnal regulation of vascular RvDn-3 DPA increase systemic inflammation and cardiovascular disease. Circ Res 122(6):855–863

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hermansson J, Hallqvist J, Karlsson B, Knutsson A, Gillander Gådin K (2018) Shift work, parental cardiovascular disease and myocardial infarction in males. Occup Med 68(2):120–125

    CAS  Google Scholar 

  83. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T (2014) A circadian Clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of <em>Ccl2</em> expression. J Immunol 192(1):407–417

    CAS  PubMed  Google Scholar 

  84. Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Turek FW et al (2005) Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice. Science (New York, N.Y.) 308(5724):1043–1045

    CAS  Google Scholar 

  86. Abu Farha R (2018) And E. Alefishat, Shift work and the risk of cardiovascular diseases and metabolic syndrome among Jordanian employees. Oman Med J 33(3):235–242

    PubMed  PubMed Central  Google Scholar 

  87. Poggiogalle E, Jamshed H, Peterson CM (2018) Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84:11–27

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wirtz PH, von Känel R (2017) Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep 19(11):111

    PubMed  Google Scholar 

  89. (CSHS), C.f.S.o.H.S. Acute vs Chronic Stress. 2017 [05/17/2019]; Available from: https://humanstress.ca/stress/understand-your-stress/acute-vs-chronic-stress/. Accessed 24 March 2019

  90. Lagraauw HM, Kuiper J, Bot I (2015) Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun 50:18–30

    PubMed  Google Scholar 

  91. Dimsdale JE (2008) Psychological stress and cardiovascular disease. J Am Coll Cardiol 51(13):1237–1246

    PubMed  PubMed Central  Google Scholar 

  92. Slopen N, Glynn RJ, Buring JE, Lewis TT, Williams DR, Albert MA (2012) Job strain, job insecurity, and incident cardiovascular disease in the Women’s Health Study: results from a 10-year prospective study. PLoS One 7(7):e40512–e40512

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kivimäki M, Kawachi I (2015) Work stress as a risk factor for cardiovascular disease. Curr Cardiol Rep 17(9):630–630

    PubMed  Google Scholar 

  94. Cohen BE, Edmondson D, Kronish IM (2015) State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 28(11):1295–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang L, Piña IL (2019) Stress-induced cardiomyopathy. Heart Fail Clin 15(1):41–53

    CAS  PubMed  Google Scholar 

  96. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KEJ, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (2015) Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med 373(10):929–938

    CAS  PubMed  Google Scholar 

  97. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15(8):551–567

    CAS  PubMed  Google Scholar 

  98. Heinz J, Marinello M, Fredman G (2017) Pro-resolution therapeutics for cardiovascular diseases. Prostaglandins Other Lipid Mediat 132:12–16

    CAS  PubMed  Google Scholar 

  99. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21(2):325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31(4):1273–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bronzato S, Durante A (2018) Dietary supplements and cardiovascular diseases. Int J Prev Med 9:80–80

    PubMed  PubMed Central  Google Scholar 

  104. Goel A, Pothineni N, Singhal M, Paydak H, Saldeen T, Mehta J (2018) Fish, fish oils and cardioprotection: promise or fish tale? Int J Mol Sci 19(12):3703

    PubMed Central  Google Scholar 

  105. Halade GV, Williams PJ, Lindsey ML, Fernandes G (2011) Fish oil decreases inflammation and reduces cardiac remodeling in rosiglitazone treated aging mice. Pharmacol Res 63(4):300–307

    CAS  PubMed  Google Scholar 

  106. Kain V, Halade GV (2019) Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. J Cell Physiol 234(4):3910–3920

    CAS  PubMed  Google Scholar 

  107. Aggarwal M, Bozkurt B, Panjrath G, Aggarwal B, Ostfeld RJ, Barnard ND, Gaggin H, Freeman AM, Allen K, Madan S, Massera D, Litwin SE, American College of Cardiology’s Nutrition and Lifestyle Committee of the Prevention of Cardiovascular Disease Council (2018) Lifestyle modifications for preventing and treating heart failure. J Am Coll Cardiol 72(19):2391–2405

    PubMed  Google Scholar 

  108. Salive ME (2013) Multimorbidity in older adults. Epidemiol Rev 35:75–83

    PubMed  Google Scholar 

  109. Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FMF, Bell SP, Fulmer T, Reuben DB, Zieman S, Rich MW (2018) Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol 71(19):2149–2161

    PubMed  PubMed Central  Google Scholar 

  110. Leelakanok N et al (2017) Association between polypharmacy and death: a systematic review and meta-analysis. J Am Pharm Assoc (2003) 57(6):729–738.e10

    Google Scholar 

  111. Arfè A et al (2016) Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ 354

  112. Huang SP et al (2018) Nonsteroidal anti-inflammatory drugs and risk of first hospitalization for heart failure in patients with no history of heart failure: a population-based case-crossover study. Drug Saf

  113. Rotunno R et al (2018) NSAIDs and heart failure: a dangerous relationship. Monaldi Arch Chest Dis 88(2):950

    PubMed  Google Scholar 

  114. Halade GV, Kain V, Wright GM, Jadapalli JK (2018) Subacute treatment of carprofen facilitate splenocardiac resolution deficit in cardiac injury. J Leukoc Biol 104:1173–1186

    CAS  PubMed  Google Scholar 

  115. Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

    CAS  PubMed  Google Scholar 

  116. McNeil JJ et al (2018) Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 379(16):1509–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong J, Chen H (2018) Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med 5:9

    PubMed  PubMed Central  Google Scholar 

  118. Jadapalli JK et al (2018) Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters inflammation-resolution program in the myocardium. Am J Physiol Heart Circ Physiol

  119. Linhart A, Belohlavek J Type 2 diabetes mellitus and heart failure. Vnitr Lek 62(7–8):592–597

  120. Waksman J, Taylor RN Jr, Bodor GS, Daly FFS, Jolliff HA, Dart RC (2001) Acute myocardial infarction associated with amphetamine use. Mayo Clin Proc 76(3):323–326

    CAS  PubMed  Google Scholar 

  121. Smedra A, Szustowski S, Berent J (2015) Amphetamine-related myocardial infarction in a 42-year old man. Arch Med Sadowej Kryminol 65(3):173–181

    CAS  PubMed  Google Scholar 

  122. Valgimigli, M. 2018. The remarkable story of a wonder drug, which now comes to an end in the primary prevention setting: say bye-bye to aspirin!. Eur Heart J

  123. McNeil, J.J., et al. 2018. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med

Download references

Funding

This work was supported by National Institutes of Health (AT006704 and HL132989) and The University of Alabama at Birmingham (UAB) Pittman scholar award to G.V.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh V. Halade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 301 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pullen, A.B., Jadapalli, J.K., Rhourri-Frih, B. et al. Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Fail Rev 25, 381–391 (2020). https://doi.org/10.1007/s10741-019-09817-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09817-x

Keywords

Navigation