Advertisement

Heart Failure Reviews

, Volume 23, Issue 2, pp 273–289 | Cite as

Imaging technologies for cardiac fiber and heart failure: a review

  • Shana R. Watson
  • James D. Dormer
  • Baowei Fei
Article

Abstract

There has been an increasing interest in studying cardiac fibers in order to improve the current knowledge regarding the mechanical and physiological properties of the heart during heart failure (HF), particularly early HF. Having a thorough understanding of the changes in cardiac fiber orientation may provide new insight into the mechanisms behind the progression of left ventricular (LV) remodeling and HF. We conducted a systematic review on various technologies for imaging cardiac fibers and its link to HF. This review covers literature reports from 1900 to 2017. PubMed and Google Scholar databases were searched using the keywords “cardiac fiber” and “heart failure” or “myofiber” and “heart failure.” This review highlights imaging methodologies, including magnetic resonance diffusion tensor imaging (MR-DTI), ultrasound, and other imaging technologies as well as their potential applications in basic and translational research on the development and progression of HF. MR-DTI and ultrasound have been most useful and significant in evaluating cardiac fibers and HF. New imaging technologies that have the ability to measure cardiac fiber orientations and identify structural and functional information of the heart will advance basic research and clinical diagnoses of HF.

Keywords

Heart failure Cardiac fiber Myofiber Medical imaging Magnetic resonance imaging (MRI) MR diffusion tensor imaging Ultrasound imaging 

Abbreviations

ADC

Apparent diffusion coefficient

ARE

Average relative error

BTI

Backscatter tensor imaging

CRT

Cardiac resynchronization therapy

CT

Computerized tomography

DSC

Dice similarity coefficient

DSI

Diffusion spectrum imaging

DTI

Diffusion tensor imaging

ETI

Elastic tensor imaging

FA

Fractional anisotropy

HF

Heart failure

LDDMM

Large deformation diffeomorphic metric mapping

LV

Left ventricle; left ventricular

MRI

Magnetic resonance imaging

NMR

Nuclear magnetic resonance

PET

Positron emission tomography

PS

Polarized sensitive

OCT

Optical coherence tomography

RVFW

Right ventricular free wall

SHG

Second harmonic generation

SPECT

Single photon emission computed tomography

SWI

Susceptibility weight imaging

TPM

Two photon microscopy

Notes

Acknowledgements

This research was supported in part by the U.S. National Institutes of Health (NIH) grants (CA176684, CA156775, and CA204254). The work was also supported in part by the Georgia Research Alliance (GRA) Distinguished Cancer Scientist Award to BF.

References

  1. 1.
    Santos A, Fernandez-Friera L, Villalba M, Lopez-Melgar B, Espana S, Mateo J, Mota RA, Jimenez-Borreguero J, Ruiz-Cabello J (2015) Cardiovascular imaging: what have we learned from animal models? Front Pharmacol 6:227.  https://doi.org/10.3389/fphar.2015.00227 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98(1):125–132.  https://doi.org/10.1161/01.RES.0000199396.30688.eb PubMedCrossRefGoogle Scholar
  3. 3.
    Helm P, Beg MF, Miller MI, Winslow RL (2005) Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci 1047:296–307.  https://doi.org/10.1196/annals.1341.026 PubMedCrossRefGoogle Scholar
  4. 4.
    Tseng WY, Dou J, Reese TG, Wedeen VJ (2006) Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging 23(1):1–8.  https://doi.org/10.1002/jmri.20473 PubMedCrossRefGoogle Scholar
  5. 5.
    Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF (2003) Diffusion tensor MRI of myocardial fibers and sheets: correspondence with visible cut-face texture. J Magn Reson Imaging 17(1):31–42.  https://doi.org/10.1002/jmri.10223 PubMedCrossRefGoogle Scholar
  6. 6.
    Carreras F, Ballester M, Pujadas S, Leta R, Pons-Llado G (2006) Morphological and functional evidences of the helical heart from non-invasive cardiac imaging. Eur J Cardiothorac Surg 29(Suppl 1):S50–S55.  https://doi.org/10.1016/j.ejcts.2006.02.061 PubMedCrossRefGoogle Scholar
  7. 7.
    Yeh FC, Wedeen VJ, Tseng WY (2011) Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage 55(3):1054–1062.  https://doi.org/10.1016/j.neuroimage.2010.11.087 PubMedCrossRefGoogle Scholar
  8. 8.
    McLean M, Prothero J (1991) Myofiber orientation in the weanling mouse heart. Am J Anat 192(4):425–441.  https://doi.org/10.1002/aja.1001920410 PubMedCrossRefGoogle Scholar
  9. 9.
    Brown NH, Dobrovolny HM, Gauthier DJ, Wolf PD (2007) A fiber-based ratiometric optical cardiac mapping channel using a diffraction grating and split detector. Biophys J 93(1):254–263.  https://doi.org/10.1529/biophysj.106.101154 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen SY, Hsu CY, Sun CK (2008) Epi-third and second harmonic generation microscopic imaging of abnormal enamel. Opt Express 16(15):11670–11679PubMedGoogle Scholar
  11. 11.
    Sun CW, Wang YM, Lu LS, Lu CW, Hsu IJ, Tsai MT, Yang CC, Kiang YW, Wu CC (2006) Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser. J Biomed Opt 11(5):054016.  https://doi.org/10.1117/1.2363358 PubMedCrossRefGoogle Scholar
  12. 12.
    Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Phys 275(6 Pt 2):H2308–H2318Google Scholar
  13. 13.
    Hoffman MP, Taylor EN, Aninwene GE II, Sadayappan S, Gilbert RJ (2016) Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: review. Microsc Res Tech.  https://doi.org/10.1002/jemt.22777
  14. 14.
    Angeli S, Befera N, Peyrat JM, Calabrese E, Johnson GA, Constantinides C (2014) A high-resolution cardiovascular magnetic resonance diffusion tensor map from ex-vivo C57BL/6 murine hearts. J Cardiovasc Magn Reson 16:77.  https://doi.org/10.1186/s12968-014-0077-x PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhang X, Haynes P, Campbell KS, Wenk JF (2015) Numerical evaluation of myofiber orientation and transmural contractile strength on left ventricular function. J Biomech Eng 137(4):044502.  https://doi.org/10.1115/1.4028990 PubMedCrossRefGoogle Scholar
  16. 16.
    Qin X, Fei B (2015) DTI template-based estimation of cardiac fiber orientations from 3D ultrasound. Med Phys 42(6):2915–2924.  https://doi.org/10.1118/1.4921121 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fleming CP, Ripplinger CM, Webb B, Efimov IR, Rollins AM (2008) Quantification of cardiac fiber orientation using optical coherence tomography. J Biomed Opt 13(3):030505.  https://doi.org/10.1117/1.2937470 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lekadir K, Pashaei A, Hoogendoorn C, Pereanez M, Alba X, Frangi AF (2014) Effect of statistically derived fiber models on the estimation of cardiac electrical activation. IEEE Trans Biomed Eng 61(11):2740–2748.  https://doi.org/10.1109/TBME.2014.2327025 PubMedCrossRefGoogle Scholar
  19. 19.
    Palit A, Bhudia SK, Arvanitis TN, Sherwood V, Wayte S, Turley GA, Williams MA (2015) Effect of fibre orientation on diastolic mechanics of human ventricle. Conf Proc IEEE Eng Med Biol Soc 2015:6523–6526.  https://doi.org/10.1109/EMBC.2015.7319887 PubMedGoogle Scholar
  20. 20.
    Hongo M, Ryoke T, Ross J (1997) Animal models of heart failure: recent developments and perspectives. Trends Cardiovasc Med 7(5):161–167PubMedCrossRefGoogle Scholar
  21. 21.
    Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21(5):365–371PubMedCrossRefGoogle Scholar
  22. 22.
    Lip GYH, Gibbs CR, Beevers DG (2000) ABC of heart failure: aetiology. BMJ 320(7227):104–107PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D (1997) Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med 336(19):1350–1355PubMedCrossRefGoogle Scholar
  24. 24.
    Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F (2015) Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) 119(10):1233–1242.  https://doi.org/10.1152/japplphysiol.00374.2015 CrossRefGoogle Scholar
  25. 25.
    Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492–1526.  https://doi.org/10.1089/ars.2011.4179 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kwak HB (2013) Aging, exercise, and extracellular matrix in the heart. J Exerc Rehabil 9(3):338–347.  https://doi.org/10.12965/jer.130049 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, Eckhouse SR, Ikonomidis JS, Zile MR, Spinale FG (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143(1):215–223.  https://doi.org/10.1016/j.jtcvs.2011.09.032 PubMedCrossRefGoogle Scholar
  28. 28.
    Eckhouse SR, Spinale FG (2012) Changes in the myocardial interstitium and contribution to the progression of heart failure. Heart Fail Clin 8(1):7–20.  https://doi.org/10.1016/j.hfc.2011.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rodrigues PG, Leite-Moreira AF, Falcao-Pires I (2016) Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 310(11):H1402–H1422.  https://doi.org/10.1152/ajpheart.00696.2015 PubMedCrossRefGoogle Scholar
  30. 30.
    Mann DL, Zipes DP, Libby P, Bonow RO (2014) Braunwald’s heart disease: a textbook of cardiovascular medicine. Elsevier Health Sciences, AmsterdamGoogle Scholar
  31. 31.
    Vescovo G, Zennaro R, Sandri M, Carraro U, Leprotti C, Ceconi C, Ambrosio GB, Dalla Libera L (1998) Apoptosis of skeletal muscle myofibers and interstitial cells in experimental heart failure. J Mol Cell Cardiol 30(11):2449–2459PubMedCrossRefGoogle Scholar
  32. 32.
    Berry C, Greenwald S (1976) Effects of hypertension on the static mechanical properties and chemical composition of the rat aorta. Cardiovasc Res 10(4):437–451PubMedCrossRefGoogle Scholar
  33. 33.
    Bertoni AG, Tsai A, Kasper EK, Brancati FL (2003) Diabetes and idiopathic cardiomyopathy: a nationwide case-control study. Diabetes Care 26(10):2791–2795PubMedCrossRefGoogle Scholar
  34. 34.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223PubMedCrossRefGoogle Scholar
  35. 35.
    Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH (1999) Increased pulse pressure and risk of heart failure in the elderly. JAMA 281(7):634–643PubMedCrossRefGoogle Scholar
  36. 36.
    Cohn JN (1999) Arterial stiffness. J Hypertens 17(8):1227PubMedCrossRefGoogle Scholar
  37. 37.
    Cohn J (1999) Vascular wall function as a risk marker for cardiovascular disease. J Hypertens Suppl 17(5):S41–S44PubMedGoogle Scholar
  38. 38.
    Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350(19):1953–1959.  https://doi.org/10.1056/NEJMoa032566 PubMedCrossRefGoogle Scholar
  39. 39.
    Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45(4):813–825PubMedCrossRefGoogle Scholar
  40. 40.
    Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347PubMedCrossRefGoogle Scholar
  41. 41.
    Mall FP (1911) On the muscular architecture of the ventricles of the human heart. Am J Anat 11(3):211–266CrossRefGoogle Scholar
  42. 42.
    Grant RP (1965) Notes on the muscular architecture of the left ventricle. Circulation 32(2):301–308PubMedCrossRefGoogle Scholar
  43. 43.
    Fox JJ, Gilmour RF Jr, Bodenschatz E (2002) Conduction block in one-dimensional heart fibers. Phys Rev Lett 89(19):198101.  https://doi.org/10.1103/PhysRevLett.89.198101 PubMedCrossRefGoogle Scholar
  44. 44.
    Rohmer D, Sitek A, Gullberg GT (2007) Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 42(11):777–789.  https://doi.org/10.1097/RLI.0b013e3181238330 PubMedCrossRefGoogle Scholar
  45. 45.
    Savadjiev P, Strijkers GJ, Bakermans AJ, Piuze E, Zucker SW, Siddiqi K (2012) Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc Natl Acad Sci U S A 109(24):9248–9253.  https://doi.org/10.1073/pnas.1120785109 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Qin X, Wang S, Shen M, Zhang X, Wagner MB, Fei B (2014) Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound. Proc SPIE Int Soc Opt Eng 9036:90361O.  https://doi.org/10.1117/12.2043821 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Qin X, Wang S, Shen M, Zhang X, Lerakis S, Wagner MB, Fei B (2015) 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping. Proc SPIE Int Soc Opt Eng 9419.  https://doi.org/10.1117/12.2082326
  48. 48.
    Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK (2006) Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 48(10):1988–2001.  https://doi.org/10.1016/j.jacc.2006.08.030 PubMedCrossRefGoogle Scholar
  49. 49.
    Wickline SA, Verdonk ED, Miller JG (1991) Three-dimensional characterization of human ventricular myofiber architecture by ultrasonic backscatter. J Clin Invest 88(2):438–446.  https://doi.org/10.1172/JCI115323 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL (2005) Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 54(4):850–859.  https://doi.org/10.1002/mrm.20622 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fuster V, Danielson MA, Robb RA, Broadbent JC, Brown AL Jr, Elveback LR (1977) Quantitation of left ventricular myocardial fiber hypertrophy and interstitial tissue in human hearts with chronically increased volume and pressure overload. Circulation 55(3):504–508PubMedCrossRefGoogle Scholar
  52. 52.
    Geerts-Ossevoort L, Bovendeerd P, Prinzen F, Arts T, Nicolay K (2001) Myofiber orientation in the normal and infarcted heart, assessed with MR-diffusion tensor imaging. In: Computers in cardiology 2001. IEEE, pp 621–624Google Scholar
  53. 53.
    Wu MT, Tseng WY, Su MY, Liu CP, Chiou KR, Wedeen VJ, Reese TG, Yang CF (2006) Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation 114(10):1036–1045.  https://doi.org/10.1161/CIRCULATIONAHA.105.545863 PubMedCrossRefGoogle Scholar
  54. 54.
    Streeter DD Jr, Vaishnav RN, Patel DJ, Spotnitz HM, Ross J Jr, Sonnenblick EH (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10(4):345–363.  https://doi.org/10.1016/S0006-3495(70)86306-8 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lewis BS, Gotsman MS (1975) Cardiac hypertrophy and left ventricular end-diastolic stress. Isr J Med Sci 11(4):299–303PubMedGoogle Scholar
  56. 56.
    Milne ML, Singh GK, Miller JG, Holland MR (2012) Echocardiographic-based assessment of myocardial fiber structure in individual, excised hearts. Ultrason Imaging 34(3):129–141.  https://doi.org/10.1177/0161734612455580 PubMedCrossRefGoogle Scholar
  57. 57.
    Zhou Y, Zheng YP (2008) Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT). Ultrasound Med Biol 34(9):1474–1481.  https://doi.org/10.1016/j.ultrasmedbio.2008.02.009 PubMedCrossRefGoogle Scholar
  58. 58.
    Zhou Y, Zheng Y-P (2009) Enhancement of muscle fibers in ultrasound images using Gabor filters. In: 2009 I.E. International Ultrasonics Symposium. IEEE, pp 2296–2299Google Scholar
  59. 59.
    Quandt D, Knirsch W, Niesse O, Schraner T, Dave H, Kretschmar O (2013) Impact of chest X-ray before discharge in asymptomatic children after cardiac surgery—prospective evaluation. Pediatr Cardiol 34(1):155–158.  https://doi.org/10.1007/s00246-012-0405-6 PubMedCrossRefGoogle Scholar
  60. 60.
    Gadsbøll N, Høilund-Carlsen P, Nielsen G, Berning J, Brunn N, Stage P, Hein E, Marving J, Løngborg-Jensen H, Jensen B (1989) Symptoms and signs of heart failure in patients with myocardial infarction: reproducibility and relationship to chest X-ray, radionuclide ventriculography and right heart catheterization. Eur Heart J 10(11):1017–1028PubMedCrossRefGoogle Scholar
  61. 61.
    Grossman W (1986) Profiles in valvular heart disease. Lea and Febiger, United StatesGoogle Scholar
  62. 62.
    Tei C, Nishimura RA, Seward JB, Tajik AJ (1997) Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 10(2):169–178PubMedCrossRefGoogle Scholar
  63. 63.
    O'Dell WG, McCulloch AD (2000) Imaging three-dimensional cardiac function. Annu Rev Biomed Eng 2:431–456.  https://doi.org/10.1146/annurev.bioeng.2.1.431 PubMedCrossRefGoogle Scholar
  64. 64.
    Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen VJ (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47.  https://doi.org/10.1186/1532-429X-11-47 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Han BK, Lesser JR (2013) CT imaging in congenital heart disease: an approach to imaging and interpreting complex lesions after surgical intervention for tetralogy of Fallot, transposition of the great arteries, and single ventricle heart disease. J Cardiovasc Comput Tomogr 7(6):338–353.  https://doi.org/10.1016/j.jcct.2013.10.003 PubMedCrossRefGoogle Scholar
  66. 66.
    Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel WG, Achenbach S (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107(5):664–666PubMedCrossRefGoogle Scholar
  67. 67.
    Bengel FM, Higuchi T, Javadi MS, Lautamäki R (2009) Cardiac positron emission tomography. J Am Coll Cardiol 54(1):1–15PubMedCrossRefGoogle Scholar
  68. 68.
    Eitzman D, Al-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, Schwaiger M (1992) Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 20(3):559–565PubMedCrossRefGoogle Scholar
  69. 69.
    Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, Sipilä H, Teräs M, Mäki M, Airaksinen J (2010) Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery. DiseaseCLINICAL PERSPECTIVE. Circulation 122(6):603–613PubMedCrossRefGoogle Scholar
  70. 70.
    Keyes JW, Leonard PF, Brody SL, Svetkoff DJ, Rogers WL, Lucchesi BR (1978) Myocardial infarct quantification in the dog by single photon emission computed tomography. Circulation 58(2):227–232PubMedCrossRefGoogle Scholar
  71. 71.
    Gussenhoven EJ, Essed CE, Lancée CT, Mastik F, Frietman P, van Egmond FC, Reiber J, Bosch H, van Urk H, Roelandt J (1989) Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 14(4):947–952PubMedCrossRefGoogle Scholar
  72. 72.
    Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, Berk M, Fischer C, DeMaria AN (1991) Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 84(3):1087–1099PubMedCrossRefGoogle Scholar
  73. 73.
    Izumi S, Miyatake K, Beppu S, Park YD, Nagata S, Kinoshita N, Sakakibara H, Nimura Y (1987) Mechanism of mitral regurgitation in patients with myocardial infarction: a study using real-time two-dimensional Doppler flow imaging and echocardiography. Circulation 76(4):777–785PubMedCrossRefGoogle Scholar
  74. 74.
    Khalil MM, Tremoleda JL, Bayomy TB, Gsell W (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging 2011:796025.  https://doi.org/10.1155/2011/796025 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Seidell JC, Bakker CJ, van der Kooy K (1990) Imaging techniques for measuring adipose-tissue distribution--a comparison between computed tomography and 1.5-T magnetic resonance. Am J Clin Nutr 51(6):953–957PubMedCrossRefGoogle Scholar
  76. 76.
    Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–H1907.  https://doi.org/10.1152/ajpheart.00041.2005 PubMedCrossRefGoogle Scholar
  77. 77.
    Qin X, Wang S, Shen M, Zhang X, Lerakis S, Wagner MB, Fei B (2015) Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts. Proc SPIE Int Soc Opt Eng 9415.  https://doi.org/10.1117/12.2082317
  78. 78.
    Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Phys 274(5 Pt 2):H1627–H1634Google Scholar
  79. 79.
    Vadakkumpadan F, Arevalo H, Ceritoglu C, Miller M, Trayanova N (2012) Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE Trans Med Imaging 31(5):1051–1060.  https://doi.org/10.1109/TMI.2012.2184799 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Healy LJ, Jiang Y, Hsu EW (2011) Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:74.  https://doi.org/10.1186/1532-429X-13-74 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Crosby J, Hergum T, Remme EW, Torp H (2009) The effect of including myocardial anisotropy in simulated ultrasound images of the heart. IEEE Trans Ultrason Ferroelectr Freq Control 56(2):326–333.  https://doi.org/10.1109/TUFFC.2009.1041 PubMedCrossRefGoogle Scholar
  82. 82.
    Kung GL, Nguyen TC, Itoh A, Skare S, Ingels NB Jr, Miller DC, Ennis DB (2011) The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging 34(5):1080–1091.  https://doi.org/10.1002/jmri.22725 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Merchant SS, Gomez AD, Morgan JL, Hsu EW (2016) Parametric modeling of the mouse left ventricular myocardial fiber structure. Ann Biomed Eng 44(9):2661–2673.  https://doi.org/10.1007/s10439-016-1574-x PubMedCrossRefGoogle Scholar
  84. 84.
    Stankovic Z, Blanke P, Markl M (2012) Usefulness of 4D MRI flow imaging to control TIPS function. Am J Gastroenterol 107(2):327–328.  https://doi.org/10.1038/ajg.2011.380 PubMedCrossRefGoogle Scholar
  85. 85.
    Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow imaging with MRI. Cardiovasc Diagn Ther 4(2):173–192.  https://doi.org/10.3978/j.issn.2223-3652.2014.01.02 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Karlon WJ, Covell JW, McCulloch AD, Hunter JJ, Omens JH (1998) Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat Rec 252(4):612–625.  https://doi.org/10.1002/(SICI)1097-0185(199812)252:4<612::AID-AR12>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  87. 87.
    Ashikaga H, Coppola BA, Hopenfeld B, Leifer ES, McVeigh ER, Omens JH (2007) Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo. J Am Coll Cardiol 49(8):909–916PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gan Y, Tsay D, Amir SB, Marboe CC, Hendon CP (2016) Automated classification of optical coherence tomography images of human atrial tissue. J Biomed Opt 21(10):101407.  https://doi.org/10.1117/1.JBO.21.10.101407 PubMedCrossRefGoogle Scholar
  89. 89.
    Dormer J, Qin X, Shen M, Wang S, Zhang X, Jiang R, Wagner MB, Fei B (2016) Determining cardiac fiber orientation using FSL and registered ultrasound/DTI volumes. Proc SPIE Int Soc Opt Eng 9790.  https://doi.org/10.1117/12.2217296
  90. 90.
    Qin X, Cong Z, Jiang R, Shen M, Wagner MB, Kishbom P, Fei B (2013) Extracting cardiac Myofiber orientations from high frequency ultrasound images. Proc SPIE Int Soc Opt Eng 8675.  https://doi.org/10.1117/12.2006494
  91. 91.
    Sommer G, Schriefl AJ, Andra M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA (2015) Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater 24:172–192.  https://doi.org/10.1016/j.actbio.2015.06.031 PubMedCrossRefGoogle Scholar
  92. 92.
    Lee WN, Pernot M, Couade M, Messas E, Bruneval P, Bel A, Hagege AA, Fink M, Tanter M (2012) Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 31(3):554–562.  https://doi.org/10.1109/TMI.2011.2172690 PubMedCrossRefGoogle Scholar
  93. 93.
    Beg MF, Helm PA, McVeigh E, Miller MI, Winslow RL (2004) Computational cardiac anatomy using MRI. Magn Reson Med 52(5):1167–1174.  https://doi.org/10.1002/mrm.20255 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lekadir K, Ghafaryasl B, Munoz-Moreno E, Butakoff C, Hoogendoorn C, Frangi AF (2011) Predictive modeling of cardiac fiber orientation using the Knutsson mapping. Med Image Comput Comput Assist Interv 14(Pt 2):50–57PubMedGoogle Scholar
  95. 95.
    Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang Z, Ge L, Ordovas K, Kozerke S, Guccione JM (2014) Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J Appl Physiol (1985) 117(2):142–152.  https://doi.org/10.1152/japplphysiol.00255.2014 CrossRefGoogle Scholar
  96. 96.
    Qin X, Fei B (2014) Measuring myofiber orientations from high-frequency ultrasound images using multiscale decompositions. Phys Med Biol 59(14):3907–3924.  https://doi.org/10.1088/0031-9155/59/14/3907 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Qin X, Wang S, Shen M, Lu G, Zhang X, Wagner MB, Fei B (2015) Simulating cardiac ultrasound image based on MR diffusion tensor imaging. Med Phys 42(9):5144–5156.  https://doi.org/10.1118/1.4927788 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg 32(2):231–249.  https://doi.org/10.1016/j.ejcts.2007.03.032 PubMedCrossRefGoogle Scholar
  99. 99.
    Wang Y, Zhang K, Wasala N, Yao X, Duan D, Yao G (2014) Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography. Biomedical optics express 5(8):2843–2855PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Buckberg G, Mahajan A, Saleh S, Hoffman JI, Coghlan C (2008) Structure and function relationships of the helical ventricular myocardial band. J Thorac Cardiovasc Surg 136(3):578–589, 589 e571–511.  https://doi.org/10.1016/j.jtcvs.2007.10.088 PubMedCrossRefGoogle Scholar
  101. 101.
    Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ (1995) Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med 34(6):786–791PubMedCrossRefGoogle Scholar
  102. 102.
    Yip G, Abraham T, Belohlavek M, Khandheria BK (2003) Clinical applications of strain rate imaging. J Am Soc Echocardiogr 16(12):1334–1342.  https://doi.org/10.1067/j.echo.2003.09.004 PubMedCrossRefGoogle Scholar
  103. 103.
    Aygen M, Popp RL (1987) Influence of the orientation of myocardial fibers on echocardiographic images. Am J Cardiol 60(1):147–152PubMedCrossRefGoogle Scholar
  104. 104.
    Denslow S, Balaji S, Hewett KW (2000) A new framework for echocardiographic assessment of left ventricular mechanics: sensitivity to heart failure. J Am Soc Echocardiogr 13(11):969–979PubMedCrossRefGoogle Scholar
  105. 105.
    Lee W-N, Larrat B, Pernot M, Tanter M (2012) Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 57(16):5075–5095PubMedCrossRefGoogle Scholar
  106. 106.
    Streeter DD Jr, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33(6):656–664PubMedCrossRefGoogle Scholar
  107. 107.
    Ross AA, Streeter DD Jr (1979) Myocardial fiber disarray. Circulation 60(6):1425–1426PubMedGoogle Scholar
  108. 108.
    Streeter DD (1979) Gross morphology and fiber geometry of the heart. Handbook of Physiology, 61–112Google Scholar
  109. 109.
    Streeter DD, Ramon C (1983) Muscle pathway geometry in the heart wall. J Biomech Eng 105(4):367–373PubMedCrossRefGoogle Scholar
  110. 110.
    Arts T, Costa KD, Covell JW, McCulloch AD (2001) Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 280(5):H2222–H2229PubMedCrossRefGoogle Scholar
  111. 111.
    Katz AM (2008) The “modern” view of heart failure how did we get here? Circ Heart Fail 1(1):63–71PubMedCrossRefGoogle Scholar
  112. 112.
    Both M, Vogel M, Friedrich O, von Wegner F, Ku T, Fink RH, Uttenweiler D (2004) Second harmonic imaging of intrinsic signals in muscle fibers in situ. J Biomed Opt 9(5):882–892PubMedCrossRefGoogle Scholar
  113. 113.
    Hunter P, Nielsen P (2005) A strategy for integrative computational physiology. Physiology (Bethesda) 20:316–325.  https://doi.org/10.1152/physiol.00022.2005 Google Scholar
  114. 114.
    Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Phys 260(4 Pt 2):H1365–H1378Google Scholar
  115. 115.
    Goergen CJ, Chen HH, Sakadžić S, Srinivasan VJ, Sosnovik DE (2016) Microstructural characterization of myocardial infarction with optical coherence tractography and two-photon microscopy. Physiol Rep 4(18):e12894PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 29(5):843–852.  https://doi.org/10.3174/ajnr.A1052 PubMedCrossRefGoogle Scholar
  117. 117.
    Gronda E, Mangiavacchi M, Andreuzzi B, Municino A (2001) Arrhythmia risk stratification in patients with heart failure according to drug treatment and its effects. Ital Heart J Suppl 2(12):1278–1283PubMedGoogle Scholar
  118. 118.
    Farmakis D, Parissis J, Lekakis J, Filippatos G (2015) Acute heart failure: epidemiology, risk factors, and prevention. Rev Esp Cardiol (Engl Ed) 68(3):245–248.  https://doi.org/10.1016/j.rec.2014.11.004 CrossRefGoogle Scholar
  119. 119.
    Dalla-Volta S, Razzolini R, Scognamiglio R, Rubino A, Chioin R (1988) Myocardial function in heart failure. Cardiology 75(Suppl 1):8–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaUSA
  2. 2.Winship Cancer Institute of Emory UniversityAtlantaUSA
  3. 3.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  4. 4.Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaUSA
  5. 5.Quantitative Bioimaging Laboratory, Department of Radiology and Imaging Sciences, School of Medicine, Emory UniversityAtlantaUnited States

Personalised recommendations