Postmortem cardiac magnetic resonance in sudden cardiac death

  • Benedetta Guidi
  • Giovanni Donato Aquaro
  • Marco Gesi
  • Michele Emdin
  • Marco Di Paolo
Article

Abstract

Postmortem imaging is increasingly used in forensic practice as good complementary tool to conventional autopsy investigations. Over the last decade, postmortem cardiac magnetic resonance (PMCMR) imaging was introduced in forensic investigations of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. Postmortem CMR application has yielded interesting results in ischemic myocardium injury investigations and in visualizing other pathological findings in the heart. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations of PMCMR application.

Keywords

Sudden cardiac death Postmortem imaging Postmortem cardiac magnetic resonance 

Abbreviations

CMR

Cardiac magnetic resonance

PMCMR

Postmortem cardiac magnetic resonance

PMMR

Postmortem magnetic resonance

MR

Magnetic resonance

PMMRI

Postmortem magnetic resonance imaging

PMCT

Postmortem computer tomography

SCD

Sudden cardiac death

HCM

Hypertrophic cardiomyopathy

ARVC/D

Arrhythmogenic right ventricular cardiomyopathy/dysplasia

SSFP

Cine steady-state free precession

LV

Left ventricle

RV

Right ventricle

T1w

T1-weighted

T2w

T2-weighted

PD

Proton density

FSE

Fast spin echo

ECV

Extracellular volume

TE

Echo times

TR

Relaxation times

MRF

Magnetic resonance fingerprinting

DTI

Diffusion tensor imaging

DWI

Diffusion weighted imaging

ISFRI

International Society of Forensic Radiology and Imaging

AHA

American Heart Association

CAD

Coronary arteries disease

STIR

Short tau inversion–recovery

CA

Cardiac amyloidosis

AL

Light chain amyloidosis

ATTR

Transthyretin amyloidosis

Notes

Authors’ contributions

BG developed review design and was one of the major contributors in manuscript writing. GDA developed review design, conducted PMCMR scans, led image analysis and data interpretation, and was one of the major contributors in writing the manuscript. MG was involved in manuscript writing. MDP and ME supervised the overall review, ensured quality control on image analysis and data interpretation, and supervised manuscript writing. All authors have read and approved the final manuscript.

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Consent for publication

The processing of the data reported in this paper is covered by the general authorization to process personal data for scientific research purposes granted by the Italian Data Protection Authority (1 March 2012 as published in Italy’s Official Journal no. 72 dated 26 March 2012) since the data do not entail any significant personalized impact on data subjects. Our study does not involve the application of experimental protocols; therefore, it does not require approval by an institutional and/or licensing committee. In all cases, local prosecutors opened an investigation, ordering that an autopsy be performed to clarify the exact cause of death

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Hayashi M, Shimizu W, Albert CM (2015) The spectrum of epidemiology underlying sudden cardiac death. Circ Res 116(12):1887–1906CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basso C, Burke M, Fornes P, Gallagher P, de Gouveia R, Sheppard M, Thiene G, van der Wal A, Association for European Cardiovascular Pathology (2010) Guidelines for autopsy investigation of sudden cardiac death. Pathologica 102(5):391–404PubMedGoogle Scholar
  3. 3.
    Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, Al Samara M et al (2008) Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis 51(3):213–228CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Michaud K, Grabber S, Jackowski C, Bollmann MD, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128(1):127–137CrossRefPubMedGoogle Scholar
  5. 5.
    Papadakis M, Sharma S, Cox S, Sheppard MN, Panoulas VF, Behr ER (2009) The magnitude of sudden cardiac death in the young: a death certificate-based review in England and Wales. Europace 11(10):1353–1358CrossRefPubMedGoogle Scholar
  6. 6.
    Behr ER, Casey A, Sheppard M, Wright M, Bowker TJ, Davies MJ, McKenna WJ, Wood DA (2007) Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart 93(5):601–605CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eckart RE, Shry EA, Burke AP, McNear JA, Appel DA, Castillo-Rojas LM, Avedissian L, Pearse LA, Potter RN, Tremaine L, Gentlesk PJ, Huffer L, Reich SS, Stevenson WG, Department of Defense Cardiovascular Death Registry Group (2011) Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol 58(12):1254–1261CrossRefPubMedGoogle Scholar
  8. 8.
    Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G (2003) Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol 42(11):1959–1963CrossRefPubMedGoogle Scholar
  9. 9.
    Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes. Circulation 119(8):1085–1092CrossRefPubMedGoogle Scholar
  10. 10.
    Aquaro GD, Nucifora G, Pederzoli L, Strata E, De Marchi D, Todiere G et al (2012) Fat in left ventricular myocardium assessed by steady-state free precession pulse sequences. Int J Cardiovasc Imaging 28:813–821CrossRefPubMedGoogle Scholar
  11. 11.
    Aquaro GD, Todiere G, Strata E, Barison A, Di Bella G, Lombardi M (2014) Usefulness of India ink artifact in steady-state free precession pulse sequences for detection and quantification of intramyocardial fat. J Magn Reson Imaging 40:126–132CrossRefPubMedGoogle Scholar
  12. 12.
    Mavrogeni S, Apostolou D, Argyriou P, Velitsista S, Papa L, Efentakis S, Vernardos E, Kanoupaki M, Kanoupakis G, Manginas A (2017 Aug 17) T1 and T2 mapping in cardiology: “mapping the obscure object of desire”. Cardiology 138(4):207–217CrossRefPubMedGoogle Scholar
  13. 13.
    Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE (2012) Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 5:596–603CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6:488–497CrossRefPubMedGoogle Scholar
  15. 15.
    Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6:392–398CrossRefPubMedGoogle Scholar
  16. 16.
    Pedersen SF, Thrysoe SA, Robich MP, Paaske WP, Ringgaard S, Botker HE et al (2012) Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction. J Cardiovasc Magn Reson 14:59CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aquaro GD, Gabutti A, Meini M, Prontera C, Pasanisi E, Passino C, Emdin M, Lombardi M (2011) Silent myocardial damage in cocaine addicts. Heart 97:2056–2062CrossRefPubMedGoogle Scholar
  18. 18.
    Zech WD, Schwendener N, Persson A, Warntjes MJ, Jackowski C (2015) Postmortem MR quantification of the heart for characterization and differentiation of ischaemic myocardial lesions. Eur Radiol 25:2067–2073CrossRefPubMedGoogle Scholar
  19. 19.
    Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA (2013 Mar 14) Magnetic resonance fingerprinting. Nature 495(7440):187–192CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McGill LA, Ferreira PF, Scott AD, Nielles-Vallespin S, Giannakidis A, Kilner PJ et al (2016 Jan 6) Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers. J Cardiovasc Magn Reson 18:2CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445CrossRefPubMedGoogle Scholar
  22. 22.
    Kerckhoffs RCP, Bovendeerd P, Prinzen F, Smits K, Arts T (2003) Intra-and interventricular asynchrony of electromechanics in the ventricularly paced heart. J Eng Math 47:201–216CrossRefGoogle Scholar
  23. 23.
    Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89:336–343CrossRefPubMedGoogle Scholar
  24. 24.
    Von Deuster C, Sammut E, Asner L, Nordsletten D, Lamata P, Stoeck CT, et al. Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ Cardiovasc Imaging. 2016; Oct; 9(10): e005018Google Scholar
  25. 25.
    Rutty GN, Morgan B, O'Donnell C, Leth PM, Thali M (2008) Forensic institutes across the world place CT or MRI scanners or both into their mortuaries. J Trauma 65:493–494CrossRefPubMedGoogle Scholar
  26. 26.
    Baglivo M, Winklhofer S, Hatch GM, Ampanozi G, Thali MJ, Ruder TD (2013) The rise of forensic and post-mortem radiology—analysis of the literature between the years 2000 and 2011. J Forensic Radiol Imaging 1:3–9CrossRefGoogle Scholar
  27. 27.
    Ruder TD (2013) What are the key objectives of the ISFRI?—evaluation of the ISFRI member survey. J Forensic Radiol Imaging 1(3):142–145CrossRefGoogle Scholar
  28. 28.
    Jackowski C, Hofmann K, Schwendener N, Schweitzer W, Keller-Sutter M (2011) Coronary thrombus and peracute myocardial infarction visualized by unenhanced postmortem CMR prior to autopsy. Forensic Sci Int 214:e16–e19CrossRefPubMedGoogle Scholar
  29. 29.
    Jackowski C, thesis “Macroscopical and histological findings in comparison with CT- and MRI examinations of isolated autopsy hearts.” Institute of Forensic Medicine, O.-v.-G.-University of Magdeburg, Prof. D. Krause, 2003Google Scholar
  30. 30.
    Ruder TD, Ebert LC, Khattab AA, Rieben R, Thali MJ, Kamat P (2013) Edema is a sign of early acute myocardial infarction on post-mortem magnetic resonance imaging. Forensci Sci Med Pathol 9(4):501–505CrossRefGoogle Scholar
  31. 31.
    Holmes AA, Scollan DF, Winslow RL (2000 Jul) Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med 44(1):157–161CrossRefPubMedGoogle Scholar
  32. 32.
    Zech WD, Schwendener N, Persson A, Warntjes MJ, Jackowski C (2015) Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol 25:2381–2389CrossRefPubMedGoogle Scholar
  33. 33.
    Adolphi N, Gerrard Ch, Hatch G, Takacs N, Nolte K. Determining the temperature-dependence of tissue relaxation times (T1 and T2) for prospective optimization of post-mortem magnetic resonance (PMCMR) image contrast. J Forensic Radiol Imaging 2013; 1: 80Google Scholar
  34. 34.
    Ruder TD, Hatch GM, Siegenthaler L, Ampanozi G, Mathier S, Thali MJ, Weber OM (2012) The influence of body temperature on image contrast in post mortem CMR. Eur J Radiol 81:1366–1370CrossRefPubMedGoogle Scholar
  35. 35.
    Ruder D, Thali M, Hatch GM (2014) Forensic radiology special feature: review article, essential of forensic post-mortem MR imaging in adults. Br J Radiol 87(1036):20130567CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jackowski C, Thali M, Aghayev E, Yen K, Sonnenschein M, Zwygart K et al (2005) Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med (4):1–8Google Scholar
  37. 37.
    Bohm E (1987) Structural principles of hemostatic processes. Forensic Sci Int 33:7–22CrossRefPubMedGoogle Scholar
  38. 38.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics–2017 update: a report from the American Heart Association. Circulation:135Google Scholar
  39. 39.
    Srikanth S, Ambrose JA (2012) Pathophysiology of coronary thrombus formation and adverse consequences of thrombus during PCI. Current Card Rev 8:168–176CrossRefGoogle Scholar
  40. 40.
    Jackowski C, Christe A, Sonnenschein M, Aghayev E, Thali MJ (2006) Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur Heart J 27:2459–2467CrossRefPubMedGoogle Scholar
  41. 41.
    Jackowski C, Warntjes MJ, Berge J, Bӓr W, Persson A (2011) Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem CMR. Eur Radiol 21:70–78CrossRefPubMedGoogle Scholar
  42. 42.
    Jackowski C, Schwendener N, Grabherr S, Persson A (2013) Post-mortem cardiac 3-T magnetic resonance imaging: visualization of sudden cardiac death? J Am Coll Cardiol 62(7):617–629CrossRefPubMedGoogle Scholar
  43. 43.
    Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53:1194–1201CrossRefPubMedGoogle Scholar
  44. 44.
    Winklhofer S, Stoeck CT, Berger N, Thali M, Manka R, Kozerke S, Alkadhi H, Stolzmann P (2014) Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture. Eur Radiol 24(11):2810–2818CrossRefPubMedGoogle Scholar
  45. 45.
    Schwendener N, Jackowski C, Persson A, Warntjes MJ, Schuster F, Riva F, Zech WD (2017) Detection of early acute and following age stages of myocardial infarction with quantitative post-mortem cardiac 1,5T MR. Forensic Sci Int 270:248–254CrossRefPubMedGoogle Scholar
  46. 46.
    Huda W, Slone R. Magnetic resonance. In: Huda W, Slone R, editor, eds. Review of radiologic physics. Philadelphia, PA: Lippincott Williams & Wilkins; 2003. pp. 192–221Google Scholar
  47. 47.
    Ruder TD, Bauer-Kreutz R, Ampanozi G, Rosskopf AB, Pilgrim TM, Weber OM, Thali MJ, Hatch GM (2012) Assessment of coronary artery disease by post-mortem cardiac MR. Eur J Radiol 81:2208–2214CrossRefPubMedGoogle Scholar
  48. 48.
    Varnava AM, Elliott PM, Baboonian C, Davison F, Davies MJ, McKenna WJ (2001) Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104:1380–1384CrossRefPubMedGoogle Scholar
  49. 49.
    Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998CrossRefPubMedGoogle Scholar
  50. 50.
    Josephson ME (2002) Recurrent ventricular tachycardias M.E. Josephson (Ed.), Clinical cardiac electrophysiology, Lippincott Williams & Wilkins, Philadelphia, PA, p. 433–445Google Scholar
  51. 51.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124(24):2761–2796CrossRefPubMedGoogle Scholar
  52. 52.
    Pennell DJ (2010) Cardiovascular magnetic resonance. Circulation 121:692–705CrossRefPubMedGoogle Scholar
  53. 53.
    O'Hanlon R, Assomull RG, Prasad SK (2007) Use of cardiovascular magnetic resonance for diagnosis and management in hypertrophic cardiomyopathy. Curr Cardiol Rep 9:51–56CrossRefPubMedGoogle Scholar
  54. 54.
    Reichek N, Gupta D (2008) Hypertrophic cardiomyopathy: cardiac magnetic resonance imaging changes the paradigm. J Am Coll Cardiol 52:567–568CrossRefPubMedGoogle Scholar
  55. 55.
    Jackowski C, Schweitzer W, Thali M, Yen K, Aghayev E, Sonnenschein M, Vock P, Dirnhofer R (2005) Virtopsy: postmortem imaging of the human heart in situ using MSCT and CMR. Forensic Sci Int 149(1):11–23CrossRefPubMedGoogle Scholar
  56. 56.
    Todiere G, Pisciella L, Barison A, Del Franco A, Zachara E, Piaggi P et al (2014) Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: a marker of advanced disease and electrical myocardial instability. PLoS One 9(10):e111366CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hen Y, Iguchi N, Machida H, Takada K, Utanohara Y, Sumiyoshi T (2013) High signal intensity on T2-weighted cardiac magnetic resonance imaging correlates with the ventricular tachyarrhythmia in hypertrophic cardiomyopathy. Heart Vessel 28(6):742–749CrossRefGoogle Scholar
  58. 58.
    Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ (2010) Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 61:233–253CrossRefPubMedGoogle Scholar
  59. 59.
    Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H, Piccini J, Roguin A, Tichnell C, James C, Russell SD, Judge DP, Abraham T, Spevak PJ, Bluemke DA, Calkins H (2005) Arrhythmogenic right ventricular dysplasia a United States experience. Circulation 112:3823–3832CrossRefPubMedGoogle Scholar
  60. 60.
    Te Riele AS, James CA, Philips B, Rastegar N, Bhonsale A, Groeneweg JA et al (2013) Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J Cardiovasc Electrophysiol 24:1311–1320CrossRefGoogle Scholar
  61. 61.
    Basso C, Corrado D, Marcus FI, Nava A, Thiene G (2009) Arrhythmogenic right ventricular cardiomyopathy. Lancet 373(9671):1289–1300CrossRefPubMedGoogle Scholar
  62. 62.
    Aquaro GD, Nucifora G, Pederzoli L, Strata E, De Marchi D, Todiere G et al (2012) Fat in left ventricular myocardium assessed by steady-state free precession pulse sequences. Int J Cardiovasc Imaging 28(4):813–821CrossRefPubMedGoogle Scholar
  63. 63.
    Aquaro GD, Todiere G, Strata E, Barison A, Di Bella G, Lombardi M (2014) Usefulness of India ink artifact in steady-state free precession pulse sequences for detection and quantification of intramyocardial fat. J Magn Reson Imaging 40(1):126–132CrossRefPubMedGoogle Scholar
  64. 64.
    Puranik R, Gray B, Lackey H, Yeates L, Parker G, Duflou J, Semsarian C (2014) Comparison of conventional autopsy and magnetic resonance imaging in determining the cause of sudden death in the young. J Cardiovasc Magn Reson 16(1):44CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fabre A, Sheppard MN (2006) Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart 92:316–320CrossRefPubMedGoogle Scholar
  66. 66.
    Puranik R, Chow CK, Duflou JA, Kilborn MJ, McGuire MA (2005) Sudden death in the young. Heart Rhythm 2:1277–1282CrossRefPubMedGoogle Scholar
  67. 67.
    Aquaro GD, Del Franco A, Meini M, Gabutti A, Barison A, Chiappino D et al (2014) Cocaine assumption and transient myocardial edema in asymptomatic cocaine heavy-users. Int J Cardiol 173:614–615CrossRefPubMedGoogle Scholar
  68. 68.
    Di Paolo M, Aimo A, Barison A, Aquaro GD, Roas L, Emdin M (2016) The heart after idarubicin overdose. Cardiac death in a patient with acute promyelocitic leukaemia. Int J Cardiol 203:997–999CrossRefPubMedGoogle Scholar
  69. 69.
    Selvanayagam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol 2007;50:2101–2110Google Scholar
  70. 70.
    Dubrey SW, Hawkins PN, Falk RH (2011) Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart 97:75–84CrossRefPubMedGoogle Scholar
  71. 71.
    Gillmore JD; Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016, Jun 14;133(24):2404–2412

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Benedetta Guidi
    • 1
  • Giovanni Donato Aquaro
    • 2
  • Marco Gesi
    • 1
  • Michele Emdin
    • 2
    • 3
  • Marco Di Paolo
    • 4
  1. 1.Clinical and Translational Science Research DepartmentUniversity of PisaPisaItaly
  2. 2.Fondazione Toscana G.MonasterioPisaItaly
  3. 3.Science of Life InstituteScuola Superiore Sant’AnnaPisaItaly
  4. 4.Legal Medicine SectionUniversity of PisaPisaItaly

Personalised recommendations