Advertisement

Heart Failure Reviews

, Volume 23, Issue 2, pp 237–253 | Cite as

Redefining biomarkers in heart failure

  • Michele Correale
  • Ilenia Monaco
  • Natale Daniele Brunetti
  • Matteo Di Biase
  • Marco Metra
  • Savina Nodari
  • Javed Butler
  • Mihi Gheorghiade
  • On behalf of Master Program Students on Drug Development for Heart Failure
Article

Abstract

Heart failure (HF) is the end result of many different cardiac and non-cardiac abnormalities leading to a complex clinical entity. In this view, the use of biomarkers in HF should be deeply reconsidered; indeed, the same biomarker may carry a different significance in patients with preserved or reduced EF. The aim of this review is to reconsider the role of biomarkers in HF, based on the different clinical characteristics of this syndrome. The role of cardiac and non-cardiac biomarkers will be reviewed with respect of the different clinical manifestations of this syndrome.

Keywords

Biomarkers Heart failure Preserved ejection fraction Physiopathology 

Notes

Compliance with ethical standards

The manuscript does not contain clinical studies or patient data. It is a review.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ramachandran SV (2006) Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation 113:2335–2362CrossRefGoogle Scholar
  2. 2.
    Fox N, Growdon JH (2004) Biomarkers and surrogates. NeuroRx 1(2):181PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  4. 4.
    D’Elia E, Vaduganathan M, Gori M, Gavazzi A, Butler J, Senni M (2015) Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail 17:1231–1239PubMedCrossRefGoogle Scholar
  5. 5.
    Francis GS, Goldsmith SR, Levine TB et al (1984) The neurohumoral axis in congestive heart failure. Ann Intern Med 101(3):370–377PubMedCrossRefGoogle Scholar
  6. 6.
    Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) (1987) The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316(23):1429–1435CrossRefGoogle Scholar
  7. 7.
    Ikram H, Fitzpatrick D (1981) Double-blind trial of chronic oral beta blockade in congestive cardiomyopathy. Lancet 2(8245):490–493PubMedCrossRefGoogle Scholar
  8. 8.
    Waagstein F, Bristow MR, Swedberg K et al (1993) Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet 342(8885):1441–1446PubMedCrossRefGoogle Scholar
  9. 9.
    Santhanakrishnan R, Chong JP, Ng TP, Ling LH, Sim D, Leong KT, Yeo PS, Ong HY, Jaufeerally F, Wong R, Chai P, Low AF, Richards AM, Lam CS (2012) Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail 14:1338–1347PubMedCrossRefGoogle Scholar
  10. 10.
    Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, Zengin E, Wild PS, Lackner KJ, Munzel T, Blankenberg S, Wollert KC, Zeller T, Westermann D (2017) Biomarkers for characterization of heart failure—distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol 227:272–277PubMedCrossRefGoogle Scholar
  11. 11.
    Maisel A, Mueller C, Nowak R, Peacock WF, Landsberg JW, Ponikowski P et al (2010) Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol 55:2062–2076PubMedCrossRefGoogle Scholar
  12. 12.
    Klip IT, Voors AA, Anker SD, Hillege HL, Struck J, Squire I et al (2011) Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 97:892–898PubMedCrossRefGoogle Scholar
  13. 13.
    Peacock WF, Nowak R, Christenson R, DiSomma S, Neath SX, Hartmann O, Mueller C, Ponikowski P, Möckel M, Hogan C, Wu AH, Richards M, Filippatos GS, Anand I, Ng LL, Daniels LB, Morgenthaler N, Anker SD, Maisel AS (2011) Short-term mortality risk in emergency department acute heart failure. Acad Emerg Med 18:947–958PubMedCrossRefGoogle Scholar
  14. 14.
    Morbach C, Marx A, Kaspar M, Güder G, Brenner S, Feldmann C, Störk S, Vollert JO, Ertl G, Angermann CE, INH Study Group and the Competence Network Heart Failure (2017) Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: comparison with cardiac natriuretic peptides. Eur J Heart Fail 19:1166–1175PubMedCrossRefGoogle Scholar
  15. 15.
    Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM (2005) Four-day urocortin-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 26:2055–2062PubMedCrossRefGoogle Scholar
  16. 16.
    Wright SP, Doughty RN, Frampton CM, Gamble GD, Yandle TG, Richards AM (2009) Plasma urocortin 1 in human heart failure. Circ Heart Fail 2:465–471PubMedCrossRefGoogle Scholar
  17. 17.
    Ng LL, Loke IW, O’Brien RJ, Squire IB, Davies JE (2004) Plasma urocortin in human systolic heart failure. Clin Sci 106:383–388PubMedCrossRefGoogle Scholar
  18. 18.
    Yıldırım E, Cengiz M, Yıldırım N, Aslan K, İpek E, Korkmaz AF, Ulusoy FR, Hatem E (2014) The evaluation of the clinical utility of urocortin 1 and adrenomedullin versus proBNP in systolic heart failure. Anatol J Cardiol 17(3):184–190PubMedGoogle Scholar
  19. 19.
    Tang WH, Shrestha K, Martin MG, Borowski AG, Jasper S, Yandle TG (2010) Clinical significance of endogenous vasoactive neurohormones in chronic systolic heart failure. J Card Fail 16:635–640PubMedCrossRefGoogle Scholar
  20. 20.
    Chatterjee K (2005) Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95:8B–13BPubMedCrossRefGoogle Scholar
  21. 21.
    Mohammed AA, van Kimmenade RR, Richards M, Bayes-Genis A, Pinto Y, Moore SA (2010) Hyponatremia, natriuretic peptides, and outcomes in acutely decompensated heart failure: results from the International Collaborative of NT-proBNP Study. Circ Heart Fail 3:354–361PubMedCrossRefGoogle Scholar
  22. 22.
    Balling L, Gustafsson F (2016) Copeptin in heart failure. Adv Clin Chem 73:29–64PubMedCrossRefGoogle Scholar
  23. 23.
    Tentzeris I, Jarai R, Farhan S, Perkmann T, Schwarz MA, Jak LG (2011) Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur J Heart Fail 13:726–733PubMedCrossRefGoogle Scholar
  24. 24.
    Alehagen U, Dahlström U, Rehfeld JF, Goetze JP (2011) Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA 305(20):2088–2095PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson CE, Haig C, Welsh P, Dalzell JR, Tsorlalis IK, McConnachie A, Preiss D, Anker SD, Sattar N, Petrie MC, Gardner RS, McMurray JJ (2016) The incremental prognostic and clinical value of multiple novel biomarkers in heart failure. Eur J Heart Fail 18(12):1491–1498PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar SK, Mather PJ (2009) AVP receptor antagonists in patients with CHF. Heart Fail Rev 14(2):83–86PubMedCrossRefGoogle Scholar
  27. 27.
    Cabassi A, Binno SM, Tedeschi S, Graiani G, Galizia C, Bianconcini M, Coghi P, Fellini F, Ruffini L, Govoni P, Piepoli M, Perlini S, Regolisti G, Fiaccadori E (2015) Myeloperoxidase-related chlorination activity is positively associated with circulating ceruloplasmin in chronic heart failure patients: relationship with neurohormonal, inflammatory, and nutritional parameters. Biomed Res Int 2015:691693PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tang WH, Katz R, Brennan ML, Aviles RJ, Tracy RP, Psaty BM, Hazen SL (2009) Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol 103(9):1269–1274PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Reichlin T, Socrates T, Egli P, Potocki M, Breidthardt T, Arenja N (2010) Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem 56:944–951PubMedCrossRefGoogle Scholar
  30. 30.
    Adam M, Meyer S, Knors H, Klinke A, Radunski UK, Rudolph TK, Rudolph V, Spin JM, Tsao PS, Costard-Jäckle A, Baldus S (2015) Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep 5:9704PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Avellino A, Collins SP, Fermann GJ (2011) Risk stratification and short-term prognosis in acute heart failure syndromes: a review of novel biomarkers. Biomarkers 16:379–392PubMedCrossRefGoogle Scholar
  32. 32.
    Kim HN, Januzzi JL Jr (2010) Biomarkers in the management of heart failure. Curr Treat Options Cardiovasc Med 12:519–513PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HN, Januzzi JL Jr (2011) Natriuretic peptide testing in heart failure. Circulation 123:2015–2019PubMedCrossRefGoogle Scholar
  34. 34.
    Berger R, Moertl D, Peter S, Ahmadi R, Huelsmann M, Yamuti S (2010) N-terminal pro-B-type natriureticpeptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol 55:645–653PubMedCrossRefGoogle Scholar
  35. 35.
    Darche FF, Baumgärtner C, Biener M, Müller-Hennessen M, Vafaie M, Koch V, Stoyanov K, Rivinius R, Katus HA, Giannitsis E (2017) Comparative accuracy of NT-proBNP and MR-proANP for the diagnosis of acute heart failure in dyspnoeic patients. ESC Heart Failure 4:232–240PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Xue Y, Clopton P, Peacock WF, Maisel AS (2011) Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail 13:37–42PubMedCrossRefGoogle Scholar
  37. 37.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131PubMedCrossRefGoogle Scholar
  38. 38.
    Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287:H1813–H1820PubMedCrossRefGoogle Scholar
  39. 39.
    Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone Trial (VEST). Circulation 103:2055–2059PubMedCrossRefGoogle Scholar
  40. 40.
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602PubMedCrossRefGoogle Scholar
  41. 41.
    Duran S, Duran I, Kaptanagası FA, Nartop F, Ciftci H, Korkmaz GG (2013) The role of pentraxin 3 as diagnostic value in classification of patients with heart failure. Clin Biochem 46(12):983–987PubMedCrossRefGoogle Scholar
  42. 42.
    Suzuki S, Takeishi Y, Niizeki T, Koyama Y, Kitahara T, Sasaki T (2008) Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. Am Heart J 155:75–81PubMedCrossRefGoogle Scholar
  43. 43.
    Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT (2003) Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 107:721–726PubMedCrossRefGoogle Scholar
  44. 44.
    Januzzi JL Jr, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O'Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, Lewandrowski KB, Lloyd-Jones DM, Wu AH (2007) Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol 50(7):607–613PubMedCrossRefGoogle Scholar
  45. 45.
    Lupón J, Gaggin HK, de Antonio M, Domingo M, Galán A, Zamora E, Vila J, Peñafiel J, Urrutia A, Ferrer E, Vallejo N, Januzzi JL, Bayes-Genis A (2015) Biomarker-assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. Int J Cardiol 184:337–343PubMedCrossRefGoogle Scholar
  46. 46.
    Pascual-Figal DA, Manzano-Fernandez S, Boronat M (2011) Soluble ST2, high sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail 13:718–725PubMedCrossRefGoogle Scholar
  47. 47.
    Schindler EI, Szymanski JJ, Hock KG, Geltman EM, Scott MG (2016) Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clin Chem 62(2):360–366PubMedCrossRefGoogle Scholar
  48. 48.
    Wilcox JE, Fonarow GC, Ardehali H, Bonow RO, Butler J, Sauer AJ, Epstein SE, Khan SS, Kim RJ, Sabbah HN, Díez J, Gheorghiade M (2015) “Targeting the heart” in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC Heart Fail 3(9):661–669PubMedCrossRefGoogle Scholar
  49. 49.
    Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Salio M, Chimenti S, De Angelis N, Molla F, Maina V, Nebuloni M (2008) Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation 117:1055–1064PubMedCrossRefGoogle Scholar
  51. 51.
    Tang WH, Shrestha K, Shao Z (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol 108:385–390PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gopal DM, Kommineni M, Ayalon N (2012) Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 1:e000760PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meijers WC, van der Velde AR, Ruifrok WP, Schroten NF, Dokter MM, Damman K, Assa S, Franssen CF, Gansevoort RT, van Gilst WH, Silljé HH, de Boer RA (2014) Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J Am Heart Assoc 3(5):e000962PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Felker GM, Fiuzat M, Shaw LK (2012) Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail 5:72–78PubMedCrossRefGoogle Scholar
  55. 55.
    Lax A, Sanchez-Mas J, Asensio-Lopez MC (2015) Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail 3:50–58PubMedCrossRefGoogle Scholar
  56. 56.
    Calvier L, Martinez-Martinez E, Miana M (2015) The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail 3:59–67PubMedCrossRefGoogle Scholar
  57. 57.
    George M, Jena A, Srivatsan V, Muthukumar R, Dhandapani VE (2016) GDF 15—a novel biomarker in the offing for heart failure. Curr Cardiol Rev 12(1):37–46PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Andersson C, Enserro D, Sullivan L, Wang TJ, Januzzi JL Jr, Benjamin EJ, Vita JA, Hamburg NM, Larson MG, Mitchell GF, Vasan RS (2016) Relations of circulating GDF-15, soluble ST2, and troponin I concentrations with vascular function in the community: the Framingham Heart Study. Atherosclerosis 248:245–251PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cotter G, Voors AA, Prescott MF, Felker GM, Filippatos G, Greenberg BH, Pang PS, Ponikowski P, Milo O, Hua TA, Qian M, Severin TM, Teerlink JR, Metra M, Davison BA (2015) Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: results from the RELAX-AHF study. Eur J Heart Fail 17(11):1133–1143PubMedCrossRefGoogle Scholar
  60. 60.
    Scrutinio D, Agostoni P, Gesualdo L, Corrà U, Mezzani A, Piepoli M, Di Lenarda A, Iorio A, Passino C, Magrì D, Masarone D, Battaia E, Girola D, Re F, Cattadori G, Parati G, Sinagra G, Villani GQ, Limongelli G, Pacileo G, Guazzi M, Metra M, Frigerio M, Cicoira M, Minà C, Malfatto G, Caravita S, Bussotti M, Salvioni E, Veglia F, Correale M, Scardovi AB, Emdin M, Giannuzzi P, Gargiulo P, Giovannardi M, Perrone-Filardi P, Raimondo R, Ricci R, Paolillo S, Farina S, Belardinelli R, Passantino A, La Gioia R, Metabolic Exercise Test Data Combined with Cardiac and Kidney Indexes (MECKI) Score Research Group (2015) Renal function and peak exercise oxygen consumption in chronic heart failure with reduced left ventricular ejection fraction. Circ J. 79(3):583–591PubMedCrossRefGoogle Scholar
  61. 61.
    Peacock WF 4th, De Marco T, Fonarow GC (2008) Cardiac troponin and outcome in acute heart failure. N Engl J Med 358:2117–2126PubMedCrossRefGoogle Scholar
  62. 62.
    Felker GM, Hasselblad V, Tang WH (2012) Eur J Heart Fail 14:1257–1264PubMedCrossRefGoogle Scholar
  63. 63.
    Pang PS, Teerlink JR, Voors AA, Ponikowski P, Greenberg BH, Filippatos G, Felker GM, Davison BA, Cotter G, Kriger J, Prescott MF, Hua TA, Severin T, Metra M (2016) Use of high sensitivity troponin t to identify patients with acute heart failure at lower risk for adverse outcomes: an exploratory analysis from the RELAX-AHF Trial. JACC Heart Fail 4(7):591–599PubMedCrossRefGoogle Scholar
  64. 64.
    Grodin JL, Neale S, Wu Y, Hazen SL, Tang WH (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276–282PubMedCrossRefGoogle Scholar
  65. 65.
    Cardinale D, Sandri MT, Colombo A (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754PubMedCrossRefGoogle Scholar
  66. 66.
    Ky B, Putt M, Sawaya H (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809–816PubMedCrossRefGoogle Scholar
  67. 67.
    Zile MR, Desantis SM, Baicu CF, Stroud RE, Thompson SB, McClure CD (2011) Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 4:246–256PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Buralli S, Dini FL, Ballo P, Conti U, Fontanive P, Duranti E (2010) Circulating matrix metalloproteinase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic dysfunction to risk stratify patients with systolic heart failure. Am J Cardiol 105:853–856PubMedCrossRefGoogle Scholar
  70. 70.
    Sanchis L, Andrea R, Falces C, Llopis J, Morales-Ruiz M, López-Sobrino T, Pérez-Villa F, Sitges M, Sabate M, Brugada J (2015) Prognosis of new-onset heart failure outpatients and collagen biomarkers. Eur J Clin Investig 45(8):842–849CrossRefGoogle Scholar
  71. 71.
    Van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224PubMedCrossRefGoogle Scholar
  72. 72.
    Grubb AO (2000) Cystatin C—properties and use as diagnostic marker. Adv Clin Chem 35:63–99PubMedCrossRefGoogle Scholar
  73. 73.
    Flores-Blanco PJ, Manzano-Fernández S, Pérez-Calvo JI, Pastor-Pérez FJ, Ruiz-Ruiz FJ, Carrasco-Sánchez FJ, Morales-Rull JL, Pascual-Figal D, Galisteo-Almeda L, Januzzi JL (2015) Cystatin C-based CKD-EPI equations and N-terminal pro-B-type natriuretic peptide for predicting outcomes in acutely decompensated heart failure. Clin Cardiol 38(2):106–113PubMedCrossRefGoogle Scholar
  74. 74.
    Sarnak MJ, Katz R, Stehman-Breen CO, Fried LF, Jenny NS, Psaty BM, Cystatin C (2005) concentration as a risk factor for heart failure in older adults. Ann Intern Med 142:497–505PubMedCrossRefGoogle Scholar
  75. 75.
    Manzano-Fernandez S, Januzzi JL Jr, Boronat Garcia M, Bonaque-Gonzalez JC, Truong QA, Pastor-Perez FJ (2011) Beta-trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J Am Coll Cardiol 57:849–858PubMedCrossRefGoogle Scholar
  76. 76.
    Yndestad A, Landro L, Ueland T, Dahl CP, Flo TH, Vinge LE (2009) Increased systemic and myocardial expression of neutrophil gelatin aseassociated lipocalin in clinical and experimental heart failure. Eur Heart J 30:1229–1236PubMedCrossRefGoogle Scholar
  77. 77.
    Shrestha K, Borowski AG, Troughton RW, Thomas JD, Klein AL, Tang WH (2011) Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. J Card Fail 17:472–478PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ventoulis I, Mantziari L, Mouratoglou SA, Kamperidis V, Giannakoulas G, Ziakas A, Tsalikakis D, Giamouzis G, Hitoglou-Makedou A, Karvounis H (2015) NGAL and ST2 levels in ambulatory patients with chronic heart failure. Clinical and echocardiographic correlates. Scand Cardiovasc J 49(4):213–219PubMedCrossRefGoogle Scholar
  79. 79.
    Damman K, Van Veldhuisen DJ, Navis G, Vaidya VS, Smilde TD, Westenbrink BD (2010) Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 96:1297–1302PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C (2011) Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J 32:2705–2712PubMedCrossRefGoogle Scholar
  81. 81.
    Damman K, Ng Kam Chuen MJ, MacFadyen RJ, Lip GY, Gaze D, Collinson PO (2011) Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J Am Coll Cardiol 57:2233–2241PubMedCrossRefGoogle Scholar
  82. 82.
    Lourenço P, Silva S, Friões F, Alvelos M, Amorim M, Torres-Ramalho P, Teles MJ, Guimarães JT, Bettencourt P (2013) Does pre-albumin predict in-hospital mortality in heart failure? Int J Cardiol 166(3):758–760PubMedCrossRefGoogle Scholar
  83. 83.
    Cabassi A, de Champlain J, Maggiore U, Parenti E, Coghi P, Vicini V, Tedeschi S, Cremaschi E, Binno S, Rocco R, Bonali S, Bianconcini M, Guerra C, Folesani G, Montanari A, Regolisti G, Fiaccadori E (2013) Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model: results from a pilot study in elderly chronic heart failure patients. Int J Cardiol 168(4):3334–3339PubMedCrossRefGoogle Scholar
  84. 84.
    Lourenço P, Silva S, Friões F, Alvelos M, Amorim M, Couto M, Torres-Ramalho P, Guimarães JT, Araújo JP, Bettencourt P (2014) Low prealbumin is strongly associated with adverse outcome in heart failure. Heart 100(22):1780–1785PubMedCrossRefGoogle Scholar
  85. 85.
    Cao TH, Quinn PA, Sandhu JK, Voors AA, Lang CC, Parry HM, Mohan M, Jones DJ, Ng LL (2015) Identification of novel biomarkers in plasma for prediction of treatment response in patients with heart failure. Lancet 385(Suppl 1):S26PubMedCrossRefGoogle Scholar
  86. 86.
    Ottesen AH, Louch WE, Carlson CR, Landsverk OJ, Kurola J, Johansen RF, Moe MK, Aronsen JM, Høiseth AD, Jarstadmarken H, Nygård S, Bjørås M, Sjaastad I, Pettilä V, Stridsberg M, Omland T, Christensen G, Røsjø H (2015) Secretoneurin is a novel prognostic cardiovascular biomarker associated with cardiomyocyte calcium handling. J Am Coll Cardiol 65(4):339–351PubMedCrossRefGoogle Scholar
  87. 87.
    Andersen IA, Huntley BK, Sandberg SS, Heublein DM, Burnett JC Jr (2016) Elevation of circulating but not myocardial FGF23 in human acute decompensated heart failure. Nephrol Dial Transplant 31(5):767–772PubMedCrossRefGoogle Scholar
  88. 88.
    Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C, Kaser S, Mayer G, Pirklbauer M, Ulmer H, Griesmacher A (2014) FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur J Clin Investig 44(12):1150–1158CrossRefGoogle Scholar
  89. 89.
    Koller L, Kleber ME, Brandenburg VM, Goliasch G, Richter B, Sulzgruber P, Scharnagl H, Silbernagel G, Grammer TB, Delgado G, Tomaschitz A, Pilz S, Berger R, Mörtl D, Hülsmann M, Pacher R, März W, Niessner A (2015) Fibroblast growth factor 23 is an independent and specific predictor of mortality in patients with heart failure and reduced ejection fraction. Circ Heart Fail 8(6):1059–1067PubMedGoogle Scholar
  90. 90.
    Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J, Lemaire S, Kautzner J, Jarolim P (2015) Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail 3(10):829–839PubMedCrossRefGoogle Scholar
  91. 91.
    Schulte C, Westermann D, Blankenberg S, Zeller T (2015) Diagnostic and prognostic value of circulating microRNAs in heart failure with preserved and reduced ejection fraction. World J Cardiol 7(12):843–860PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K, Thum T (2015) MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 17(4):405–415PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MA, Liu LC, van der Harst P, Pinto YM, de Boer RA, Meyer S, Teerlink JR, O'Connor CM, Metra M, Davison BA, Bloomfield DM, Cotter G, Cleland JG, Mebazaa A, Laribi S, Givertz MM, Ponikowski P, van der Meer P, van Veldhuisen DJ, Voors AA, Berezikov E (2015) Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 18(4):414–423PubMedCrossRefGoogle Scholar
  95. 95.
    Yan H, Ma F, Zhang Y, Wang C, Qiu D, Zhou K, Hua Y, Li Y (2017) miRNAs as biomarkers for diagnosis of heart failure: a systematic review and meta-analysis. Medicine (Baltimore) 96(22):e6825CrossRefGoogle Scholar
  96. 96.
    Lichtenauer M, Jirak P, Wernly B, Paar V, Rohm I, Jung C, Schernthaner C, Kraus J, Motloch LJ, Yilmaz A, Hoppe UC, Christian Schulze P, Kretzschmar D, Pistulli R (2017) A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur J Intern Med 44:31–38PubMedCrossRefGoogle Scholar
  97. 97.
    Gandhi PU, Gaggin HK, Redfield MM, Chen HH, Stevens SR, Anstrom KJ, Semigran MJ, Liu P, Januzzi JL Jr (2016) Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction: results from the RELAX Trial. JACC Heart Fail 4(11):860–869PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    León LE, Rani S, Fernandez M, Larico M, Calligaris SD (2016) Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J Diabetes Res 2016:6143129PubMedCrossRefGoogle Scholar
  99. 99.
    Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2014) Usefulness of growth differentiation factor-15 levels to predict diabetic cardiomyopathy in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 114(6):890–894PubMedCrossRefGoogle Scholar
  100. 100.
    Sokolski M, Zymliński R, Biegus J, Siwołowski P, Nawrocka-Millward S, Todd J, Yerramilli MR, Estis J, Jankowska EA, Banasiak W, Ponikowski P (2017) Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure. Eur J Heart Fail 19(6):760–767PubMedCrossRefGoogle Scholar
  101. 101.
    De Berardinis B, Gaggin HK, Magrini L, Belcher A, Zancla B, Femia A, Simon M, Motiwala S, Bhardwaj A, Parry BA, Nagurney JT, Coudriou C, Legrand M, Sadoune M, Di Somma S, Januzzi JL Jr, Global Research on Acute Conditions Team (GREAT) (2015) Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure. Clin Chem Lab Med 53(4):613–621PubMedCrossRefGoogle Scholar
  102. 102.
    Meijers WC, van der Velde AR, de Boer RA (2016) Biomarkers in heart failure with preserved ejection fraction. Neth Hear J 24(4):252–258CrossRefGoogle Scholar
  103. 103.
    Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, Brunner-La Rocca HP, TIME-CHF investigators (2015) Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail 17(10):1006–1014PubMedCrossRefGoogle Scholar
  104. 104.
    Anjan VY, Loftus TM, Burke MA, Akhter N, Fonarow GC, Gheorghiade M, Shah SJ (2012) Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol 110(6):870–876PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kang SH, Park JJ, Choi DJ, Yoon CH, Oh IY, Kang SM, Yoo BS, Jeon ES, Kim JJ, Cho MC, Chae SC, Ryu KH, Oh BH, KorHF Registry (2015) Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 101(23):1881–1888PubMedCrossRefGoogle Scholar
  106. 106.
    Polat N, Aydin M, Yildiz A, Acet H, Akil MA, Bilik MZ, Demir M, Isik MA, Kaya H, Alan S (2014) The prognostic significance of serum albumin in patients with acute decompensated systolic heart failure. Acta Cardiol 69(6):648–654PubMedCrossRefGoogle Scholar
  107. 107.
    Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, Hillege H, van Veldhuisen DJ, van der Meer P, Voors AA (2017) Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 6(4).Google Scholar
  108. 108.
    Huerta A, López B, Ravassa S, San José G, Querejeta R, Beloqui Ó, Zubillaga E, Rábago G, Brugnolaro C, Díez J, González A (2016) Association of cystatin C with heart failure with preserved ejection fraction in elderly hypertensive patients: potential role of altered collagen metabolism. J Hypertens 34(1):130–138PubMedCrossRefGoogle Scholar
  109. 109.
    Mebazaa A, Di Somma S, Maisel AS, Bayes-Genis A (2015) ST2 and multimarker testing in acute decompensated heart failure. Am J Cardiol 115(7 Suppl):38B–43BPubMedCrossRefGoogle Scholar
  110. 110.
    Maisel AS, Richards AM, Pascual-Figal D, Mueller C (2015) Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol 115(7 Suppl):32B–37BPubMedCrossRefGoogle Scholar
  111. 111.
    Friões F, Lourenço P, Laszczynska O, Almeida PB, Guimarães JT, Januzzi JL, Azevedo A, Bettencourt P (2015) Prognostic value of sST2 added to BNP in acute heart failure with preserved or reduced ejection fraction. Clin Res Cardiol 104(6):491–499PubMedCrossRefGoogle Scholar
  112. 112.
    Kim MS, Jeong TD, Han SB, Min WK, Kim JJ (2015) Role of soluble ST2 as a prognostic marker in patients with acute heart failure and renal insufficiency. J Korean Med Sci 30(5):569–575PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Friões F, Laszczynska O, Almeida PB, Silva N, Guimarães JT, Omland T, Azevedo A, Bettencourt P (2015) Prognostic value of osteoprotegerin in acute heart failure. Can J Cardiol 31(10):1266–1271PubMedCrossRefGoogle Scholar
  114. 114.
    Srinivas P, Manjunath CN, Banu S, Ravindranath KS (2014) Prognostic significance of a multimarker strategy of biomarkers in acute heart failure. J Clin Diagn Res 8(9):MC01–MC06PubMedPubMedCentralGoogle Scholar
  115. 115.
    Perez AL, Grodin JL, Wu Y, Hernandez AF, Butler J, Metra M, Felker GM, Voors AA, McMurray JJ, Armstrong PW, Starling RC, O’Connor CM, Tang WH (2016) Increased mortality with elevated plasma endothelin-1 in acute heart failure: an ASCEND-HF biomarker substudy. Eur J Heart Fail 18(3):290–297PubMedCrossRefGoogle Scholar
  116. 116.
    Ruocco G, Pellegrini M, De Gori C, Franci B, Nuti R, Palazzuoli A (2015) The prognostic combined role of B-type natriuretic peptide, blood urea nitrogen and congestion signs persistence in patients with acute heart failure. J Cardiovasc Med (Hagerstown) 17(11):818–827CrossRefGoogle Scholar
  117. 117.
    Behnes M, Bertsch T, Weiss C, Ahmad-Nejad P, Akin I, Fastner C, El-Battrawy I, Lang S, Neumaier M, Borggrefe M, Hoffmann U (2016) Triple head-to-head comparison of fibrotic biomarkers galectin-3, osteopontin and gremlin-1 for long-term prognosis in suspected and proven acute heart failure patients. Int J Cardiol 203:398–406PubMedCrossRefGoogle Scholar
  118. 118.
    Núñez J, Rabinovich GA, Sandino J, Mainar L, Palau P, Santas E, Villanueva MP, Núñez E, Bodí V, Chorro FJ, Miñana G, Sanchis J (2015) Prognostic value of the interaction between galectin-3 and antigen carbohydrate 125 in acute heart failure. PLoS One 10(4):e0122360PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ueda T, Kawakami R, Nishida T, Onoue K, Soeda T, Okayama S, Takeda Y, Watanabe M, Kawata H, Uemura S, Saito Y (2015) Plasma renin activity is a strong and independent prognostic indicator in patients with acute decompensated heart failure treated with renin-angiotensin system inhibitors. Circ J 79(6):1307–1314PubMedCrossRefGoogle Scholar
  120. 120.
    Villanueva MP, Mollar A, Palau P, Carratalá A, Núñez E, Santas E, Bodí V, Chorro FJ, Miñana G, Blasco ML, Sanchis J, Núñez J (2015) Procalcitonin and long-term prognosis after an admission for acute heart failure. Eur J Intern Med 26(1):42–48PubMedCrossRefGoogle Scholar
  121. 121.
    Self WH, Storrow AB, Hartmann O, Barrett TW, Fermann GJ, Maisel AS, Struck J, Bergmann A, Collins SP (2016) Plasma bioactive adrenomedullin as a prognostic biomarker in acute heart failure. Am J Emerg Med 34(2):257–262PubMedCrossRefGoogle Scholar
  122. 122.
    Shaver A, Nichols A, Thompson E, Mallick A, Payne K, Jones C, Manne ND, Sundaram S, Shapiro JI, Sodhi K (2016) Role of serum biomarkers in early detection of diabetic cardiomyopathy in the West Virginian population. Int J Med Sci 13(3):161–168PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Yin Z, Fan L, Jia H, Li C, Zhang R, Wang H (2012) S1P1 and S1P3 are potential markers of cardiac microangiopathy in diabetes. Med Hypotheses 79(2):168–170PubMedCrossRefGoogle Scholar
  124. 124.
    Domínguez-Rodríguez A, Avanzas P, González-González J, Belleyo-Belkasem C, Abreu-González P (2016) Growth differentiation factor 15, a new prognostic marker in diabetic cardiomyopathy. Rev Esp Cardiol (Engl Ed) 69(1):81–83CrossRefGoogle Scholar
  125. 125.
    Ping Z, Aiqun M, Jiwu L, Liang S (2017) TNF receptor 1/2 predict heart failure risk in type 2 diabetes mellitus patients. Int Heart J 58(2):245–249PubMedCrossRefGoogle Scholar
  126. 126.
    Alonso N, Lupón J, Barallat J, de Antonio M, Domingo M, Zamora E, Moliner P, Galán A, Santesmases J, Pastor C, Mauricio D, Bayes-Genis A (2016) Impact of diabetes on the predictive value of heart failure biomarkers. Cardiovasc Diabetol 15(1):151PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Sharma A, Demissei BG, Tromp J Hillege HL, Cleland JG, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Davison BA, Givertz MM, Bloomfield DM, Dittrich H, van Veldhuisen DJ, Cotter G, Ezekowitz JA, Khan MAF, Voors AA (2017) A network analysis to compare biomarker profiles in patients with and without diabetes mellitusin acute heart failure. Eur J Heart Fail. doi:  https://doi.org/10.1002/ejhf.912.
  128. 128.
    Angeletti S, Fogolari M, Morolla D, Capone F, Costantino S, Spoto S, De Cesaris M, Lo Presti A, Ciccozzi M, Dicuonzo G (2016) Role of neutrophil gelatinase-associated lipocalin in the diagnosis and early treatment of acute kidney injury in a case series of patients with acute decompensated heart failure: a case series. Cardiol Res Pract 2016:3708210PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, Hogan C, Kontos MC, Cannon CM, Müller GA, Birkhahn R, Clopton P, Taub P, Vilke GM, McDonald K, Mahon N, Nuñez J, Briguori C, Passino C, Murray PT (2016) Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS Study. J Am Coll Cardiol 68(13):1420–1431PubMedCrossRefGoogle Scholar
  130. 130.
    Palazzuoli A, Ruocco G, Pellegrini M, De Gori C, Del Castillo G, Franci B, Nuti R, Ronco C (2015) Comparison of neutrophil gelatinase-associated lipocalin versus B-type natriuretic peptide and cystatin C to predict early acute kidney injury and outcome in patients with acute heart failure. Am J Cardiol 116(1):104–111PubMedCrossRefGoogle Scholar
  131. 131.
    Kirbiš S, Gorenjak M, Sinkovič A (2015) The role of urine neutrophil gelatinase-associated lipocalin (NGAL) in acute heart failure in patients with ST-elevation myocardial infarction. BMC Cardiovasc Disord 15:49PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Yang CH, Chang CH, Chen TH, Fan PC, Chang SW, Chen CC, Chu PH, Chen YT, Yang HY, Yang CW, Chen YC (2016) Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure. Circ J 80(4):1017–1023PubMedCrossRefGoogle Scholar
  133. 133.
    Neves FM, Meneses GC, Sousa NE, Menezes RR, Parahyba MC, Martins AM (2015) Libório AB Syndecan-1 in acute decompensated heart failure—association with renal function and mortality. Circ J 79(7):1511–1519PubMedCrossRefGoogle Scholar
  134. 134.
    Shirakabe A, Hata N, Kobayashi N, Okazaki H, Shinada T, Tomita K, Yamamoto M, Tsurumi M, Matsushita M, Yamamoto Y, Yokoyama S, Asai K, Shimizu W (2015) Serum heart-type fatty acid-binding protein level can be used to detect acute kidney injury on admission and predict an adverse outcome in patients with acute heart failure. Circ J 79(1):119–128PubMedCrossRefGoogle Scholar
  135. 135.
    van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K (2016) Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J 37(33):2577–2585PubMedCrossRefGoogle Scholar
  136. 136.
    Sato Y, Nishi K, Taniguchi R, Miyamoto T, Fukuhara R, Yamane K, Saijyo S, Tanada Y, Yamamoto E, Goto T, Takahashi N, Fujiwara H, Takatsu Y (2009) In patients with heart failure and non-ischemic heart disease, cardiac troponin T is a reliable predictor of long-term echocardiographic changes and adverse cardiac events. J Cardiol 54(2):221–230PubMedCrossRefGoogle Scholar
  137. 137.
    Kawahara C, Tsutamoto T, Nishiyama K, Yamaji M, Sakai H, Fujii M, Yamamoto T, Horie M (2011) Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J 75(3):656–661PubMedCrossRefGoogle Scholar
  138. 138.
    Kawahara C, Tsutamoto T, Sakai H, Nishiyama K, Yamaji M, Fujii M, Yamamoto T, Horie M (2011) Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J 162(4):639–645PubMedCrossRefGoogle Scholar
  139. 139.
    Yu AF, Ky B (2016) Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart 102(6):425–430PubMedCrossRefGoogle Scholar
  140. 140.
    Lenihan DJ, Stevens PL, Massey M, Plana JC, Araujo DM, Fanale MA, Fayad LE, Fisch MJ, Yeh ET (2016) The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail 22(6):433–438PubMedCrossRefGoogle Scholar
  141. 141.
    Witteles R (2016) Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail 22(6):459–464PubMedCrossRefGoogle Scholar
  142. 142.
    Holmgren G, Synnergren J, Andersson CX, Lindahl A, Sartipy P (2016) MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicol in Vitro 34:26–34PubMedCrossRefGoogle Scholar
  143. 143.
    Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC, Picard MH, Carver JR, Halpern EF, Kuter I, Passeri J, Cohen V, Banchs J, Martin RP, Gerszten RE, Scherrer-Crosbie M, Ky B (2015) Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem 61(9):1164–1172PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Bahrmann P, Christ M, Hofner B, Bahrmann A, Achenbach S, Sieber CC, Bertsch T (2015) Prognostic value of different biomarkers for cardiovascular death in unselected older patients in the emergency department. Eur Heart J Acute Cardiovasc Care 5(8):568–578PubMedCrossRefGoogle Scholar
  145. 145.
    Sanders-van Wijk S, van Asselt AD, Rickli H, Estlinbaum W, Erne P, Rickenbacher P, Vuillomenet A, Peter M, Pfisterer ME, Brunner-La Rocca HP, TIME-CHF Investigators (2013) Cost-effectiveness of N-terminal pro-B-type natriuretic-guided therapy in elderly heart failure patients: results from TIME-CHF (Trial of Intensified versus Standard Medical Therapy in Elderly Patients with Congestive Heart Failure). JACC Heart Fail 1(1):64–71PubMedCrossRefGoogle Scholar
  146. 146.
    Brunner-La Rocca HP, Eurlings L, Richards AM, Januzzi JL, Pfisterer ME, Dahlström U, Pinto YM, Karlström P, Erntell H, Berger R, Persson H, O'Connor CM, Moertl D, Gaggin HK, Frampton CM, Nicholls MG, Troughton RW (2015) Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur J Heart Fail 17(12):1252–1261PubMedCrossRefGoogle Scholar
  147. 147.
    Kennedy DJ, Shrestha K, Sheehey B, Li XS, Guggilam A, Wu Y, Finucan M, Gabi A, Medert CM, Westfall K, Borowski A, Fedorova O, Bagrov AY, Tang WH (2015) Elevated plasma marinobufagenin, an endogenous cardiotonic steroid, is associated with right ventricular dysfunction and nitrative stress in heart failure. Circ Heart Fail 8(6):1068–1076PubMedPubMedCentralGoogle Scholar
  148. 148.
    Gutte H, Mortensen J, Jensen CV, von der Recke P, Petersen CL, Kristoffersen US, Kjaer AANP (2010) BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism. Clin Physiol Funct Imaging 30(6):466–472PubMedCrossRefGoogle Scholar
  149. 149.
    Dursunoğlu N, Dursunoğlu D, Yıldız Aİ, Rota Slu N (2016) Evaluation of cardiac biomarkers and right ventricular dysfunction in patients with acute pulmonary embolism. Anatol J Cardiol 16(4):276–282PubMedGoogle Scholar
  150. 150.
    Granér M, Harjola VP, Selander T, Laiho MK, Piilonen A, Raade M, Mustonen P (2016) N- terminal Pro-brain Natriuretic peptide, high-sensitivity troponin and pulmonary artery clot score as predictors of right ventricular dysfunction in echocardiography. Heart Lung Circ 25(6):592–599PubMedCrossRefGoogle Scholar
  151. 151.
    Weekes AJ, Thacker G, Troha D, Johnson AK, Chanler-Berat J, Norton HJ, Runyon M (2016) Diagnostic accuracy of right ventricular dysfunction markers in normotensive emergency department patients with acute pulmonary embolism. Ann Emerg Med 68(3):277–291PubMedCrossRefGoogle Scholar
  152. 152.
    Blok IM, van Riel AC, Schuuring MJ, de Bruin-Bon RH, van Dijk AP, Hoendermis ES, Zwinderman AH, Mulder BJ, Bouma BJ (2016) The role of cystatin C as a biomarker for prognosis in pulmonary arterial hypertension due to congenital heart disease. Int J Cardiol 209:242–247PubMedCrossRefGoogle Scholar
  153. 153.
    Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C, Bauersachs J, Murthy SK, Hansmann G (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102(5):390–396PubMedCrossRefGoogle Scholar
  154. 154.
    Wang KY, Lee MF, Ho HC, Liang KW, Liu CC, Tsai WJ, Lin WW (2015) Serum caveolin-1 as a novel biomarker in idiopathic pulmonary artery hypertension. Biomed Res Int 2015:173970PubMedPubMedCentralGoogle Scholar
  155. 155.
    Richards M, Di Somma S, Mueller C, Nowak R, Peacock WF, Ponikowski P, Mockel M, Hogan C, Wu AH, Clopton P, Filippatos GS, Anand I, Ng L, Daniels LB, Neath SX, Shah K, Christenson R, Hartmann O, Anker SD, Maisel A (2013) Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH Study (Biomarkers in ACute Heart Failure). JACC Heart Fail 1(3):192–199PubMedCrossRefGoogle Scholar
  156. 156.
    Smith JG, Newton-Cheh C, Almgren P, Struck J, Morgenthaler NG, Bergmann A, Platonov PG, Hedblad B, Engström G, Wang TJ, Melander O (2010) Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 56(21):1712–1719PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Löfsjögård J, Persson H, Díez J, López B, González A, Edner M, Mejhert M, Kahan T (2014) Atrial fibrillation and biomarkers of myocardial fibrosis in heart failure. Scand Cardiovasc J 48(5):299–303PubMedCrossRefGoogle Scholar
  158. 158.
    Kaya H, Zorlu A, Yucel H, Tatlisu MA, Kivrak T, Coskun A, Yilmaz MB (2016) Higher cancer antigen 125 level is associated with the presence of permanent atrial fibrillation in systolic heart failure patients. Acta Cardiol 71(1):61–66PubMedCrossRefGoogle Scholar
  159. 159.
    Senni M, Paulus WJ, Gavazzi A, Fraser AG, Díez J, Solomon SD, Smiseth OA, Guazzi M, Lam CSP, Maggioni AP, Tscho C, Metra M, Hummel SL, Edelmann F, Ambrosio G, Stewart Coats AJ, Filippatos GS, Gheorghiade M, Anker SD, Levy D, Pfeffer MA, Stough WG, Pieske BM (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted terapies for heart failure phenotypes. Eur Heart J 35:2797–2811PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michele Correale
    • 1
  • Ilenia Monaco
    • 1
  • Natale Daniele Brunetti
    • 1
  • Matteo Di Biase
    • 1
  • Marco Metra
    • 2
  • Savina Nodari
    • 2
  • Javed Butler
    • 3
  • Mihi Gheorghiade
    • 4
  • On behalf of Master Program Students on Drug Development for Heart Failure
  1. 1.Cardiology DepartmentUniversity of FoggiaFoggiaItaly
  2. 2.Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
  3. 3.Heart Institute Stony Brook UniversityStony BrookUSA
  4. 4.Center for Cardiovascular InnovationNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations