Devices and interventions for the prevention of adverse outcomes of tachycardia on heart failure

  • Jasneet Devgun
  • Yash B. Jobanputra
  • Michael Arustamyan
  • Robert Chait
  • Waqas Ghumman
Article

Abstract

Heart failure (HF) is the leading cause of hospitalization in the USA. Despite advances in pharmacologic management, the incidence of HF is on the rise and survivability is persistently reduced. Sympathetic overdrive is implicated in the pathophysiology of HF, particularly HF with reduced ejection fraction (HFrEF). Tachycardia can be particularly deleterious and thus has spurred significant investigation to mitigate its effects. Various modalities including vagus nerve stimulation, baroreceptor activation therapy, spinal cord stimulation, renal sympathetic nerve denervation, left cardiac sympathetic denervation, and carotid body removal will be discussed. However, the effects of these modalities on tachycardia and its outcomes in HFrEF have not been well-studied. Further studies to characterize this are necessary in the future.

Keywords

Heart failure Tachycardia Baroreceptor activation therapy Vagus nerve stimulation Renal sympathetic nerve denervation 

References

  1. 1.
    Lachowska K, Gruchała M, Narkiewicz K, Hering D (2016) Sympathetic activation in chronic heart failure: potential benefits of interventional therapies. Curr Hypertens Rep 18(7):51.  https://doi.org/10.1007/s11906-016-0660-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):1810–1852.  https://doi.org/10.1161/CIR.0b013e31829e8807 CrossRefPubMedGoogle Scholar
  3. 3.
    Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, Milasinovic G, Berman BJ, Djordjevic S, Neelagaru S, Schwartz PJ, Starling RC, Mann DL (2016) Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. J Am Coll Cardiol 68(2):149–158.  https://doi.org/10.1016/j.jacc.2016.03.525 CrossRefPubMedGoogle Scholar
  4. 4.
    Swedberg K, Komajda M, Böhm M et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet (London, England) 376:875–885.  https://doi.org/10.1016/S0140-6736(10)61198-1 CrossRefGoogle Scholar
  5. 5.
    Böhm M, Swedberg K, Komajda M et al (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet (London, England) 376:886–894.  https://doi.org/10.1016/S0140-6736(10)61259-7 CrossRefGoogle Scholar
  6. 6.
    Zannad F, McMurray JJV, Krum H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364(1):11–21.  https://doi.org/10.1056/NEJMoa1009492 CrossRefPubMedGoogle Scholar
  7. 7.
    McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004.  https://doi.org/10.1056/NEJMoa1409077 CrossRefPubMedGoogle Scholar
  8. 8.
    Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54(5):375–385.  https://doi.org/10.1016/j.jacc.2009.03.061 CrossRefPubMedGoogle Scholar
  9. 9.
    Miller RJH, Howlett JG (2017) Does heart rate really matter to patients with heart failure? Curr Opin Cardiol 32:209–216.  https://doi.org/10.1097/HCO.0000000000000368 PubMedGoogle Scholar
  10. 10.
    O’Neal WT, Sandesara PB, Samman-Tahhan A, Kelli HM, Hammadah M, Soliman EZ (2017) Heart rate and the risk of adverse outcomes in patients with heart failure with preserved ejection fraction. Eur J Prev Cardiol 24(11):1212–1219.  https://doi.org/10.1177/2047487317708676 CrossRefPubMedGoogle Scholar
  11. 11.
    Castagno D, Skali H, Takeuchi M et al (2012) Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure: results from the CHARM (candesartan in heart failure: assessment of reduction in mortality and morbidity) program. J Am Coll Cardiol 59(20):1785–1795.  https://doi.org/10.1016/j.jacc.2011.12.044 CrossRefPubMedGoogle Scholar
  12. 12.
    Komajda M, Isnard R, Cohen-Solal A, Metra M, Pieske B, Ponikowski P, Voors AA, Dominjon F, Henon-Goburdhun C, Pannaux M, Böhm M, on behalf of the prEserveD left ventricular ejectIon fraction chronic heart Failure with ivabradine studY (EDIFY) Investigators (2017) Effect of ivabradine in patients with heart failure with preserved ejection fraction: the EDIFY randomized placebo-controlled trial. Eur J Heart Fail 19(11):1495–1503.  https://doi.org/10.1002/ejhf.876 CrossRefPubMedGoogle Scholar
  13. 13.
    Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10(9):884–891.  https://doi.org/10.1016/j.ejheart.2008.07.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Premchand RK, Sharma K, Mittal S et al (2014) Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail 20(11):808–816.  https://doi.org/10.1016/j.cardfail.2014.08.009 CrossRefPubMedGoogle Scholar
  15. 15.
    Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D'Onofrio A, Solomon SD, Wold N, Ruble SB (2015) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36(7):425–433.  https://doi.org/10.1093/eurheartj/ehu345 CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz PJ, La Rovere MT, De Ferrari GM, Mann DL (2015) Autonomic modulation for the management of patients with chronic heart failure. Circ Heart Fail 8(3):619–628.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001964 CrossRefPubMedGoogle Scholar
  17. 17.
    Li M, Zheng C, Sato T et al (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109(1):120–124.  https://doi.org/10.1161/01.CIR.0000105721.71640.DA CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, van Wagoner DR, Mazgalev TN (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2(6):692–699.  https://doi.org/10.1161/CIRCHEARTFAILURE.109.873968 CrossRefPubMedGoogle Scholar
  19. 19.
    Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68(5):1471–1481.  https://doi.org/10.1161/01.RES.68.5.1471 CrossRefPubMedGoogle Scholar
  20. 20.
    Buckley U, Shivkumar K, Ardell JL (2015) Autonomic regulation therapy in heart failure. Curr Heart Fail Rep 12(4):284–293.  https://doi.org/10.1007/s11897-015-0263-7 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Halbach M, Fritz T, Madershahian N et al (2016) Baroreflex activation therapy in heart failure with reduced ejection fraction: available data and future perspective. Curr Heart Fail Rep 13(2):71–76.  https://doi.org/10.1007/s11897-016-0286-8 CrossRefPubMedGoogle Scholar
  22. 22.
    Kishi T (2016) Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 68(5):368–372.  https://doi.org/10.1016/j.jjcc.2016.05.010 CrossRefPubMedGoogle Scholar
  23. 23.
    Sabbah HN, Gupta RC, Imai M, Irwin ED, Rastogi S, Rossing MA, Kieval RS (2011) Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail 4(1):65–70.  https://doi.org/10.1161/CIRCHEARTFAILURE.110.955013 CrossRefPubMedGoogle Scholar
  24. 24.
    Zucker IH, Hackley JF, Cornish KG et al (2007) Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertens (Dallas, Tex 1979) 50:904–910.  https://doi.org/10.1161/HYPERTENSIONAHA.107.095216 CrossRefGoogle Scholar
  25. 25.
    Georgakopoulos D, Wagner D, Cates AW et al (2009) Effects of electrical stimulation of the carotid sinus baroreflex using the Rheos device on ventricular-vascular coupling and myocardial efficiency assessed by pressure-volume relations in non-vagotomized anesthetized dogs. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:2025–2029.  https://doi.org/10.1109/IEMBS.2009.5334421 Google Scholar
  26. 26.
    Gronda E, Seravalle G, Brambilla G et al (2014) Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail 16(9):977–983.  https://doi.org/10.1002/ejhf.138 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Müller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC (2015) Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3(6):487–496.  https://doi.org/10.1016/j.jchf.2015.02.006 CrossRefPubMedGoogle Scholar
  28. 28.
    Shen MJ, Zipes DP (2015) Interventional and device-based autonomic modulation in heart failure. Heart Fail Clin 11(2):337–348.  https://doi.org/10.1016/j.hfc.2014.12.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Tse H-F, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung CW, Russo M, Green MDS, Yiu KH, Chen P, Shuto C, Lau EOY, Siu CW (2015) Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience. Hear Rhythm 12(3):588–595.  https://doi.org/10.1016/j.hrthm.2014.12.014 CrossRefGoogle Scholar
  30. 30.
    Zipes DP, Neuzil P, Theres H et al (2016) Determining the feasibility of spinal cord Neuromodulation for the treatment of chronic systolic heart failure: the DEFEAT-HF study. JACC Heart Fail 4(2):129–136.  https://doi.org/10.1016/j.jchf.2015.10.006 CrossRefPubMedGoogle Scholar
  31. 31.
    Upadhyay GA, Singh JP (2016) Spinal cord stimulation for heart failure in the DEFEAT-HF study: lost battle or lasting opportunities? JACC Heart Fail 4(2):137–139.  https://doi.org/10.1016/j.jchf.2015.11.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Schiller AM, Haack KKV, Pellegrino PR, Curry PL, Zucker IH (2013) Unilateral renal denervation improves autonomic balance in conscious rabbits with chronic heart failure. Am J Physiol Regul Integr Comp Physiol 305(8):R886–R892.  https://doi.org/10.1152/ajpregu.00269.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schiller AM, Pellegrino PR, Zucker IH (2015) The renal nerves in chronic heart failure: efferent and afferent mechanisms. Front Physiol 6:224.  https://doi.org/10.3389/fphys.2015.00224 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Linz D, Wirth K, Ukena C, Mahfoud F, Pöss J, Linz B, Böhm M, Neuberger HR (2013) Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Hear Rhythm 10(10):1525–1530.  https://doi.org/10.1016/j.hrthm.2013.07.015 CrossRefGoogle Scholar
  35. 35.
    Bealer SL (2002) Systemic angiotensin II alters intrinsic heart rate through central mechanisms. Brain Res Bull 58(1):61–65.  https://doi.org/10.1016/S0361-9230(02)00756-6 CrossRefPubMedGoogle Scholar
  36. 36.
    Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, Francis DP (2013) First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol 162(3):189–192.  https://doi.org/10.1016/j.ijcard.2012.09.019 CrossRefPubMedGoogle Scholar
  37. 37.
    Hopper I, Gronda E, Hoppe UC et al (2017) Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the symplicity HF feasibility study. J Card Fail 23(9):702–707.  https://doi.org/10.1016/j.cardfail.2017.06.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Pekarskiy SE, Baev AE, Mordovin VF, Semke GV, Ripp TM, Falkovskaya AU, Lichikaki VA, Sitkova ES, Zubanova IV, Popov SV (2017) Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 35(2):369–375.  https://doi.org/10.1097/HJH.0000000000001160 CrossRefPubMedGoogle Scholar
  39. 39.
    Fukuta H, Goto T, Wakami K, Ohte N (2017) Effects of catheter-based renal denervation on heart failure with reduced ejection fraction: a systematic review and meta-analysis. Heart Fail Rev 22(6):657–664.  https://doi.org/10.1007/s10741-017-9629-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Schwartz PJ, De Ferrari GM, Pugliese L (2017) Cardiac sympathetic denervation 100years later: Jonnesco would have never believed it. Int J Cardiol 237:25–28.  https://doi.org/10.1016/j.ijcard.2017.03.020 CrossRefPubMedGoogle Scholar
  41. 41.
    Vaseghi M, Barwad P, Malavassi Corrales FJ et al (2017) Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol 69(25):3070–3080.  https://doi.org/10.1016/j.jacc.2017.04.035 CrossRefPubMedGoogle Scholar
  42. 42.
    Schwartz PJ (2014) Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol 11(6):346–353.  https://doi.org/10.1038/nrcardio.2014.19 CrossRefPubMedGoogle Scholar
  43. 43.
    Guo W, Liu F, Fu L, Qu R, Wang G, Zhang C (2012) Effects of high thoracic epidural sympathetic blockade for the treatment of severe chronic heart failure due to dilated cardiomyopathy. Acta Cardiol 67(5):533–539.  https://doi.org/10.2143/AC.67.5.2174127 CrossRefPubMedGoogle Scholar
  44. 44.
    Chin A, Ntsekhe M, Viljoen C, Rossouw J, Pennel T, Schwartz PJ (2017) Rationale and design of a prospective study to assess the effect of left cardiac sympathetic denervation in chronic heart failure. Int J Cardiol 248:227–231.  https://doi.org/10.1016/j.ijcard.2017.08.012 CrossRefPubMedGoogle Scholar
  45. 45.
    Fitzgerald RS (2014) Carotid body: a new target for rescuing neural control of cardiorespiratory balance in disease. Front Physiol 5:304.  https://doi.org/10.3389/fphys.2014.00304 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Winter B (1973) Carotid body resection. Controversy--confusion--conflict. Ann Thorac Surg 16(6):648–659.  https://doi.org/10.1016/S0003-4975(10)65048-5 CrossRefPubMedGoogle Scholar
  47. 47.
    Niewinski P, Janczak D, Rucinski A et al (2017) Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur J Heart Fail 19(3):391–400.  https://doi.org/10.1002/ejhf.641 CrossRefPubMedGoogle Scholar
  48. 48.
    Niewinski P, Engelman ZJ, Fudim M, Tubek S, Paleczny B, Jankowska EA, Banasiak W, Sobotka PA, Ponikowski P (2013) Clinical predictors and hemodynamic consequences of elevated peripheral chemosensitivity in optimally treated men with chronic systolic heart failure. J Card Fail 19(6):408–415.  https://doi.org/10.1016/j.cardfail.2013.03.013 CrossRefPubMedGoogle Scholar
  49. 49.
    Andrade DC, Lucero C, Toledo C, Madrid C, Marcus NJ, Schultz HD, del Rio R (2015) Relevance of the carotid body chemoreflex in the progression of heart failure. Biomed Res Int 2015:467597.  https://doi.org/10.1155/2015/467597 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Del Rio R, Marcus NJ, Schultz HD (2013) Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 62(25):2422–2430.  https://doi.org/10.1016/j.jacc.2013.07.079 CrossRefPubMedGoogle Scholar
  51. 51.
    Niewinski P, Janczak D, Rucinski A et al (2014) Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Exp Physiol 99(3):552–561.  https://doi.org/10.1113/expphysiol.2013.075580 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jasneet Devgun
    • 1
  • Yash B. Jobanputra
    • 3
  • Michael Arustamyan
    • 2
  • Robert Chait
    • 4
  • Waqas Ghumman
    • 4
  1. 1.Department of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusUSA
  2. 2.Lake Erie College of Osteopathic MedicineErieUSA
  3. 3.Department of Internal MedicineUniversity of Miami Miller School of Medicine Regional CampusAtlantisUSA
  4. 4.Department of CardiologyUniversity of Miami Miller School of Medicine Regional CampusAtlantisUSA

Personalised recommendations