Surgical and physiological challenges in the development of left and right heart failure in rat models

Abstract

Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

HF:

Heart failure

LAD:

Left anterior descending artery

ECG:

Echocardiography

MI:

Myocardial infarction

I/R:

Ischemia–reperfusion

LV:

Left ventricle

MRI:

Magnetic resonance imaging

VT:

Ventricular tachycardia

VF:

Ventricular fibrillation

TAC:

Transverse aortic constriction

AAC:

Ascending aortic constriction

PA:

Pulmonary artery

RV:

Right ventricle

IVC:

Inferior vena cava

AR:

Aortic regurgitation

Qp:

Pulmonary blood flow

Qs:

Systemic blood flow

References

  1. 1.

    Hongo M, Ryoke T, Ross J Jr (1997) Animal models of heart failure: recent developments and perspectives. Trends Cardiovasc Med 7(5):161–167. https://doi.org/10.1016/S1050-1738(97)00029-7

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2(2):138–144. https://doi.org/10.1161/CIRCHEARTFAILURE.108.839761

    Article  PubMed  Google Scholar 

  3. 3.

    Dong G-H, Xu B, Wang C-T, Qian J-J, Liu H, Huang G, Jing H (2005) A rat model of cardiopulmonary bypass with excellent survival. J Surg Res 123(2):171–175. https://doi.org/10.1016/j.jss.2004.08.007

    Article  PubMed  Google Scholar 

  4. 4.

    Pulido JN, Neal JR, Mantilla CB, Agarwal S, Lee W-Y, Scott PD, Hubmayr RD, Zhan W-Z, Sieck GC, Farrugia G (2011) Inhaled carbon monoxide attenuates myocardial inflammatory cytokine expression in a rat model of cardiopulmonary bypass. J Extra Corpor Technol 43(3):137–143

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Klocke R, Tian W, Kuhlmann MT, Nikol S (2007) Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 74(1):29–38. https://doi.org/10.1016/j.cardiores.2006.11.026

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, Hartley CJ, Pham TT, Daniel SL, Funk E, Entman ML (1999) Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol Heart Circ Physiol 277(2):H660–H668. https://doi.org/10.1152/ajpheart.1999.277.2.H660

    CAS  Article  Google Scholar 

  7. 7.

    Nossuli TO, Lakshminarayanan V, Baumgarten G, Taffet GE, Ballantyne CM, Michael LH, Entman ML (2000) A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol 278(4):H1049–H1055. https://doi.org/10.1152/ajpheart.2000.278.4.H1049

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tarnavski O (2009) Mouse surgical models in cardiovascular research. In: DiPetrillo K (ed) Cardiovascular genomics. Methods in molecular biology™ (methods and protocols), vol 573. Humana Press, New York, pp 115–137

    Google Scholar 

  9. 9.

    Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S (2004) Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16(3):349–360. https://doi.org/10.1152/physiolgenomics.00041.2003

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Halpern MH (1953) The azygos vein system in the rat. Anat Rec 116(1):83–93. https://doi.org/10.1002/ar.1091160108

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Halpern MH (1957) The dual blood supply of the rat heart. Am J Anat 101(1):1–16. https://doi.org/10.1002/aja.1001010102

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Edvardsson N, Hirsch I, Olsson SB (1984) Right ventricular monophasic action potentials in healthy young men. Pacing Clin Electrophysiol 7(5):813–821. https://doi.org/10.1111/j.1540-8159.1984.tb05622.x

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and Guinea pig ventricular myocytes. Basic Res Cardiol 88(2):93–102

    CAS  PubMed  Google Scholar 

  14. 14.

    Bers DM (1985) Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol Heart Circ Physiol 248(3):H366–H381. https://doi.org/10.1152/ajpheart.1985.248.3.H366

    CAS  Article  Google Scholar 

  15. 15.

    Lamboley CR, Murphy RM, McKenna MJ, Lamb GD (2014) Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol 592(6):1381–1395. https://doi.org/10.1113/jphysiol.2013.269373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ahmed S, Rakhawy M, Abdalla A, Assaad E (1978) The comparative anatomy of the blood supply of cardiac ventricles in the albino rat and Guinea-pig. J Anat 126(Pt 1):51–57

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Johns TN, Olson BJ (1954) Experimental myocardial infarction: I. A method of coronary occlusion in small animals. Ann Surg 140(5):675–682

    CAS  Article  Google Scholar 

  18. 18.

    Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11(5):398–407. https://doi.org/10.1177/000331976001100505

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Sievers R, Schmiedl U, Wolfe C, Moseley M, Parmley W, Brasch R, Lipton M (1989) A model of acute regional myocardial ischemia and reperfusion in the rat. Magn Reson Med 10(2):172–181. https://doi.org/10.1002/mrm.1910100203

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Anderson PG, Bishop SP, Peterson JT (2006) Chapter 26 - cardiovascular research. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat (second edition). Academic Press, Burlington, pp 773–802. https://doi.org/10.1016/B978-012074903-4/50029-7

    Google Scholar 

  21. 21.

    Liu Y, Yang X-P, Nass O, Sabbah H, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol Heart Circ Physiol 272(2):H722–H727. https://doi.org/10.1152/ajpheart.1997.272.2.H722

    CAS  Article  Google Scholar 

  22. 22.

    Cleland JGF, Torabi A, Khan NK (2005) Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart 91:ii7–ii13. https://doi.org/10.1136/hrt.2005.062026

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Maslov MY, Foianini S, Orlov MV, Januzzi JL, Lovich MA (2018) A novel paradigm for sacubitril/valsartan: beta-endorphin elevation as a contributor to exercise tolerance improvement in rats with preexisting heart failure induced by pressure overload. J Card Fail 24(11):773–782. https://doi.org/10.1016/j.cardfail.2018.10.006

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512. https://doi.org/10.1161/01.RES.44.4.503

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3(9):1422–1434. https://doi.org/10.1038/nprot.2008.138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Fargnoli AS, Katz MG, Williams RD, Kendle AP, Steuerwald N, Bridges CR (2016) Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction. Gene Ther 23(2):151–157. https://doi.org/10.1038/gt.2015.100

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Hollander MR, de Waard GA, Konijnenberg LSF, Meijer-van Putten RME, van den Brom CE, Paauw N, de Vries HE, van de Ven PM, Aman J, Van Nieuw-Amerongen GP, Hordijk PL, Niessen HWM, Horrevoets AJG, Van Royen N (2016) Dissecting the effects of ischemia and reperfusion on the coronary microcirculation in a rat model of acute myocardial infarction. PLoS One 11(7):e0157233. https://doi.org/10.1371/journal.pone.0157233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jakovljevic VL, Petkovic A, Bradic J, Jeremic J, Turnic TN, Srejovic I, Zivkovic V (2018) The effects of potassium-cyanide on functional recovery of isolated rat heart after ischemia and reperfusion: role of oxidative stress. Pathophysiology 25(3):177. https://doi.org/10.1016/j.pathophys.2018.07.042

    Article  Google Scholar 

  29. 29.

    Wayman NS, McDonald MC, Chatterjee PK, Thiemermann C (2003) Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. In: Inflammation protocols, vol 225. Humana Press, New York, pp 199–208

    Google Scholar 

  30. 30.

    Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111(1):131–150. https://doi.org/10.1161/RES.0b013e3182582523

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Lindsey ML, Bolli R, JMC J, Du X-J, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Longacre LS, Ripplinger CM, Eyk JEV, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314(4):H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rigalli A, Di Loreto V (2016) Experimental surgical models in the laboratory rat. CRC Press, Boca Raton

    Google Scholar 

  33. 33.

    Motiwala SR, Gaggin HK (2016) Biomarkers to predict reverse remodeling and myocardial recovery in heart failure. Curr Heart Fail Rep 13(5):207–218. https://doi.org/10.1007/s11897-016-0303-y

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Golestani R, Wu C, Tio RA, Zeebregts CJ, Petrov AD, Beekman FJ, Dierckx RAJO, Boersma HH, Slart RHJA (2010) Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 37(9):1766–1777. https://doi.org/10.1007/s00259-009-1321-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Martinez PF, Okoshi K, Zornoff LAM, Oliveira SA, Campos DHS, Lima ARR, Damatto RL, Cezar MDM, Bonomo C, Guizoni DM, Padovani CR, Cicogna AC, Okoshi MP (2011) Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol 111(2):543–551. https://doi.org/10.1152/japplphysiol.01154.2010

    Article  PubMed  Google Scholar 

  36. 36.

    Nahrendorf M, Wiesmann F, Hiller K-H, Han H, Hu K, Waller C, Ruff J, Haase A, Ertl G, Bauer WR (2000) In vivo assessment of cardiac remodeling after myocardial infarction in rats by cine–magnetic resonance imaging. J Cardiovasc Magn Reson 2(3):171–180. https://doi.org/10.3109/10976640009146565

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJG, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50(1):139–147. https://doi.org/10.2967/jnumed.108.055152

    Article  PubMed  Google Scholar 

  38. 38.

    Litwin SE, Katz SE, Morgan JP, Douglas PS (1994) Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 89(1):345–354. https://doi.org/10.1161/01.CIR.89.1.345

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Roberts CS, Maclean D, Maroko P, Kloner RA (1984) Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 54(3):407–410. https://doi.org/10.1016/0002-9149(84)90206-6

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Yue P, Long CS, Austin R, Chang KC, Simpson PC, Massie BM (1998) Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. J Mol Cell Cardiol 30(8):1615–1630. https://doi.org/10.1006/jmcc.1998.0727

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Pabis FC, Miyague NI, Francisco JC, Woitowicz V, KATd C, Faria-Neto JR, Moisés VA, Guarita-Souza LC (2008) Echocardiographic assessment of myocardial infarction evolution in young and adult rats. Arq Bras Cardiol 91(5):321–326. https://doi.org/10.1590/S0066-782X2008001700007

    Article  PubMed  Google Scholar 

  42. 42.

    Gupta S, Prahash AJ, Anand IS (2000) Myocyte contractile function is intact in the post-infarct remodeled rat heart despite molecular alterations. Cardiovasc Res 48(1):77–88. https://doi.org/10.1016/S0008-6363(00)00160-7

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Morgan EE, Faulx MD, McElfresh TA, Kung TA, Zawaneh MS, Stanley WC, Chandler MP, Hoit BD (2004) Validation of echocardiographic methods for assessing left ventricular dysfunction in rats with myocardial infarction. Am J Physiol Heart Circ Physiol 287(5):H2049–H2053. https://doi.org/10.1152/ajpheart.00393.2004

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz P-A, Jorge-Costa M, Lerch R (2000) Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 32(11):2025–2034. https://doi.org/10.1006/jmcc.2000.1234

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52(3):407–416. https://doi.org/10.1016/S0008-6363(01)00393-5

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ceiler DL, Nelissen-Vrancken HMG, De Mey JG, Smits JF (1998) Effect of chronic blockade of angiotensin II-receptor subtypes on aortic compliance in rats with myocardial infarction. J Cardiovasc Pharmacol 31(4):630–633. https://doi.org/10.1097/00005344-199804000-00024

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Goldman S, Raya TE (1995) Rat infarct model of myocardial infarction and heart failure. J Card Fail 1(2):169–177. https://doi.org/10.1016/1071-9164(95)90019-5

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39(1):60–76. https://doi.org/10.1016/S0008-6363(98)00110-2

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Hentschke VS, Capalonga L, Rossato DD, Perini JL, Alves JP, Quagliotto E, Stefani GP, Karsten M, Pontes M, Dal Lago P (2017) Functional capacity in a rat model of heart failure: impact of myocardial infarct size. Exp Physiol 102(11):1448–1458. https://doi.org/10.1113/EP086076

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Takahashi M, Tanonaka K, Yoshida H, Koshimizu M, Daicho T, Oikawa R, Takeo S (2006) Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 47(3):413–421. https://doi.org/10.1097/01.fjc.0000210074.56614.3b

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1981) Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res 49(3):618–626. https://doi.org/10.1161/01.RES.49.3.618

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58(1):26–37. https://doi.org/10.1161/01.RES.58.1.26

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72(2):406–412. https://doi.org/10.1161/01.CIR.72.2.406

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) β-Adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101(17):2103–2109. https://doi.org/10.1161/01.cir.101.17.2103

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Minicucci MF, Gaiolla PSA, Martinez PF, Lima AR, Bonomo C, Guizoni DM, Polegato BF, Okoshi MP, Okoshi K, Matsubara BB (2011) Critical infarct size to induce ventricular remodeling, cardiac dysfunction and heart failure in rats. Int J Cardiol 151:242–243. https://doi.org/10.1016/j.ijcard.2011.06.068

    Article  PubMed  Google Scholar 

  56. 56.

    Nozawa E, Kanashiro R, Murad N, Carvalho A, Cravo S, Campos O, Tucci PJF, Moisés VA (2006) Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats. Braz J Med Biol Res 39(5):687–695. https://doi.org/10.1590/S0100-879X2006000500016

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Opitz CF, Mitchell GF, Pfeffer MA, Pfeffer JM (1995) Arrhythmias and death after coronary artery occlusion in the rat: continuous telemetric ECG monitoring in conscious, untethered rats. Circulation 92(2):253–261. https://doi.org/10.1161/01.CIR.92.2.253

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Samsamshariat SA, Movahed M-R (2005) High rate of right ventricular infarction after ligation of mid left anterior descending artery in rats. Cardiovasc Revasc Med 6(1):21–23. https://doi.org/10.1016/j.carrev.2005.04.005

    Article  PubMed  Google Scholar 

  59. 59.

    Samsamshariat SA, Samsamshariat ZA, Movahed M-R (2005) A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc Revasc Med 6(3):121–123. https://doi.org/10.1016/j.carrev.2005.07.001

    Article  PubMed  Google Scholar 

  60. 60.

    Levitt MA, Sievers RE, Wolfe CL (1994) Reduction of infarct size during myocardial ischemia and reperfusion by lazaroid U-74500A, a nonglucocorticoid 21-aminosteroid. J Cardiovasc Pharmacol 23(1):136–140. https://doi.org/10.1097/00005344-199401000-00019

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Tang X-L, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2):293–305. https://doi.org/10.1161/CIRCULATIONAHA.109.871905

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Opitz CF, Finn PV, Pfeffer MA, Mitchell GF, Pfeffer JM (1998) Effects of reperfusion on arrhythmias and death after coronary artery occlusion in the rat: increased electrical stability independent of myocardial salvage. J Am Coll Cardiol 32(1):261–267. https://doi.org/10.1016/S0735-1097(98)00173-9

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Barrett TD, Hayes ES, Yong SL, Zolotoy AB, Abraham S, Walker MJ (2000) Ischaemia selectivity confers efficacy for suppression of ischaemia-induced arrhythmias in rats. Eur J Pharmacol 398(3):365–374. https://doi.org/10.1016/S0014-2999(00)00295-8

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Canyon SJ, Dobson GP (2004) Protection against ventricular arrhythmias and cardiac death using adenosine and lidocaine during regional ischemia in the in vivo rat. Am J Physiol Heart Circ Physiol 287(3):H1286–H1295. https://doi.org/10.1161/CIRCULATIONAHA.109.871905

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Canyon SJ, Dobson GP (2006) The effect of an adenosine and lidocaine intravenous infusion on myocardial high-energy phosphates and pH during regional ischemia in the rat model in vivo. Can J Physiol Pharmacol 84(8–9):903–912. https://doi.org/10.1139/y06-035

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Curtis M, Macleod B, Walker M (1987) Models for the study of arrhythmias in myocardial ischaemia and infarction: the use of the rat. J Mol Cell Cardiol 19(4):399–419. https://doi.org/10.1016/S0022-2828(87)80585-0

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Bergey JL, Nocella K, McCallum JD (1982) Acute coronary artery occlusion-reperfusion-induced arrhythmias in rats, dogs and pigs: antiarrhythmic evaluation of quinidine, procainamide and lidocaine. Eur J Pharmacol 81(2):205–216. https://doi.org/10.1016/0014-2999(82)90438-1

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Johnston K, MacLeod B, Walker M (1983) Responses to ligation of a coronary artery in conscious rats and the actions of antiarrhythmics. Can J Physiol Pharmacol 61(11):1340–1353. https://doi.org/10.1139/y83-193

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Marshall R, Muir A, WINSLOW E (1982) The effects of postligation administration of org 6001 and disopyramide on early ischaemia-induced arrhythmias in the anaesthetized rat. Br J Pharmacol 76(4):501–503. https://doi.org/10.1111/j.1476-5381.1982.tb09245.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Agelaki MG, Pantos C, Korantzopoulos P, Tsalikakis DG, Baltogiannis GG, Fotopoulos A, Kolettis TM (2007) Comparative antiarrhythmic efficacy of amiodarone and dronedarone during acute myocardial infarction in rats. Eur J Pharmacol 564(1–3):150–157. https://doi.org/10.1016/j.ejphar.2007.02.052

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Kolettis TM, Agelaki MG, Baltogiannis GG, Vlahos AP, Mourouzis I, Fotopoulos A, Pantos C (2007) Comparative effects of acute vs. chronic oral amiodarone treatment during acute myocardial infarction in rats. Europace 9(11):1099–1104. https://doi.org/10.1093/europace/eum196

    Article  PubMed  Google Scholar 

  72. 72.

    Au T, Curtis M, Walker M (1987) Effects of (-),(+/-), and (+) verapamil on coronary occlusion-induced mortality and infarct size. J Cardiovasc Pharmacol 10(3):327–331. https://doi.org/10.1097/00005344-198709000-00012

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Curtis M, Walker M, Yuswack T (1986) Actions of the verapamil analogues, anipamil and ronipamil, against ischaemia-induced arrhythmias in conscious rats. Br J Pharmacol 88(2):355–361. https://doi.org/10.1111/j.1476-5381.1986.tb10211.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kinoshita K, Mitani A, Hearse DJ, Braimbridge MV, Manning AS (1989) Reperfusion-induced arrhythmias in the conscious rat: a comparative study with three calcium antagonists. J Surg Res 47(2):166–172. https://doi.org/10.1016/0022-4804(89)90083-8

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Hock CE, Beck LD, Bodine RC, Reibel DK (1990) Influence of dietary n-3 fatty acids on myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 259(5):H1518–H1526. https://doi.org/10.1152/ajpheart.1990.259.5.H1518

    CAS  Article  Google Scholar 

  76. 76.

    Jeuthe S, Dietrich T, Berger F, Kuehne T, Kozerke S, Messroghli DR (2015) Closed-chest small animal model to study myocardial infarction in an MRI environment in real time. Int J Cardiovasc Imaging 31(1):115–121. https://doi.org/10.1007/s10554-014-0539-0

    Article  PubMed  Google Scholar 

  77. 77.

    Barbosa ME, Alenina N, Bader M (2005) Induction and analysis of cardiac hypertrophy in transgenic animal models. In: Molecular cardiology. Humana Press, New York, pp 339–352

    Google Scholar 

  78. 78.

    Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73(1):184–192. https://doi.org/10.1161/01.RES.73.1.184

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS (1995) Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy: chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 91(10):2642–2654. https://doi.org/10.1161/01.cir.89.1.345

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Zaha V, Grohmann J, Göbel H, Geibel A, Beyersdorf F, Doenst T (2003) Experimental model for heart failure in rats-induction and diagnosis. Thorac Cardiovasc Surg 51(04):211–215. https://doi.org/10.1055/s-2003-42264

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Boluyt MO, Robinson KG, Meredith AL, Sen S, Lakatta EG, Crow MT, Brooks WW, Conrad CH, Bing OH (2005) Heart failure after long-term supravalvular aortic constriction in rats. Am J Hypertens 18(2):202–212. https://doi.org/10.1016/j.amjhyper.2004.08.034

    Article  PubMed  Google Scholar 

  82. 82.

    Turcani M, Rupp H (2000) Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition. Br J Pharmacol 130(7):1671–1677. https://doi.org/10.1038/sj.bjp.0703467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Miyamoto MI, Del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A 97(2):793–798. https://doi.org/10.1073/pnas.97.2.793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Nair K, Cutilletta A, Zak R, Koide T, Rabinowitz M (1968) Biochemical correlates of cardiac hypertrophy: I. Experimental model; changes in heart weight, RNA content, and nuclear RNA polymerase activity. Circ Res 23(3):451–462. https://doi.org/10.1161/01.RES.23.3.451

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Schunkert H, Dzau V, Tang SS, Hirsch A, Apstein C, Lorell B (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86(6):1913–1920. https://doi.org/10.1172/JCI114924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90(3):1410–1422. https://doi.org/10.1161/01.CIR.90.3.1410

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T (2005) A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol 38(5):777–786. https://doi.org/10.1016/j.yjmcc.2005.02.012

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Ku H-C, Su M-J (2014) DPP4 deficiency preserved cardiac function in abdominal aortic banding rats. PLoS One 9(1):e85634. https://doi.org/10.1371/journal.pone.0085634

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Braun MU, Szalai P, Strasser RH, Borst MM (2003) Right ventricular hypertrophy and apoptosis after pulmonary artery banding: regulation of PKC isozymes. Cardiovasc Res 59(3):658–667. https://doi.org/10.1016/S0008-6363(03)00470-X

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JM, Helbing WA (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol 291(4):H1580–H1586. https://doi.org/10.1152/ajpheart.00286.2006

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Fujimoto Y, Urashima T, Shimura D, Ito R, Kawachi S, Kajimura I, Akaike T, Kusakari Y, Fujiwara M, Ogawa K (2016) Low cardiac output leads hepatic fibrosis in right heart failure model rats. PLoS One 11(2):e0148666. https://doi.org/10.1371/journal.pone.0148666

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Hirata M, Ousaka D, Arai S, Okuyama M, Tarui S, Kobayashi J, Kasahara S, Sano S (2015) Novel model of pulmonary artery banding leading to right heart failure in rats. Biomed Res Int 2015:1–10. https://doi.org/10.1155/2015/753210

    Article  Google Scholar 

  93. 93.

    Hoashi T, Matsumiya G, Miyagawa S, Ichikawa H, Ueno T, Ono M, Saito A, Shimizu T, Okano T, Kawaguchi N (2009) Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J Thorac Cardiovasc Surg 138(2):460–467. https://doi.org/10.1016/j.jtcvs.2009.02.018

    Article  PubMed  Google Scholar 

  94. 94.

    Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120(20):1951–1960. https://doi.org/10.1161/CIRCULATIONAHA.109.883843

    Article  PubMed  Google Scholar 

  95. 95.

    Zierhut W, Zimmer H, Gerdes A (1990) Influence of ramipril on right ventricular hypertrophy induced by pulmonary artery stenosis in rats. J Cardiovasc Pharmacol 16(3):480–486

    CAS  Article  Google Scholar 

  96. 96.

    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367. https://doi.org/10.1016/S0140-6736(06)68074-4

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123(3):327–334. https://doi.org/10.1161/CIRCULATIONAHA.108.845792

    Article  PubMed  Google Scholar 

  98. 98.

    Del Monte F, Butler K, Boecker W, Gwathmey JK, Hajjar RJ (2002) Novel technique of aortic banding followed by gene transfer during hypertrophy and heart failure. Physiol Genomics 9(1):49–56. https://doi.org/10.1152/physiolgenomics.00035.2001

    Article  PubMed  Google Scholar 

  99. 99.

    Bregagnollo EA, Mestrinel MA, Okoshi K, Carvalho FC, Bregagnollo IF, Padovani CR, Cicogna AC (2007) Relative role of left ventricular geometric remodeling and of morphological and functional myocardial remodeling in the transition from compensated hypertrophy to heart failure in rats with supravalvar aortic stenosis. Arq Bras Cardiol 88(2):225–233. https://doi.org/10.1590/S0066-782X2007000200015

    Article  PubMed  Google Scholar 

  100. 100.

    Chaanine AH, Hajjar RJ (2018) Characterization of the differential progression of left ventricular remodeling in a rat model of pressure overload induced heart failure. Does clip size matter?. In: Ishikawa K (eds) Experimental models of cardiovascular diseases. Methods in molecular biology, vol 1816. Humana Press, New York, pp 195–206

    Google Scholar 

  101. 101.

    Chaanine AH, Sreekumaran Nair K, Bergen RH III, Klaus K, Guenzel AJ, Hajjar RJ, Redfield MM (2017) Mitochondrial integrity and function in the progression of early pressure overload–induced left ventricular remodeling. J Am Heart Assoc 6(6):e005869. https://doi.org/10.1161/JAHA.117.005869

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Ajith Kumar G, Binil Raj SKS, Sanjay G (2014) Ascending aortic constriction in rats for creation of pressure overload cardiac hypertrophy model. J Vis Exp (88). https://doi.org/10.3791/50983

  103. 103.

    Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96(10):3681–3686. https://doi.org/10.1161/01.cir.96.10.3681

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Seymour A-ML, Giles L, Ball V, Miller JJ, Clarke K, Carr CA, Tyler DJ (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260. https://doi.org/10.1093/cvr/cvv101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Pires MD, Salemi VM, Cestari IA, Picard MH, Leirner AA, Mady C, Cestari IN (2003) Noninvasive assessment of hemodynamic parameters in experimental stenosis of the ascending aorta. Artif Organs 27(8):695–700. https://doi.org/10.1046/j.1525-1594.2003.07276.x

    Article  PubMed  Google Scholar 

  106. 106.

    Salemi VM, Pires MD, Cestari IN, Cestari IA, Picard MH, Leirner AA, Mady C (2004) Echocardiographic assessment of global ventricular function using the myocardial performance index in rats with hypertrophy. Artif Organs 28(4):332–337. https://doi.org/10.1111/j.1525-1594.2004.47350.x

    Article  PubMed  Google Scholar 

  107. 107.

    Shingu Y, Amorim PA, Nguyen TD, Osterholt M, Schwarzer M, Doenst T (2013) Echocardiography alone allows the determination of heart failure stages in rats with pressure overload. Thorac Cardiovasc Surg 61(08):718–725. https://doi.org/10.1055/s-0032-1326775

    Article  PubMed  Google Scholar 

  108. 108.

    Slama M, Ahn J, Varagic J, Susic D, Frohlich ED (2004) Long-term left ventricular echocardiographic follow-up of SHR and WKY rats: effects of hypertension and age. Am J Physiol Heart Circ Physiol 286(1):H181–H185. https://doi.org/10.1152/ajpheart.00642.2003

    CAS  Article  PubMed  Google Scholar 

  109. 109.

    Higuchi T, Nekolla SG, Jankaukas A, Weber AW, Huisman MC, Reder S, Ziegler SI, Schwaiger M, Bengel FM (2007) Characterization of Normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 48(2):288–294

    PubMed  Google Scholar 

  110. 110.

    Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Jean-Luc B, Feron O, Moniotte S (2016) High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 111(4):46. https://doi.org/10.1007/s00395-016-0565-2

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Songstad NT, Johansen D, How O-J, Kaaresen PI, Ytrehus K, Acharya G (2014) Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats. PLoS One 9(2):e89559. https://doi.org/10.1371/journal.pone.0089559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Lygate CA, Schneider JE, Hulbert K, ten Hove M, Sebag-Montefiore LM, Cassidy PJ, Clarke K, Neubauer S (2006) Serial high resolution 3D–MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Res Cardiol 101(1):8–16. https://doi.org/10.1007/s00395-005-0546-3

    Article  PubMed  Google Scholar 

  113. 113.

    Jalal Z, Roubertie F, Fournier E, Dubes V, Benoist D, Naulin J, Delmond S, Durand M, Haissaguerre M, Bernus O (2017) Unexpected internalization of a pulmonary artery band in a porcine model of Tetralogy of Fallot. World J Pediatr Congenit Heart Surg 8(1):48–54. https://doi.org/10.1177/2150135116668828

    Article  PubMed  Google Scholar 

  114. 114.

    Mann DL, Barger PM, Burkhoff D (2012) Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol 60(24):2465–2472. https://doi.org/10.1016/j.jacc.2012.06.062

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280(2):H674–H683. https://doi.org/10.1152/ajpheart.2001.280.2.H674

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Arsenault M, Plante E, Drolet M-C, Couet J (2002) Experimental aortic regurgitation in rats under echocardiographic guidance. J Heart Valve Dis 11(1):128–134

    PubMed  Google Scholar 

  117. 117.

    Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105(16):1983–1988. https://doi.org/10.1161/01.cir.0000014686.73212.da

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Gerdes A, Campbell S, Hilbelink D (1988) Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab Investig 59(6):857–861. https://doi.org/10.1161/01.CIR.86.2.426

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Mickle JP, Menges JT, Day AL, Quisling R, Ballinger W (1981) Experimental aortocaval fistulae in rats. Microsurgery 2(4):283–288. https://doi.org/10.1002/micr.1920020410

    CAS  Article  Google Scholar 

  120. 120.

    Munakata H, Assmann A, Poudel-Bochmann B, Horstkötter K, Kamiya H, Okita Y, Lichtenberg A, Akhyari P (2013) Aortic conduit valve model with controlled moderate aortic regurgitation in rats. Circ J 77(9):2295–2302. https://doi.org/10.1253/circj.CJ-12-1439

    Article  PubMed  Google Scholar 

  121. 121.

    Ocampo C, Ingram P, Ilbawi M, Arcilla R, Gupta M (2003) Revisiting the surgical creation of volume load by aorto-caval shunt in rats. Mol Cell Biochem 251(1–2):139–143. https://doi.org/10.1016/S0022-2828(01)90340-2

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Plante E, Couet J, Gaudreau M, Dumas M-P, Drolet M-C, Arsenault M (2003) Left ventricular response to sustained volume overload from chronic aortic valve regurgitation in rats. J Card Fail 9(2):128–140. https://doi.org/10.1054/jcaf.2003.17

    Article  PubMed  Google Scholar 

  123. 123.

    Su X, Brower G, Janicki JS, Chen Y-F, Oparil S, Dell'Italia LJ (1999) Differential expression of natriuretic peptides and their receptors in volume overload cardiac hypertrophy in the rat. J Mol Cell Cardiol 31(10):1927–1936. https://doi.org/10.1006/jmcc.1999.1025

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Wei C-C, Lucchesi PA, Tallaj J, Bradley WE, Powell PC, Dell'Italia LJ (2003) Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats. Am J Physiol Heart Circ Physiol 285(2):H784–H792. https://doi.org/10.1152/ajpheart.00793.2001

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Wu J, Cheng Z, Gu Y, Zou W, Zhang M, Zhu P, Hu S (2015) Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS One 10(8):e0134579. https://doi.org/10.1371/journal.pone.0134579

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Isoyama S, Grossman W, Wei JY (1988) Effect of age on myocardial adaptation to volume overload in the rat. J Clin Invest 81(6):1850–1857. https://doi.org/10.1172/JCI113530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Toshihiko U, Tamahito Y, Hiroyuki M, Yujiro H, Mitsuyoshi N (1989) A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. J Pharmacol Methods 22(4):249–257. https://doi.org/10.1016/0160-5402(89)90004-1

    Article  Google Scholar 

  128. 128.

    Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA (2018) Synergy between sacubitril and valsartan leads to hemodynamic, antifibrotic, and exercise tolerance benefits in rats with preexisting heart failure. Am J Physiol Heart Circ Physiol 316(2):H289–H297. https://doi.org/10.1152/ajpheart.00579.2018

    CAS  Article  PubMed  Google Scholar 

  129. 129.

    Desjardins S, Mueller RW, Cauchy MJ (1988) A pressure overload model of congestive heart failure in rats. Cardiovasc Res 22(10):696–702. https://doi.org/10.1093/cvr/22.10.696

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Huang M, LeBlanc MH, Hester RL (1994) Evaluation of the needle technique for producing an arteriovenous fistula. J Appl Physiol 77(6):2907–2911. https://doi.org/10.1152/jappl.1994.77.6.2907

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69(1):52–58. https://doi.org/10.1161/01.RES.69.1.52

    CAS  Article  PubMed  Google Scholar 

  132. 132.

    Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94(2):752–763. https://doi.org/10.1152/japplphysiol.00248.2002

    CAS  Article  PubMed  Google Scholar 

  133. 133.

    Wu J, Cheng Z, Zhang M, Zhu P, Gu Y (2016) Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci Rep 6:27493. https://doi.org/10.1038/srep27493

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Langer S, Heiss C, Paulus N, Bektas N, Mommertz G, Rowinska Z, Westenfeld R, Jacobs MJ, Fries M, Koeppel TA (2009) Functional and structural response of arterialized femoral veins in a rodent AV fistula model. Nephrol Dial Transplant 24(7):2201–2206. https://doi.org/10.1093/ndt/gfp033

    Article  PubMed  Google Scholar 

  135. 135.

    Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW (1991) Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler Thromb 11(6):1844–1852. https://doi.org/10.1161/01.ATV.11.6.1844

    CAS  Article  PubMed  Google Scholar 

  136. 136.

    Manning E, Skartsis N, Orta AM, Velazquez OC, Liu Z-J, Asif A, Salman LH, Vazquez-Padron RI (2012) A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 49(2):123–131. https://doi.org/10.1159/000332327

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Flaim SF, Minteer WJ, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol Heart Circ Physiol 236(5):H698–H704. https://doi.org/10.1152/ajpheart.1979.236.5.H698

    CAS  Article  Google Scholar 

  138. 138.

    Stark RJ, Shekerdemian LS (2013) Estimating intracardiac and extracardiac shunting in the setting of complex congenital heart disease. Ann Pediatr Cardiol 6(2):145–151. https://doi.org/10.4103/0974-2069.115259

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Linardi D, Rungatscher A, Morjan M, Marino P, Luciani GB, Mazzucco A, Faggian G (2014) Ventricular and pulmonary vascular remodeling induced by pulmonary overflow in a chronic model of pretricuspid shunt. J Thorac Cardiovasc Surg 148(6):2609–2617. https://doi.org/10.1016/j.jtcvs.2014.04.044

    Article  PubMed  Google Scholar 

  140. 140.

    Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24(5):430–432. https://doi.org/10.1093/cvr/24.5.430

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Kimura M, Umemura K, Ohashi K, Nakashima M (1998) Effect of ecadotril, a neutral endopeptidase inhibitor, on myocardial hypertrophy in the rat aortic insufficiency model. Can J Cardiol 14(1):63–68

    CAS  PubMed  Google Scholar 

  142. 142.

    Légaré J-F, Nanton MA, Bryan P, Lee TDG, Ross DB (2000) Aortic valve graft implantation in rats: a new functional model. J Thorac Cardiovasc Surg 120(4):679–685. https://doi.org/10.1067/mtc.2000.109239

    Article  PubMed  Google Scholar 

  143. 143.

    Légaré J-F, Ross DB (2004) Suggestion for functional model to test effects of decellularization of rat aortic valve allografts on leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 128(1):155–156. https://doi.org/10.1016/j.jtcvs.2004.03.015

    Article  PubMed  Google Scholar 

  144. 144.

    Morita H, Tanaka I, Oda T, Ichiyama A, Yamazaki T, Uematsu T, Nakashima M, Yoshimi T (1990) Atrial natriuretic peptide messenger RNA and peptide in rats with aortic valve insufficiency. Peptides 11(4):843–847. https://doi.org/10.1016/0196-9781(90)90202-G

    CAS  Article  PubMed  Google Scholar 

  145. 145.

    Koike MK, Matsubara BB, Matsubara LS, Frimm CC (2014) Sequential hemodynamic assessment in aortic valve insufficiency in rats. Med Express 1:214–218

    Article  Google Scholar 

  146. 146.

    Chen M, Luo H, Miyamoto T, Atar S, Kobal S, Rahban M, Brasch AV, Makkar R, Neuman Y, Naqvi TZ, Tolstrup K, Siegel RJ (2003) Correlation of echo-Doppler aortic valve regurgitation index with angiographic aortic regurgitation severity. Am J Cardiol 92(5):634–635. https://doi.org/10.1016/S0002-9149(03)00743-4

    Article  PubMed  Google Scholar 

  147. 147.

    Tani LY, Minich LL, Day RW, Orsmond GS, Shaddy RE (1997) Doppler evaluation of aortic regurgitation in children. Am J Cardiol 80(7):927–931. https://doi.org/10.1016/S0002-9149(97)00547-X

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Gene Therapy Resource Program (GTRP). We thank Anne Olson for the excellent illustrations.

Funding

This work was supported by NIH grant 7R01 HL083078-10.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael G. Katz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katz, M.G., Fargnoli, A.S., Gubara, S.M. et al. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 24, 759–777 (2019). https://doi.org/10.1007/s10741-019-09783-4

Download citation

Keywords

  • Rat heart anatomy and physiology
  • Right heart failure
  • Left heart failure
  • Surgical models