Heart Failure Reviews

, Volume 23, Issue 2, pp 157–171 | Cite as

Temporary assist device support for the right ventricle: pre-implant and post-implant challenges

Article
  • 209 Downloads

Abstract

Severe right ventricular (RV) failure is more likely reversible than similar magnitudes of left ventricular (LV) failure and, because reversal of both adaptive remodeling and impaired contractility require most often only short periods of support, the use of temporary RV assist devices (t-RVADs) can be a life-saving therapy option for many patients. Although increased experience with t-RVADs and progresses made in the development of safer devices with lower risk for complications has improved both recovery rate of RV function and patient survival, the mortality of t-RVAD recipients can still be high but it depends mainly on the primary cause of RV failure (RVF), the severity of end-organ dysfunction, and the timing of RVAD implantation, and much less on adverse events and complications related to RVAD implantation, support, or removal. Reduced survival of RVAD recipients should therefore not discourage appropriate application of RVADs because their underuse further reduces the chances for RV recovery and patient survival. The article reviews and discusses the challenges related to the pre-implant and post-implant decision-making processes aiming to get best possible therapeutic results. Special attention is focused on pre-implant RV assessment and prediction of RV improvement during mechanical unloading, patient selection for t-RVAD therapy, assessment of unloading-promoted RV recovery, and prediction of its stability after RVAD removal. Particular consideration is also given to prediction of RVF after LVAD implantation which is usually hampered by the complex interactions between the different risk factors related indirectly or directly to the RV potential for reverse remodeling and functional recovery.

Keywords

Heart failure Right ventricular failure Right ventricular mechanical support Myocardial recovery Ventricular assist devices Weaning from assist device 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Menzel T, Wagner S, Kramm T et al (2000) Pathophysiology of impaired right and left ventricular function in chronic embolic pulmonary hypertension: changes after pulmonary thromboendarterectomy. Chest 118(4):897–903CrossRefPubMedGoogle Scholar
  2. 2.
    Gurudevan SV, Malouf PJ, Auger WR, Waltman TJ, Madani M, Raisinghani AB, DeMaria AN, Blanchard DG (2007) Abnormal left ventricular diastolic filling in chronic thromboembolic pulmonary hypertension: true diastolic dysfunction or left ventricular underfilling? J Am Coll Cardiol 49(12):1334–1339.  https://doi.org/10.1016/j.jacc.2007.01.028 CrossRefPubMedGoogle Scholar
  3. 3.
    Marcus JT, Gan CT, Zwanenburg JJ et al (2008) Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 51(7):750–757.  https://doi.org/10.1016/j.jacc.2007.10.041 CrossRefPubMedGoogle Scholar
  4. 4.
    Verbelen T, Claus P, Burkhoff D, Driesen RB, Kadur Nagaraju C, Verbeken E, Sipido K, Delcroix M, Rega F, Meyns B (2018) Low-flow support of the chronic pressure-overloaded right ventricle induces reversed remodeling. J Heart Lung Transplant 37(1):151–160.  https://doi.org/10.1016/j.healun.2017.09.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Verbelen T, Burkhoff D, Kasama K et al (2017) Systolic and diastolic unloading by mechanical support of the acute vs. the chronic pressure overloaded right ventricle. J Heart Lung Transplant 36(4):457–465.  https://doi.org/10.1016/j.healun.2016.10.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Dandel M, Potapov E, Krabatsch T et al (2013) Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 128(11):S14–S23.  https://doi.org/10.1161/CIRCULATIONAHA.112.000335 CrossRefPubMedGoogle Scholar
  7. 7.
    Moon MR, Bolger AF, DeAnda A et al (1997) Septal function during left ventricular unloading. Circulation 95:1320–1327CrossRefPubMedGoogle Scholar
  8. 8.
    Rajdev S, Benza R, Misra V (2007) Use of tandem heart as a temporary hemodynamic support option for severe pulmonary artery hypertension complicated by cardiogenic shock. J Invasive Cardiol 19(8):E226–E229PubMedGoogle Scholar
  9. 9.
    Rosenzweig EB, Chicotka S, Bacchetta M (2016) Right ventricular assist device use in ventricular failure due to pulmonary arterial hypertension: lessons learned. J Heart Lung Transplant 35(10):1272–1274CrossRefPubMedGoogle Scholar
  10. 10.
    Moazami N, Pasque MK, Moon MR et al (2004) Mechanical support for isolated right ventricular failure in patients after cardiotomy. J Heart Lung Transplant 23(12):1371–1375.  https://doi.org/10.1016/j.healun.2003.09.022 CrossRefPubMedGoogle Scholar
  11. 11.
    Moazami N, Moon MR, Pasque MK et al (2005) Strategies for temporary mechanical support: contemporary experience with pulsatile and non-pulsatile support systems. Heart Surg Forum 8(4):E216–E220.  https://doi.org/10.1532/HSF98.20051130 CrossRefPubMedGoogle Scholar
  12. 12.
    Bhama JK, Kormos RL, Toyoda Y (2009) Clinical experience using the Levitronix-CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant 28(9):971–976.  https://doi.org/10.1016/j.healun.2009.04.015 CrossRefPubMedGoogle Scholar
  13. 13.
    John R, Long JW, Massey HT et al (2011) Outcomes of a multicenter trial of the Levitronix-CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg 141(4):932–939.  https://doi.org/10.1016/j.jtcvs.2010.03.046 CrossRefPubMedGoogle Scholar
  14. 14.
    Cleveland JC, Naftel DC, Reece TB et al (2011) Survival after biventricular assist device implantation: an analysis of the interagency registry for mechanically assisted circulatory support database. J Heart Lung Transplant 30(8):862–869.  https://doi.org/10.1016/j.healun.2011.04.004 PubMedGoogle Scholar
  15. 15.
    Loforte A, Stepanenko A, Potapov EV et al (2013) Temporary right ventricular mechanical support in high-risk left ventricular assist device recipients versus permanent biventricular or total artificial heart support. Artif Organs 37(6):523–530.  https://doi.org/10.1111/aor.12038 CrossRefPubMedGoogle Scholar
  16. 16.
    Takayama H, Naka Y, Kodali SK (2012) A novel approach to percutaneous right ventricle mechanical support. Eur J Cardiothorac Surg 41(2):423–426CrossRefPubMedGoogle Scholar
  17. 17.
    Haneya A, Philipp A, Puehler T et al (2012) Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg 41(1):219–223PubMedGoogle Scholar
  18. 18.
    Saito S, Sakaguchi T, Miyagawa S et al (2012) Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transplant 31(8):858–864.  https://doi.org/10.1016/j.healun.2012.03.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Lazar JF, Swartz MF, Schiralli P et al (2013) Survival after left ventricular assist devices with and without temporary right ventricular support. Ann Thorac Surg 96:1155–1160CrossRefGoogle Scholar
  20. 20.
    Krabatsch T, Potapov E, Stepanenko A et al (2011) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124:S179–S186CrossRefPubMedGoogle Scholar
  21. 21.
    Khani-Hanjani A, Loor G, Chamogeirgakis T (2013) Case series using ROTAFLOW-system as a temporary right ventricular assist device after HeartMateII implantation. ASAIO J 59(4):456–460.  https://doi.org/10.1097/MAT.0b013e318291d133 CrossRefPubMedGoogle Scholar
  22. 22.
    Takeda K, Naka Y, Yang JA et al (2013) Timing of temporary right ventricular assist device insertion for severe right heart failure after left ventricular assist device implantation. ASAIO J 59(6):564–569.  https://doi.org/10.1097/MAT.0b013e3182a816d1 CrossRefPubMedGoogle Scholar
  23. 23.
    Cheung AW, White CW, Davis MK et al (2014) Short-term mechanical circulatory support for recovery from acute right ventricular failure. J Heart Lung Transplant 33(8):794–799.  https://doi.org/10.1016/j.healun.2014.02.028 CrossRefPubMedGoogle Scholar
  24. 24.
    Takeda K, Naka Y, Yang JA et al (2014) Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33(2):141–148.  https://doi.org/10.1016/j.healun.2013.06.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Noly P-E, Kirsch M, Quessard A et al (2014) Temporary right ventricular support following left ventricle assist device implantation: a comparison of two techniques. Interact Cardiovasc Thorac Surg 19(1):49–55.  https://doi.org/10.1093/icvts/ivu072 CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson MB, Goldstein J, Milano C et al (2015) Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella-RP device. J Heart Lung Transplant 34(12):1549–1560.  https://doi.org/10.1016/j.healun.2015.08.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Bernhardt AM, De By TM, Reichenspurner H, Deuse T (2015) Isolated permanent right ventricular assist device implantation with the HeartWare continuous-flow ventricular assist device: first results from the European Registry for Patients with Mechanical Circulatory Support. Eur J Cardiothorac Surg 48(1):158–162.  https://doi.org/10.1093/ejcts/ezu406 CrossRefPubMedGoogle Scholar
  28. 28.
    Bansal U, Jackson K, Winger DG et al (2015) Update on temporary mechanical support for right ventricular failure. J Heart Lung Transplant 34(4S):S112–S113.  https://doi.org/10.1016/j.healun.2015.01.299 CrossRefGoogle Scholar
  29. 29.
    Saeed D, Maxhera B, Kamiya H et al (2015) Alternative right ventricular assist device implantation technique for patients with preoperative right ventricular failure. J Thorac Cardiovasc Surg 149(3):927–932.  https://doi.org/10.1016/j.jtcvs.2014.10.104 CrossRefPubMedGoogle Scholar
  30. 30.
    Leidenfrost J, Prasad S, Itoh A et al (2016) Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement. Eur J Cardiothorac Surg 49(1):73–77.  https://doi.org/10.1093/ejcts/ezv116 CrossRefPubMedGoogle Scholar
  31. 31.
    Deschka H, Holthaus AJ, Sindermann JR (2016) Can perioperative right ventricular support prevent postoperative right heart failure in patients with biventricular dysfunction undergoing left ventricular assist device implantation? J Cardiothorac Vasc Anesth 30(3):619–626.  https://doi.org/10.1053/j.jvca.2016.02.023 CrossRefPubMedGoogle Scholar
  32. 32.
    Schaefer A, Reichart D, Bernhardt AM et al (2017) Outcomes of minimally-invasive temporary RVAD support for acute right ventricular failure during minimal invasive LVAD implantation. ASAIO J 63(5):546–550CrossRefPubMedGoogle Scholar
  33. 33.
    Aissaoui N, Morshuis M, Schoenbrodt M et al (2013) Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg 146(1):186–191.  https://doi.org/10.1016/j.jtcvs.2013.01.044 CrossRefPubMedGoogle Scholar
  34. 34.
    Kirklin JK, Cantor R, Mohacsi P et al (2016) First annual IMACS report: a global International Society for Heart and Lung Transplantation registry for mechanical circulatory support. J Heart Lung Transplant 35(4):407–412.  https://doi.org/10.1016/j.healun.2016.01.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Kapur NK, Paruchuri V, Korabathina R et al (2011) Effects of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J Heart Lung Transplant 30:1360–1367CrossRefPubMedGoogle Scholar
  36. 36.
    Shehab S, Macdonald PS, Kegh AM et al (2016) Long-term biventricular assist device support—serial cases of right atrial and right ventricular implantation outcomes. J Heart Lung Transplant 36:466–473CrossRefGoogle Scholar
  37. 37.
    Levin AP, Jaramillo N, Garan R et al (2016) Outcomes of contemporary mechanical circulatory support configurations in patients with severe biventricular failure. J Thorac Cardiovasc Surg 151(2):530–535.  https://doi.org/10.1016/j.jtcvs.2015.10.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Fitzpatrick JR, Frederick JR, Hiesinger W et al (2009) Early planned institution of biventricular circulatory support results in improved outcome compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg 37:971–977CrossRefGoogle Scholar
  39. 39.
    Takeda K, Takayama RA, Garan VK et al (2016) Contemporary outcome of unplanned right ventricular assist device for severe right heart failure after continuous flow left ventricular assist device insertion. J Heart Lung Transplant 35(4):S55.  https://doi.org/10.1016/j.healun.2016.01.152 CrossRefGoogle Scholar
  40. 40.
    Kormos RL, Teutenberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMateII continuous flow left ventricular assist device: incidence, risk factors and effect on outcomes. J Thorac Cardiovasc Surg 139(5):1316–1324CrossRefPubMedGoogle Scholar
  41. 41.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for echocardiographic assessment of right heart in adults: a report of the American Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713.  https://doi.org/10.1016/j.echo.2010.05.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Dandel M, Hetzer R (2016) Echocardiographic assessment of the right ventricle: impact of the distinctly load dependency of its size, geometry and performance. Int J Cardiol 221:1132–1142.  https://doi.org/10.1016/j.ijcard.2016.07.014 CrossRefPubMedGoogle Scholar
  43. 43.
    Anavekar NS, Gerson D, Skali H et al (2007) Two-dimensional assessment of right ventricular function. An echocardiographic-MRI correlative study. Echocardiography 24:452–456CrossRefPubMedGoogle Scholar
  44. 44.
    Topilsky Y, Oh JK, Dipesh KS et al (2011) Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. J Am Coll Cardiol Imag 4(3):211–222.  https://doi.org/10.1016/j.jcmg.2010.10.012 CrossRefGoogle Scholar
  45. 45.
    Focardi M, Cameli M, Carbone SF et al (2015) Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 16:47–52CrossRefPubMedGoogle Scholar
  46. 46.
    Lindqvist P, Waldenström A, Wikström G, Kazzam E (2005) The use of isovolumetric contraction velocity to determine right ventricular state of contractility and filling pressures. A pulsed Doppler tissue imaging study. Eur J Echocardiogr 6(4):264–270.  https://doi.org/10.1016/j.euje.2004.11.002 CrossRefPubMedGoogle Scholar
  47. 47.
    Dandel M, Hetzer R (2009) Echocardiographic strain and strain rate imaging—clinical applications. Int J Cardiol 132(1):11–24.  https://doi.org/10.1016/j.ijcard.2008.06.091 CrossRefPubMedGoogle Scholar
  48. 48.
    Dandel M, Knosalla C, Kemper D et al (2015) Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Transplant 34(3):319–328CrossRefPubMedGoogle Scholar
  49. 49.
    Bellavia D, Iacovoni A, Scardulla C et al (2017) Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail 19(7):926–946.  https://doi.org/10.1002/ejhf.733 CrossRefPubMedGoogle Scholar
  50. 50.
    Cameli M, Bernazzali S, Lisi M et al (2012) Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates. Transplant Proc 44:2013–2015CrossRefPubMedGoogle Scholar
  51. 51.
    Di Maria MV, Burkett DA, Youoszai MD et al (2015) Echocardiographic estimation of right ventricular stroke work in children with pulmonary arterial hypertension. Comparison with invasive methods. J Am Soc Echocardiogr 28(11):1350–1357.  https://doi.org/10.1016/j.echo.2015.07.017 CrossRefPubMedGoogle Scholar
  52. 52.
    Frea S, Bovolo V, Bergerone S et al (2012) Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: a new index? J Card Fail 18(12):886–889CrossRefPubMedGoogle Scholar
  53. 53.
    Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular systolic excursion and pulmonary artery pressure relationship in heart failure: an index of right ventricular function and prognosis. Am J Physiol Heart Circ Physiol 305(9):H1373–H1381CrossRefPubMedGoogle Scholar
  54. 54.
    Frea S, Pidello S, Bovolo V et al (2016) Prognostic incremental role of right ventricular function in acute decompensation of advanced chronic heart failure. Eur J Heart Fail 18:564–572CrossRefPubMedGoogle Scholar
  55. 55.
    Lopez-Candales A, Lopez FR, Trivedi S, Elwing J (2014) Right ventricular ejection efficiency: a new echocardiographic measure of mechanical performance in chronic pulmonary hypertension. Echocardiography 31(4):516–523.  https://doi.org/10.1111/echo.12419 CrossRefPubMedGoogle Scholar
  56. 56.
    Bosch L, CSP L, Gong L et al (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19(12):1664–1671.  https://doi.org/10.1002/ejhf.873 CrossRefPubMedGoogle Scholar
  57. 57.
    Barras N, Jeanrenaud X, Regamey J et al (2017) Right ventricular function before LVAD implantation. Cardiovascular Medicine - Kardiovaskuläre Medizin - Médicine Cardiovasculaire 20(3):69–71Google Scholar
  58. 58.
    Matthews JC, Koelling T, Pagani F, Aaronson K (2008) The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51(22):2163–2172.  https://doi.org/10.1016/j.jacc.2008.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Grandin WE, Zamani P, Mazurek JA et al (2017) Right ventricular response to pulsatile load is associated with early heart failure and mortality after left ventricular assist device. J Heart Lung Transplant 36(1):97–105.  https://doi.org/10.1016/j.healun.2016.06.015 CrossRefPubMedGoogle Scholar
  60. 60.
    Lembcke A, Dohmen PM, Dewey M et al (2005) Multislice computed tomography for pre-operative evaluation of right ventricular volumes and function: comparison with magnetic resonance imaging. Ann Thorac Surg 79(4):1344–1351CrossRefPubMedGoogle Scholar
  61. 61.
    Harjola V-P, Mebazzaa A, Celutkiene J et al (2016) Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 18:226–241CrossRefPubMedGoogle Scholar
  62. 62.
    Kerklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMAXS annual report: a 10.000 patient database. J Heart Lung Transplant 33(6):555–564.  https://doi.org/10.1016/j.healun.2014.04.010 CrossRefGoogle Scholar
  63. 63.
    Ochiai Y, McCarthy PM, Smedira MG et al (2002) Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 106:I-198–I-202CrossRefGoogle Scholar
  64. 64.
    Kukucka M, Potapov E, Stepaneko A et al (2011) Acute impact of left ventricular unloading by left ventricular assist device on right ventricle geometry and function: effect of nitric oxide inhalation. J Thorac Cardiovasc Surg 141:1009–1014CrossRefPubMedGoogle Scholar
  65. 65.
    Vatta M, Stetson SJ, Jimenez S, Entman ML, Noon GP, Bowles NE, Towbin JA, Torre-Amione G (2004) Molecular normalization of dystrophin in the failing left and right ventricle in patients treated with either pulsatile or continuous flow-type ventricular assist devices. J Am Coll Cardiol 43(5):811–817.  https://doi.org/10.1016/j.jacc.2003.09.052 CrossRefPubMedGoogle Scholar
  66. 66.
    Küçüker SA, Stetson SJ, Becker KA, Akgül A, Loebe M, Lafuente JA, Noon GP, Koerner MM, Entman ML, Torre-Amione G (2004) Evidence of improved right ventricular structure after LVAD support in patients with end-stage cardiomyopathy. J Heart Lung Transplant 23(1):28–35.  https://doi.org/10.1016/S1053-2498(03)00057-3 CrossRefPubMedGoogle Scholar
  67. 67.
    Alturi P, Fairman AS, MacArthur JW et al (2013) Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility and tricuspid valve competence. J Card Surg 28:770–775CrossRefGoogle Scholar
  68. 68.
    Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant 32(8):792–799.  https://doi.org/10.1016/j.healun.2013.05.016 CrossRefPubMedGoogle Scholar
  69. 69.
    Drakos SG, Janicki L, Horne BD et al (2010) Risk factors of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105(7):1030–1035.  https://doi.org/10.1016/j.amjcard.2009.11.026 CrossRefPubMedGoogle Scholar
  70. 70.
    Shiga T, Kinugawa K, Imamura T et al (2012) Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J 76(12):2785–2791.  https://doi.org/10.1253/circj.CJ-12-0231 CrossRefPubMedGoogle Scholar
  71. 71.
    Grant AD, Smedira GN, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for prediction of right ventricular failure after ventricular assist device implantation. J Am Coll Cardiol 60(6):521–528.  https://doi.org/10.1016/j.jacc.2012.02.073 CrossRefPubMedGoogle Scholar
  72. 72.
    Raina A, Harish R, Rammohan S et al (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic and functional parameters. J Card Fail 19(1):16–24.  https://doi.org/10.1016/j.cardfail.2012.11.001 CrossRefPubMedGoogle Scholar
  73. 73.
    Kato ST, Farr M, Schulze PC et al (2012) Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol 109(2):246–251.  https://doi.org/10.1016/j.amjcard.2011.08.040 CrossRefPubMedGoogle Scholar
  74. 74.
    Atluri P, Goldstone AB, Fairman AS et al (2013) Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 96(3):857–864.  https://doi.org/10.1016/j.athoracsur.2013.03.099 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Baumwol J, Macdonald PS, Keogh AM et al (2011) Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcome. J Heart Lung Transplant 30(8):888–895.  https://doi.org/10.1016/j.healun.2011.03.006 PubMedGoogle Scholar
  76. 76.
    Fitzpatrick JR III, Frederick JR, Hsu VM et al (2008) Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27(12):1286–1292.  https://doi.org/10.1016/j.healun.2008.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Patil NP, Mohite PN, Sabashnikov A, Dhar D, Weymann A, Zeriouh M, Hards R, Hedger M, de Robertis F, Bahrami T, Amrani M, Rahman-Haley S, Banner NR, Popov AF, Simon AR (2015) Preoperative predictors and outcomes of right ventricular assist device implantation after continuous-flow left ventricular assist device implantation. J Thorac Cardiovasc Surg 150(6):1651–1658.  https://doi.org/10.1016/j.jtcvs.2015.07.090 CrossRefPubMedGoogle Scholar
  78. 78.
    Fan Y, Zhang A-M, Weng Y-G e a (2013) Factors associated with the need of biventricular mechanical circulatory support in children with advanced heart failure. Eur J Cardiothorac Surg 43:1128–1135CrossRefGoogle Scholar
  79. 79.
    Lo C, Murphy D, Summerhyes R et al (2015) Right ventricular failure after implantation of continuous flow left ventricular assist devices: analysis of predictors and outcomes. Clin Transpl 29(9):763–770CrossRefGoogle Scholar
  80. 80.
    Kalogeropoulos AP, Kelkar A, Weinberger JF et al (2015) Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant 34(12):1595–1603CrossRefPubMedGoogle Scholar
  81. 81.
    Nayak A, Neill C, Kormos RL et al (2017) Chemokine patterns and right heart failure in mechanical circulatory support. J Heart Lung Transplant 36(6):657–665CrossRefPubMedGoogle Scholar
  82. 82.
    Lampert BC, Teuteberg JJ (2015) Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant 34(9):1123–1123.  https://doi.org/10.1016/j.healun.2015.06.015 CrossRefPubMedGoogle Scholar
  83. 83.
    Mazzucotelli J-P, Leprince P, Litzler P-Y et al (2011) Results of mechanical circulatory support in France. Eur J Cardiothorac Surg 40:e112–e117PubMedGoogle Scholar
  84. 84.
    Dandel M, Krabatsch T, Valk V (2015) Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol 198:241–250.  https://doi.org/10.1016/j.ijcard.2015.06.103 CrossRefPubMedGoogle Scholar
  85. 85.
    Akhter SA, Jeevanandam V (2012) Special clinical settings for mechanical circulatory support. In: Kormos RL, Miller LW (eds) Mechanical circulatory support. Elsevier Saunders, Philadelphia, pp 118–127Google Scholar
  86. 86.
    Houston BA, Kalathiya RJ, Hsu S, Loungani R, Davis ME, Coffin ST, Haglund N, Maltais S, Keebler ME, Leary PJ, Judge DP, Stevens GR, Rickard J, Sciortino CM, Whitman GJ, Shah AS, Russell SD, Tedford RJ (2016) Right ventricular afterload sensitivity dramatically increases after left ventricular device implantation: a multicenter hemodynamic analysis. J Heart Lung Transplant 35(7):868–876.  https://doi.org/10.1016/j.healun.2016.01.1225 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Dandel M, Potapov E, Krabatsch T et al (2011) Right ventricular assist device removal in patients with apparently unloading-promoted improvement of right ventricular function: Criteria for weaning decisions. Circulation 124(21Suppl):17718Google Scholar
  88. 88.
    Saffarzadeh A, Bonde P (2015) Options for temporary mechanical circulatory support. J Thorac Dis 7(12):2102–2111PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DZHK (German Centre for Heart and Circulatory Research), Partner site BerlinBerlinGermany
  2. 2.Deutsches Herzzentrum BerlinBerlinGermany
  3. 3.Cardio Centrum BerlinBerlinGermany

Personalised recommendations