Skip to main content

Advertisement

Log in

Immune cell diversity contributes to the pathogenesis of myocarditis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocarditis (MCD) is a type of inflammatory disease in which inflammatory cells infiltrate the myocardium, leading to cardiac dysfunction, myocardial necrosis, and fibrosis. Although it has been reported that MCD is mediated by T cells, the immune system is complex and includes many types of immune cells that interact with one another. Through investigations of the inflammatory responses in MCD including myocardial necrosis, fibrosis, and arrhythmia, we have gained further insight into the pathogenesis of MCD. This article aims to discuss the diversity and the roles of immune cells involved in the pathogenesis of MCD. Moreover, immunotherapy for the treatment of MCD remains controversial, and further investigation is required to identify accurate immunotherapies for special cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sagar S, Liu PP, Cooper LJ (2012) Myocarditis. Lancet 379:738–747

    Article  PubMed  Google Scholar 

  2. Vdovenko D, Eriksson U (2018) Regulatory role of CD4(+) T cells in myocarditis. J Immunol Res 2018:4396351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, D'Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL (2012) 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 21:245–274

    Article  PubMed  Google Scholar 

  4. Heymans S, Eriksson U, Lehtonen J, Cooper LJ (2016) The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol 68:2348–2364

    Article  PubMed  Google Scholar 

  5. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  6. Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamid T, Prabhu SD (2017) Immunomodulation is the key to cardiac repair. Circ Res 120:1530–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fung G, Luo H, Qiu Y, Yang D, McManus B (2016) Myocarditis. Circ Res 118:496–514

    Article  CAS  PubMed  Google Scholar 

  9. Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, Godwin JW, Rosenthal NA (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7:e36814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, Bozzacco L, Trumpfheller C, Park CG, Steinman RM (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    Article  CAS  PubMed  Google Scholar 

  13. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  14. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  15. Shah AD, Denaxas S, Nicholas O, Hingorani AD, Hemingway H (2017) Neutrophil counts and initial presentation of 12 cardiovascular diseases: a CALIBER cohort study. J Am Coll Cardiol 69:1160–1169

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG (2014) Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol 307:H1233–H1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, Advani RH, Buckstein R, Rimsza LM, Connors JM, Steidl C, Gordon LI, Horning SJ, Gascoyne RD (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood 120:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaquenod DGC, Ure AE, Rivadeneyra L, Schattner M, Gomez RM (2015) Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol 85:58–70

    Article  CAS  Google Scholar 

  21. Wang C, Dong C, Xiong S (2017) IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. J Mol Cell Cardiol 103:22–30

    Article  CAS  PubMed  Google Scholar 

  22. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sapienza MR, Fuligni F, Agostinelli C, Tripodo C, Righi S, Laginestra MA, Pileri AJ, Mancini M, Rossi M, Ricci F, Gazzola A, Melle F, Mannu C, Ulbar F, Arpinati M, Paulli M, Maeda T, Gibellini D, Pagano L, Pimpinelli N, Santucci M, Cerroni L, Croce CM, Facchetti F, Piccaluga PP, Pileri SA (2014) Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia 28:1606–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490

    Article  CAS  PubMed  Google Scholar 

  25. Kretzschmar D, Betge S, Windisch A, Pistulli R, Rohm I, Fritzenwanger M, Jung C, Schubert K, Theis B, Petersen I, Drobnik S, Mall G, Figulla HR, Yilmaz A (2012) Recruitment of circulating dendritic cell precursors into the infarcted myocardium and pro-inflammatory response in acute myocardial infarction. Clin Sci (Lond) 123:387–398

    Article  CAS  Google Scholar 

  26. Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parham P, Guethlein LA (2018) Genetics of natural killer cells in human health, disease, and survival. Annu Rev Immunol 36:519–548

    Article  CAS  PubMed  Google Scholar 

  28. Mace EM, Gunesch JT, Dixon A, Orange JS (2016) Human NK cell development requires CD56-mediated motility and formation of the developmental synapse. Nat Commun 7:12171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    Article  CAS  PubMed  Google Scholar 

  30. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494

    Article  CAS  PubMed  Google Scholar 

  31. Higuchi H, Hara M, Yamamoto K, Miyamoto T, Kinoshita M, Yamada T, Uchiyama K, Matsumori A (2008) Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 118:363–372

    Article  PubMed  Google Scholar 

  32. Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, Chen W, Zhang C, Zhang Y (2016) Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol 13:167–179

    Article  CAS  PubMed  Google Scholar 

  33. Song J, Chen X, Cheng L, Rao M, Chen K, Zhang N, Meng J, Li M, Liu ZQ, Yang PC (2018) Vitamin D receptor restricts Th2-biased inflammation in the heart. Cardiovasc Res 114:870–879

    Article  CAS  PubMed  Google Scholar 

  34. Nindl V, Maier R, Ratering D, De Giuli R, Zust R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, Rulicke T, Ludewig B (2012) Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol 42:2311–2321

    Article  CAS  PubMed  Google Scholar 

  35. Walker JA, McKenzie A (2018) TH2 cell development and function. Nat Rev Immunol 18:121–133

    Article  CAS  PubMed  Google Scholar 

  36. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M (2001) Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol 167:5464–5469

    Article  CAS  PubMed  Google Scholar 

  37. Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, Marsch S, Widmer U (2001) Lethal autoimmune myocarditis in interferon- γ receptor − deficient mice : enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103:18–21

    Article  CAS  PubMed  Google Scholar 

  38. Ono M, Shimizu J, Miyachi Y, Sakaguchi S (2006) Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein (high), Foxp3-expressing CD25+ and CD25- regulatory T cells. J Immunol 176:4748–4756

    Article  CAS  PubMed  Google Scholar 

  39. Golstein P, Griffiths GM (2018) An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 18:527–535

    Article  CAS  PubMed  Google Scholar 

  40. Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J (2018) Recent advances in CD8(+) regulatory T cell research. Oncol Lett 15:8187–8194

    PubMed  PubMed Central  Google Scholar 

  41. Massilamany C, Gangaplara A, Basavalingappa RH, Rajasekaran RA, Khalilzad-Sharghi V, Han Z, Othman S, Steffen D, Reddy J (2016) Localization of CD8 T cell epitope within cardiac myosin heavy chain-alpha334-352 that induces autoimmune myocarditis in a/J mice. Int J Cardiol 202:311–321

    Article  PubMed  Google Scholar 

  42. Matsumoto Y, Park IK, Kohyama K (2007) B-cell epitope spreading is a critical step for the switch from C-protein-induced myocarditis to dilated cardiomyopathy. Am J Pathol 170:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schulz C, Gomez PE, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  44. Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K, Pinto AR, Klapproth K, Henri S, Malissen B, Rodewald HR, Rosenthal NA, Bajenoff M, Prinz M, Jung S, Sieweke MH (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211:2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, Xiong S (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105:353–364

    Article  CAS  PubMed  Google Scholar 

  47. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wulfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da SN, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510–522.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uemura A, Morimoto S, Hiramitsu S, Hishida H (2001) Endomyocardial biopsy findings in 50 patients with idiopathic atrioventricular block: presence of myocarditis. Jpn Heart J 42:691–700

    Article  CAS  PubMed  Google Scholar 

  49. Kania G, Siegert S, Behnke S, Prados-Rosales R, Casadevall A, Luscher TF, Luther SA, Kopf M, Eriksson U, Blyszczuk P (2013) Innate signaling promotes formation of regulatory nitric oxide-producing dendritic cells limiting T-cell expansion in experimental autoimmune myocarditis. Circulation 127:2285–2294

    Article  CAS  PubMed  Google Scholar 

  50. Griffin GK, Lichtman AH (2013) Two sides to every proinflammatory coin: new insights into the role of dendritic cells in the regulation of T-cell driven autoimmune myocarditis. Circulation 127:2257–2260

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR (2001) From infection to autoimmunity. J Autoimmun 16(3):175–186

    Article  CAS  PubMed  Google Scholar 

  52. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  53. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799

    Article  CAS  PubMed  Google Scholar 

  54. St JA, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol 190:4458–4463

    Article  CAS  Google Scholar 

  55. Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC (2014) Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 4:4649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gieseck RR, Wilson MS, Wynn TA (2017) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76

    Article  PubMed  CAS  Google Scholar 

  57. Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19:173–185

    Article  CAS  PubMed  Google Scholar 

  58. Blyszczuk P, Muller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Luscher TF, Distler O, Eriksson U, Kania G (2017) Transforming growth factor-beta-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J 38:1413–1425

    CAS  PubMed  Google Scholar 

  59. Opavsky MA, Penninger J, Aitken K, Wen WH, Dawood F, Mak T, Liu P (1999) Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 85:551–558

    Article  CAS  PubMed  Google Scholar 

  60. Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147:2141–2147

    CAS  PubMed  Google Scholar 

  61. Penninger JM, Pummerer C, Liu P, Neu N, Bachmaier K (1997) Cellular and molecular mechanisms of murine autoimmune myocarditis. APMIS 105:1–13

    Article  CAS  PubMed  Google Scholar 

  62. Chen P, Baldeviano GC, Ligons DL, Talor MV, Barin JG, Rose NR, Cihakova D (2012) Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin Exp Immunol 169:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O'Shea JJ (2014) Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 381:279–326

    PubMed  PubMed Central  Google Scholar 

  64. Borst J, Ahrends T, Babala N, Melief C, Kastenmuller W (2018) CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647

    Article  CAS  PubMed  Google Scholar 

  65. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, Pilkinton MA, Craig-Owens L, Kola N, Plautz G, Reshef DS, Deutsch JS, Deering RP, Olenchock BA, Lichtman AH, Roden DM, Seidman CE, Koralnik IJ, Seidman JG, Hoffman RD, Taube JM, Diaz LJ, Anders RA, Sosman JA, Moslehi JJ (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375:1749–1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chaigne B, Mouthon L (2017) Mechanisms of action of intravenous immunoglobulin. Transfus Apher Sci 56(1):45–49

    Article  PubMed  Google Scholar 

  68. Orange J, Hossny E, Weiler C, Ballow M, Berger M, Bonilla F, Buckley R, Chinen J, Elgamal Y, Mazer B (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency Committee of the American Academy of allergy, asthma and immunology. J Allergy Clin Immunol 117(4):S525–S553

    Article  CAS  PubMed  Google Scholar 

  69. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14(7):748–755

    Article  CAS  PubMed  Google Scholar 

  70. Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, Jahns R (2007) A novel fluorescence method for the rapid detection of functional Î21-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50(5):423–431

    Article  CAS  PubMed  Google Scholar 

  71. Mobini R, Staudt A, Felix SB, Baumann G, Wallukat G, Deinum J, Svensson H, Hjalmarson Å, Michael F (2003) Hemodynamic improvement and removal of autoantibodies against β -adrenergic receptor by immunoadsorption therapy in dilated cardiomyopathy. J Autoimmun 20(4):345–350

    Article  CAS  PubMed  Google Scholar 

  72. Trimpert C, Herda LR, Eckerle LG, Pohle S, Müller C, Landsberger M, Felix SB, Staudt A (2010) Immunoadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Investig 40(8):685–691

    Article  CAS  Google Scholar 

  73. Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V, Spielhagen T, Wallukat G, Wernecke KD, Baumann G, Stangl K (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39(4):646–652

    Article  CAS  PubMed  Google Scholar 

  74. Benvenuto LJ, Anderson MR, Arcasoy SM (2018) New frontiers in immunosuppression. J Thorac Dis 10(5):3141–3155

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM (2015) Detection of the mechanism of immunotoxicity of cyclosporine a in murine in vitro and in vivo models. Arch Toxicol 89(12):2325–2337

    Article  CAS  PubMed  Google Scholar 

  76. Winter MP, Sulzgruber P, Koller L, Bartko P, Goliasch G, Niessner A (2018) Immunomodulatory treatment for lymphocytic myocarditis-a systematic review and meta-analysis. Heart Fail Rev 23:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsumoto Y, Jee Y, Sugisaki M (2000) Successful TCR-based immunotherapy for autoimmune myocarditis with DNA vaccines after rapid identification of pathogenic TCR. J Immunol 164:2248–2254

    Article  CAS  PubMed  Google Scholar 

  78. Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH (2012) PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol 188:4876–4884

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-1-015), PUMC Youth Fund (2016-XHQN03) and the National Natural Science Foundation of China (81670376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangping Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, X., Song, J. Immune cell diversity contributes to the pathogenesis of myocarditis. Heart Fail Rev 24, 1019–1030 (2019). https://doi.org/10.1007/s10741-019-09799-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09799-w

Keywords

Navigation