Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure

Abstract

Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF. Recent evidence suggests that these pro-hypertrophic TFs co-localize at enhancers to cooperatively activate transcription associated with pathological cardiac remodeling. In disease states, including cancer and HF, evidence suggests that the general transcriptional machinery is disproportionately bound at enhancers. Therefore, pharmacological inhibition of transcriptional machinery that integrates pro-hypertrophic TFs may represent a promising alternative therapeutic approach to limit pathological remodeling associated with the development of HF.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Gerlach D, Tontsch-Grunt U, Baum A, Popow J, Scharn D, Hofmann MH, Engelhardt H, Kaya O, Beck J, Schweifer N, Gerstberger T, Zuber J, Savarese F, Kraut N (2018) The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 37(20):2687–2701. https://doi.org/10.1038/s41388-018-0150-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123(1):37–45. https://doi.org/10.1172/JCI62839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198. https://doi.org/10.1111/j.1749-6632.2009.05100.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 110(50):20164–20169. https://doi.org/10.1073/pnas.1315155110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sayed D, He M, Yang Z, Lin L, Abdellatif M (2013) Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy. J Biol Chem 288(4):2546–2558. https://doi.org/10.1074/jbc.M112.429449

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Spiltoir JI, Stratton MS, Cavasin MA, Demos-Davies K, Reid BG, Qi J, Bradner JE, McKinsey TA (2013) BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 63:175–179. https://doi.org/10.1016/j.yjmcc.2013.07.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM (2013) BET bromodomains mediate transcriptional pause release in heart failure. Cell 154(3):569–582. https://doi.org/10.1016/j.cell.2013.07.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Duan Q, McMahon S, Anand P, Shah H, Thomas S, Salunga HT, Huang Y, Zhang R, Sahadevan A, Lemieux ME, Brown JD, Srivastava D, Bradner JE, McKinsey TA, Haldar SM (2017) BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med 9(390). https://doi.org/10.1126/scitranslmed.aah5084

  9. 9.

    Sun Y, Xie Y, Du L, Sun J, Liu Z (2018) Inhibition of BRD4 attenuates cardiomyocyte apoptosis via NF-kappaB pathway in a rat model of myocardial infarction. Cardiovasc Ther 36 (2). doi:https://doi.org/10.1111/1755-5922.12320

  10. 10.

    Sano M, Abdellatif M, Oh H, Xie M, Bagella L, Giordano A, Michael LH, DeMayo FJ, Schneider MD (2002) Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 8(11):1310–1317. https://doi.org/10.1038/nm778

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N, Kim JK, Kim KK, Epstein JA, Kook H (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113(1):51–59. https://doi.org/10.1161/CIRCULATIONAHA.105.559724

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112(6):863–871. https://doi.org/10.1172/JCI19137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113(22):2579–2588. https://doi.org/10.1161/CIRCULATIONAHA.106.625467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gallo P, Latronico MV, Gallo P, Grimaldi S, Borgia F, Todaro M, Jones P, Gallinari P, De Francesco R, Ciliberto G, Steinkuhler C, Esposito G, Condorelli G (2008) Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 80(3):416–424. https://doi.org/10.1093/cvr/cvn215

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22(10):3549–3560. https://doi.org/10.1096/fj.08-108548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lee TM, Lin MS, Chang NC (2007) Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 293(2):H968–H977. https://doi.org/10.1152/ajpheart.00891.2006

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76(3):473–481. https://doi.org/10.1016/j.cardiores.2007.08.010

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    CAS  Article  Google Scholar 

  19. 19.

    Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113. https://doi.org/10.1038/nature11279

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735

    CAS  Article  Google Scholar 

  21. 21.

    Nobrega MA, Ovcharenko I, Afzal V, Rubin EM (2003) Scanning human gene deserts for long-range enhancers. Science 302(5644):413. https://doi.org/10.1126/science.1088328

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and Mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319. https://doi.org/10.1016/j.cell.2013.03.035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Panne D (2008) The enhanceosome. Curr Opin Struct Biol 18(2):236–242. https://doi.org/10.1016/j.sbi.2007.12.002

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Carey M (1998) The enhanceosome and transcriptional synergy. Cell 92(1):5–8

    CAS  Article  Google Scholar 

  25. 25.

    He A, Kong SW, Ma Q, Pu WT (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A 108(14):5632–5637. https://doi.org/10.1073/pnas.1016959108

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Shin HY (2018) Targeting super-enhancers for disease treatment and diagnosis. Mol Cell 41(6):506–514. https://doi.org/10.14348/molcells.2018.2297

    CAS  Article  Google Scholar 

  27. 27.

    Ounzain S, Pedrazzini T (2016) Super-enhancer lncs to cardiovascular development and disease. Biochim Biophys Acta 1863(7 Pt B):1953–1960. https://doi.org/10.1016/j.bbamcr.2015.11.026

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. https://doi.org/10.1038/nature06008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88. https://doi.org/10.1016/j.cell.2007.05.042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2):169–181. https://doi.org/10.1016/j.cell.2005.01.001

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. https://doi.org/10.1038/ng1966

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. https://doi.org/10.1038/nature09906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-acting enhancers. Nature 461(7261):199–205. https://doi.org/10.1038/nature08451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    May D, Blow MJ, Kaplan T, McCulley DJ, Jensen BC, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Afzal V, Simpson PC, Rubin EM, Black BL, Bristow J, Pennacchio LA, Visel A (2011) Large-scale discovery of enhancers from human heart tissue. Nat Genet 44(1):89–93. https://doi.org/10.1038/ng.1006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Bristow J, Ren B, Black BL, Rubin EM, Visel A, Pennacchio LA (2010) ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 42(9):806–810. https://doi.org/10.1038/ng.650

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, Ovcharenko I (2010) Genome-wide discovery of human heart enhancers. Genome Res 20(3):381–392. https://doi.org/10.1101/gr.098657.109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947. https://doi.org/10.1016/j.cell.2013.09.053

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. https://doi.org/10.1038/nature11232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47(1):8–12. https://doi.org/10.1038/ng.3167

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D, Fuchs E (2015) Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521(7552):366–370. https://doi.org/10.1038/nature14289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Brown JD, Lin CY, Duan Q, Griffin G, Federation A, Paranal RM, Bair S, Newton G, Lichtman A, Kung A, Yang T, Wang H, Luscinskas FW, Croce K, Bradner JE, Plutzky J (2014) NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56(2):219–231. https://doi.org/10.1016/j.molcel.2014.08.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O’Shea JJ (2015) Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520(7548):558–562. https://doi.org/10.1038/nature14154

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A, Fadeyi O, Christie AL, Du K, Banka D, Schneider EV, Jestel A, Zou G, Si C, Ebmeier CC, Bronson RT, Krivtsov AV, Myers AG, Kohl NE, Kung AL, Armstrong SA, Lemieux ME, Taatjes DJ, Shair MD (2015) Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526(7572):273–276. https://doi.org/10.1038/nature14904

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Affer M, Chesi M, Chen WG, Keats JJ, Demchenko YN, Roschke AV, Van Wier S, Fonseca R, Bergsagel PL, Kuehl WM (2014) Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28(8):1725–1735. https://doi.org/10.1038/leu.2014.70

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB, Dahir NB, Johnson DC, Ross FM, Davies FE, Morgan GJ (2014) Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J 4:e191. https://doi.org/10.1038/bcj.2014.13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Oka T, Xu J, Molkentin JD (2007) Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18(1):117–131. https://doi.org/10.1016/j.semcdb.2006.11.012

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92(10):1079–1088. https://doi.org/10.1161/01.RES.0000072977.86706.23

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tonjes M, Dunkel I, Sperling SR (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 7(2):e1001313. https://doi.org/10.1371/journal.pgen.1001313

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dickel DE, Barozzi I, Zhu Y, Fukuda-Yuzawa Y, Osterwalder M, Mannion BJ, May D, Spurrell CH, Plajzer-Frick I, Pickle CS, Lee E, Garvin TH, Kato M, Akiyama JA, Afzal V, Lee AY, Gorkin DU, Ren B, Rubin EM, Visel A, Pennacchio LA (2016) Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat Commun 7:12923. https://doi.org/10.1038/ncomms12923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151(1):206–220. https://doi.org/10.1016/j.cell.2012.07.035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, Vernot B, Cheng JB, Thurman RE, Sandstrom R, Haugen E, Heimfeld S, Murry CE, Akey JM, Stamatoyannopoulos JA (2013) Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154(4):888–903. https://doi.org/10.1016/j.cell.2013.07.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA, Pu WT (2014) Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun 5:4907. https://doi.org/10.1038/ncomms5907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ounzain S, Pezzuto I, Micheletti R, Burdet F, Sheta R, Nemir M, Gonzales C, Sarre A, Alexanian M, Blow MJ, May D, Johnson R, Dauvillier J, Pennacchio LA, Pedrazzini T (2014) Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol 76:55–70. https://doi.org/10.1016/j.yjmcc.2014.08.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Anderson CM, Hu J, Thomas R, Gainous TB, Celona B, Sinha T, Dickel DE, Heidt AB, Xu SM, Bruneau BG, Pollard KS, Pennacchio LA, Black BL (2017) Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development 144(7):1235–1241. https://doi.org/10.1242/dev.138487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Junion G, Spivakov M, Girardot C, Braun M, Gustafson EH, Birney E, Furlong EE (2012) A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 148(3):473–486. https://doi.org/10.1016/j.cell.2012.01.030

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Lelli KM, Slattery M, Mann RS (2012) Disentangling the many layers of eukaryotic transcriptional regulation. Annu Rev Genet 46:43–68. https://doi.org/10.1146/annurev-genet-110711-155437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13(9):613–626. https://doi.org/10.1038/nrg3207

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Siersbaek R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LC, Rogowska-Wrzesinska A, Jensen ON, Mandrup S (2014) Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep 7(5):1443–1455. https://doi.org/10.1016/j.celrep.2014.04.042

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Lien CL, McAnally J, Richardson JA, Olson EN (2002) Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol 244(2):257–266. https://doi.org/10.1006/dbio.2002.0603

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432(7013):107–112. https://doi.org/10.1038/nature03071

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    McKinsey TA (2012) Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 52:303–319. https://doi.org/10.1146/annurev-pharmtox-010611-134712

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47

    CAS  Article  Google Scholar 

  64. 64.

    Kim YJ, Greer CB, Cecchini KR, Harris LN, Tuck DP, Kim TH (2013) HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene 32(23):2828–2835. https://doi.org/10.1038/onc.2013.32

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH (2015) Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep 13(7):1444–1455. https://doi.org/10.1016/j.celrep.2015.10.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51. https://doi.org/10.1038/nrc1779

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98(5):675–686

    CAS  Article  Google Scholar 

  68. 68.

    Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T (2002) Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 277(28):25562–25567. https://doi.org/10.1074/jbc.M201196200

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Chandrasekaran S, Peterson RE, Mani SK, Addy B, Buchholz AL, Xu L, Thiyagarajan T, Kasiganesan H, Kern CB, Menick DR (2009) Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes. FASEB J 23(11):3851–3864. https://doi.org/10.1096/fj.09-132415

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, Monzani V, Saripalli C, Mascagni P, Reece TB, Ambardekar AV, Granzier HL, Dinarello CA, McKinsey TA (2018) Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med 10(427). https://doi.org/10.1126/scitranslmed.aao0144

  71. 71.

    McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115(3):538–546. https://doi.org/10.1172/JCI24144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545. https://doi.org/10.1016/j.molcel.2005.06.029

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. https://doi.org/10.1038/nature09504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334. https://doi.org/10.1016/j.cell.2013.03.036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, Rahl PB, Sun HH, Yeda KT, Doench JG, Reichert E, Kung AL, Rodig SJ, Young RA, Shipp MA, Bradner JE (2013) Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24(6):777–790. https://doi.org/10.1016/j.ccr.2013.11.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, van der Velden VHJ, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Dohner K, Beverloo HB, Bradner JE, Dohner H, Lowenberg B, Valk PJM, Bindels EMJ, de Laat W, Delwel R (2014) A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157(2):369–381. https://doi.org/10.1016/j.cell.2014.02.019

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. https://doi.org/10.1016/j.cell.2011.08.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524–528. https://doi.org/10.1038/nature10334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Stratton MS, Lin CY, Anand P, Tatman PD, Ferguson BS, Wickers ST, Ambardekar AV, Sucharov CC, Bradner JE, Haldar SM, McKinsey TA (2016) Signal-dependent recruitment of BRD4 to cardiomyocyte super-enhancers is suppressed by a microRNA. Cell Rep 16(5):1366–1378. https://doi.org/10.1016/j.celrep.2016.06.074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772. https://doi.org/10.1038/nrg2901

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    D’Alessio JA, Wright KJ, Tjian R (2009) Shifting players and paradigms in cell-specific transcription. Mol Cell 36(6):924–931. https://doi.org/10.1016/j.molcel.2009.12.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Deato MD, Marr MT, Sottero T, Inouye C, Hu P, Tjian R (2008) MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol Cell 32(1):96–105. https://doi.org/10.1016/j.molcel.2008.09.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hall DD, Ponce JM, Chen B, Spitler KM, Alexia A, Oudit GY, Song LS, Grueter CE (2017) Ectopic expression of Cdk8 induces eccentric hypertrophy and heart failure. JCI Insight 2(15):92476. https://doi.org/10.1172/jci.insight.92476

    Article  PubMed  Google Scholar 

  84. 84.

    Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435. https://doi.org/10.1038/nature09380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Borik S, Simon AJ, Nevo-Caspi Y, Mishali D, Amariglio N, Rechavi G, Paret G (2011) Increased RNA editing in children with cyanotic congenital heart disease. Intensive Care Med 37(10):1664–1671. https://doi.org/10.1007/s00134-011-2296-z

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rappold G (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108(23):2843–2850. https://doi.org/10.1161/01.CIR.0000103684.77636.CD

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Asadollahi R, Oneda B, Sheth F, Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai S, Baumer A, Houge G, Andrieux J, Rauch A (2013) Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet 21(10):1100–1104. https://doi.org/10.1038/ejhg.2013.17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Chen CP, Chen YY, Chern SR, Wu PS, Su JW, Chen YT, Chen LF, Wang W (2013) Prenatal diagnosis and molecular cytogenetic characterization of de novo partial trisomy 12q (12q24.21-->qter) and partial monosomy 6q (6q27-->qter) associated with coarctation of the aorta, ventriculomegaly and thickened nuchal fold. Gene 516(1):138–142. https://doi.org/10.1016/j.gene.2012.12.051

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Kobrynski LJ, Sullivan KE (2007) Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 370(9596):1443–1452. https://doi.org/10.1016/S0140-6736(07)61601-8

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Jia Y, Chang HC, Schipma MJ, Liu J, Shete V, Liu N, Sato T, Thorp EB, Barger PM, Zhu YJ, Viswakarma N, Kanwar YS, Ardehali H, Thimmapaya B, Reddy JK (2016) Cardiomyocyte-specific ablation of Med1 subunit of the Mediator complex causes lethal dilated cardiomyopathy in mice. PLoS One 11(8):e0160755. https://doi.org/10.1371/journal.pone.0160755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Spitler KM, Ponce JM, Oudit GY, Hall DD, Grueter CE (2017) Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming. Am J Physiol Heart Circ Physiol 312(4):H768–H780. https://doi.org/10.1152/ajpheart.00728.2016

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Hall DD, Spitler KM, Grueter CE (2018) Disruption of cardiac Med1 inhibits RNA polymerase-II promoter occupancy and promotes chromatin remodeling. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00580.2018

  93. 93.

    Baskin KK, Makarewich CA, DeLeon SM, Ye W, Chen B, Beetz N, Schrewe H, Bassel-Duby R, Olson EN (2017) MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2(14):91920. https://doi.org/10.1172/jci.insight.91920

    Article  PubMed  Google Scholar 

  94. 94.

    Baskin KK, Grueter CE, Kusminski CM, Holland WL, Bookout AL, Satapati S, Kong YM, Burgess SC, Malloy CR, Scherer PE, Newgard CB, Bassel-Duby R, Olson EN (2014) MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Mol Med 6(12):1610–1621. https://doi.org/10.15252/emmm.201404218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683. https://doi.org/10.1016/j.cell.2012.03.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Minerath RA, Dewey CM, Hall DD, Grueter CE (2019) Regulation of cardiac transcription by thyroid hormone and Med13. J Mol Cell Cardiol 129:27–38. https://doi.org/10.1016/j.yjmcc.2019.01.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Aranda-Orgilles B, Saldana-Meyer R, Wang E, Trompouki E, Fassl A, Lau S, Mullenders J, Rocha PP, Raviram R, Guillamot M, Sanchez-Diaz M, Wang K, Kayembe C, Zhang N, Amoasii L, Choudhuri A, Skok JA, Schober M, Reinberg D, Sicinski P, Schrewe H, Tsirigos A, Zon LI, Aifantis I (2016) MED12 regulates HSC-specific enhancers independently of Mediator kinase activity to control hematopoiesis. Cell Stem Cell 19(6):784–799. https://doi.org/10.1016/j.stem.2016.08.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kuuluvainen E, Domenech-Moreno E, Niemela EH, Makela TP (2018) Depletion of Mediator kinase module subunits represses superenhancer-associated genes in colon cancer cells. Mol Cell Biol 38(11):e00573–e00517. https://doi.org/10.1128/MCB.00573-17

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Bhagwat AS, Roe JS, Mok BYL, Hohmann AF, Shi J, Vakoc CR (2016) BET Bromodomain inhibition releases the Mediator complex from select cis-regulatory elements. Cell Rep 15(3):519–530. https://doi.org/10.1016/j.celrep.2016.03.054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Galbraith MD, Donner AJ, Espinosa JM (2010) CDK8: a positive regulator of transcription. Transcription 1(1):4–12. https://doi.org/10.4161/trns.1.1.12373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Elmlund H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJ, Holmberg S, Hebert H, Gustafsson CM (2006) The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci U S A 103(43):15788–15793. https://doi.org/10.1073/pnas.0607483103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17(2):194–201. https://doi.org/10.1038/nsmb.1752

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B, Long HW, Daniels DL, Hahn WC, Dowell RD, Espinosa JM (2013) HIF1A employs CDK8-Mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153(6):1327–1339. https://doi.org/10.1016/j.cell.2013.04.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, Schronce A, McDermott MSJ, Schools GP, Lim CU, Oliver D, Shtutman MS, Lu T, Stark GR, Porter DC, Broude EV, Roninson IB (2017) CDK8/19 Mediator kinases potentiate induction of transcription by NFkappaB. Proc Natl Acad Sci U S A 114(38):10208–10213. https://doi.org/10.1073/pnas.1710467114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Galbraith MD, Andrysik Z, Pandey A, Hoh M, Bonner EA, Hill AA, Sullivan KD, Espinosa JM (2017) CDK8 kinase activity promotes glycolysis. Cell Rep 21(6):1495–1506. https://doi.org/10.1016/j.celrep.2017.10.058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Belakavadi M, Fondell JD (2010) Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 30(10):2437–2448. https://doi.org/10.1128/MCB.01541-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, Chheda MG, Tamayo P, Finn S, Shrestha Y, Boehm JS, Jain S, Bojarski E, Mermel C, Barretina J, Chan JA, Baselga J, Tabernero J, Root DE, Fuchs CS, Loda M, Shivdasani RA, Meyerson M, Hahn WC (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455(7212):547–551. https://doi.org/10.1038/nature07179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455(7212):552–556. https://doi.org/10.1038/nature07310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139(4):757–769. https://doi.org/10.1016/j.cell.2009.09.035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dolken L, Strobl B, Muller M, Taatjes DJ, Kovarik P (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38(2):250–262. https://doi.org/10.1016/j.immuni.2012.10.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Aragon E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massague J, Macias MJ (2011) A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev 25(12):1275–1288. https://doi.org/10.1101/gad.2060811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Zhao X, Feng D, Wang Q, Abdulla A, Xie XJ, Zhou J, Sun Y, Yang ES, Liu LP, Vaitheesvaran B, Bridges L, Kurland IJ, Strich R, Ni JQ, Wang C, Ericsson J, Pessin JE, Ji JY, Yang F (2012) Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J Clin Invest 122(7):2417–2427. https://doi.org/10.1172/JCI61462

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Poss ZC, Ebmeier CC, Odell AT, Tangpeerachaikul A, Lee T, Pelish HE, Shair MD, Dowell RD, Old WM, Taatjes DJ (2016) Identification of Mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics. Cell Rep 15(2):436–450. https://doi.org/10.1016/j.celrep.2016.03.030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ (2009) The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of Mediator. Mol Cell Biol 29(3):650–661. https://doi.org/10.1128/MCB.00993-08

    CAS  Article  PubMed  Google Scholar 

  115. 115.

    Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ (2008) Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 27(10):1447–1457. https://doi.org/10.1038/emboj.2008.78

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing Mediator complexes. Nature 407(6800):102–106. https://doi.org/10.1038/35024111

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C, Leroy G, Vidal CI, Polsky D, Osman I, Garcia BA, Hernando E, Bernstein E (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468(7327):1105–1109. https://doi.org/10.1038/nature09590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Donner AJ, Szostek S, Hoover JM, Espinosa JM (2007) CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 27(1):121–133. https://doi.org/10.1016/j.molcel.2007.05.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Nemet J, Jelicic B, Rubelj I, Sopta M (2014) The two faces of Cdk8, a positive/negative regulator of transcription. Biochimie 97:22–27. https://doi.org/10.1016/j.biochi.2013.10.004

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Dale T, Clarke PA, Esdar C, Waalboer D, Adeniji-Popoola O, Ortiz-Ruiz MJ, Mallinger A, Samant RS, Czodrowski P, Musil D, Schwarz D, Schneider K, Stubbs M, Ewan K, Fraser E, TePoele R, Court W, Box G, Valenti M, de Haven Brandon A, Gowan S, Rohdich F, Raynaud F, Schneider R, Poeschke O, Blaukat A, Workman P, Schiemann K, Eccles SA, Wienke D, Blagg J (2015) A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol 11(12):973–980. https://doi.org/10.1038/nchembio.1952

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Rzymski T, Mikula M, Zylkiewicz E, Dreas A, Wiklik K, Golas A, Wojcik K, Masiejczyk M, Wrobel A, Dolata I, Kitlinska A, Statkiewicz M, Kuklinska U, Goryca K, Sapala L, Grochowska A, Cabaj A, Szajewska-Skuta M, Gabor-Worwa E, Kucwaj K, Bialas A, Radzimierski A, Combik M, Woyciechowski J, Mikulski M, Windak R, Ostrowski J, Brzozka K (2017) SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains. Oncotarget 8(20):33779–33795. https://doi.org/10.18632/oncotarget.16810

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen M, Chang BD, Puzyrev AT, Lim CU, Rokow-Kittell R, Friedhoff LT, Papavassiliou AG, Kalurupalle S, Hurteau G, Shi J, Baran PS, Gyorffy B, Wentland MP, Broude EV, Kiaris H, Roninson IB (2012) Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci U S A 109(34):13799–13804. https://doi.org/10.1073/pnas.1206906109

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Schuller R, Forne I, Straub T, Schreieck A, Texier Y, Shah N, Decker TM, Cramer P, Imhof A, Eick D (2016) Heptad-specific phosphorylation of RNA polymerase II CTD. Mol Cell 61(2):305–314. https://doi.org/10.1016/j.molcel.2015.12.003

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Wada T, Takagi T, Yamaguchi Y, Watanabe D, Handa H (1998) Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J 17(24):7395–7403. https://doi.org/10.1093/emboj/17.24.7395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20(8):2629–2634

    CAS  Article  Google Scholar 

  126. 126.

    Taube R, Lin X, Irwin D, Fujinaga K, Peterlin BM (2002) Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol Cell Biol 22(1):321–331

    CAS  Article  Google Scholar 

  127. 127.

    Abdellatif M, Packer SE, Michael LH, Zhang D, Charng MJ, Schneider MD (1998) A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 18(11):6729–6736

    CAS  Article  Google Scholar 

  128. 128.

    Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD (2004) Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J 23(17):3559–3569. https://doi.org/10.1038/sj.emboj.7600351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, Dolgalev I, Yonekubo Y, Zhang G, Rusinova E, Gerona-Navarro G, Canamero M, Ohlmeyer M, Aifantis I, Zhou MM, Tsirigos A, Hernando E (2014) Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep 9(1):234–247. https://doi.org/10.1016/j.celrep.2014.08.055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE, Vittori S, Reyes JM, di Iulio J, Souza A, Ott CJ, Roberts JM, Zeid R, Scott TG, Paulk J, Lachance K, Olson CM, Dastjerdi S, Bauer S, Lin CY, Gray NS, Kelliher MA, Churchman LS, Bradner JE (2017) BET Bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell 67(1):5–18 e19. https://doi.org/10.1016/j.molcel.2017.06.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, Chun HB, Tough DF, Prinjha RK, Benner C, Glass CK (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51(3):310–325. https://doi.org/10.1016/j.molcel.2013.07.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Buecker C, Wysocka J (2012) Enhancers as information integration hubs in development: lessons from genomics. Trends Genet 28(6):276–284. https://doi.org/10.1016/j.tig.2012.02.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD (2018) Enhancer RNA profiling predicts transcription factor activity. Genome Res doi:https://doi.org/10.1101/gr.225755.117

  135. 135.

    Banerjee AR, Kim YJ, Kim TH (2014) A novel virus-inducible enhancer of the interferon-beta gene with tightly linked promoter and enhancer activities. Nucleic Acids Res 42(20):12537–12554. https://doi.org/10.1093/nar/gku1018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, Balk SP, Liu XS, Brown M, Kantoff PW (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci U S A 111(20):7319–7324. https://doi.org/10.1073/pnas.1324151111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, Elkon R, Melo SA, Leveille N, Kalluri R, de Laat W, Agami R (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49(3):524–535. https://doi.org/10.1016/j.molcel.2012.11.021

    CAS  Article  PubMed  Google Scholar 

  138. 138.

    Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520. https://doi.org/10.1038/nature12210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501. https://doi.org/10.1038/nature11884

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Schaukowitch K, Joo JY, Liu X, Watts JK, Martinez C, Kim TK (2014) Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 56(1):29–42. https://doi.org/10.1016/j.molcel.2014.08.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97(1):41–51

    CAS  Article  Google Scholar 

  142. 142.

    Yamaguchi Y, Inukai N, Narita T, Wada T, Handa H (2002) Evidence that negative elongation factor represses transcription elongation through binding to a -inducing factor/RNA polymerase II complex and RNA. Mol Cell Biol 22(9):2918–2927

    CAS  Article  Google Scholar 

  143. 143.

    Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, Siebenlist U, O’Shea JJ, Ozato K (2014) BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 21(12):1047–1057. https://doi.org/10.1038/nsmb.2912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15(4):234–246. https://doi.org/10.1038/nrg3663

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120. https://doi.org/10.1038/nature11243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M (2017) CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet 13(8):e1006985. https://doi.org/10.1371/journal.pgen.1006985

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih TT, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM (2017) High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation 136(17):1613–1625. https://doi.org/10.1161/CIRCULATIONAHA.117.029430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(12):772. https://doi.org/10.1038/nrg.2016.147

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jennifer Barr for critically editing.

Funding

This work was supported by generous research support from the National Institutes of Health (NIH) Grant R01-HL-125436, the Fraternal Order of Eagles Diabetes Research Center, and the University of Iowa, Carver College of Medicine (to C. E. Grueter).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chad E. Grueter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minerath, R.A., Hall, D.D. & Grueter, C.E. Targeting transcriptional machinery to inhibit enhancer-driven gene expression in heart failure. Heart Fail Rev 24, 725–741 (2019). https://doi.org/10.1007/s10741-019-09792-3

Download citation

Keywords

  • Transcription
  • Enhancers
  • Heart failure
  • Epigenetics