Heart Failure Reviews

, Volume 23, Issue 2, pp 255–259 | Cite as

Biomarkers in cancer therapy related cardiac dysfunction (CTRCD)

Article
  • 94 Downloads

Abstract

Biomarkers are at the cornerstone of preventive measures and contribute to the screening process. More recently, biomarkers have been used to gauge the biological response to the employed therapies. Since it is ubiquitously used to detect subclinical disease process, biomarkers also have found its place in cancer therapy related cardiac dysfunction (CTRCD). The aim of this review is to comprehensively present up-to-date knowledge of biomarkers in CTRCD and highlight some of the future biomedical technologies that may strengthen the screening process, and/or provide new insight in pathological mechanisms behind CTRCD.

Keywords

Cancer therapy related cardiac dysfunction (CTRCD) Biomarkers Heart failure 

References

  1. 1.
    (1957) Chronic illness in the United States: Volume I. Prevention of chronic illness. Harvard University, CambridgeGoogle Scholar
  2. 2.
    Wilson JMG, Jungner G (1968) Principles and practice of screening for disease. World Health Organization (WHO), GenevaGoogle Scholar
  3. 3.
    Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115(8):949–952.  https://doi.org/10.1161/CIRCULATIONAHA.106.683110 CrossRefPubMedGoogle Scholar
  4. 4.
    Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358(20):2148–2159.  https://doi.org/10.1056/NEJMra0800239 CrossRefPubMedGoogle Scholar
  5. 5.
    Germanakis I, Anagnostatou N, Kalmanti M (2008) Troponins and natriuretic peptides in the monitoring of anthracycline cardiotoxicity. Pediatr Blood Cancer 51(3):327–333.  https://doi.org/10.1002/pbc.21633 CrossRefPubMedGoogle Scholar
  6. 6.
    Mavinkurve-Groothuis AM, Kapusta L, Nir A, Groot-Loonen J (2008) The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol 25(7):655–664.  https://doi.org/10.1080/08880010802244001 CrossRefPubMedGoogle Scholar
  7. 7.
    Cardinale D, Sandri MT, Martinoni A et al (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36(2):517–522.  https://doi.org/10.1016/S0735-1097(00)00748-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109(22):2749–2754.  https://doi.org/10.1161/01.CIR.0000130926.51766.CC CrossRefPubMedGoogle Scholar
  9. 9.
    Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, Albrile F, Bobbio M, Merlano M (2011) Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol 148(2):194–198.  https://doi.org/10.1016/j.ijcard.2009.09.564 CrossRefPubMedGoogle Scholar
  10. 10.
    Keefe DL (2002) Trastuzumab-associated cardiotoxicity. Cancer 95(7):1592–1600.  https://doi.org/10.1002/cncr.10854 CrossRefPubMedGoogle Scholar
  11. 11.
    Dodos F, Halbsguth T, Erdmann E, Hoppe UC (2008) Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol 97(5):318–326.  https://doi.org/10.1007/s00392-007-0633-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Kismet E, Varan A, Ayabakan C, Alehan D, Portakal O, Buyukpamukcu M (2004) Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer 42(3):220–224.  https://doi.org/10.1002/pbc.10368 CrossRefPubMedGoogle Scholar
  13. 13.
    Koseoglu V, Berberoglu S, Karademir S et al (2005) Cardiac troponin I: is it a marker to detect cardiotoxicity in children treated with doxorubicin? Turk J Pediatr 47(1):17–22PubMedGoogle Scholar
  14. 14.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M, Grenier D, Jassal DS (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57(22):2263–2270.  https://doi.org/10.1016/j.jacc.2010.11.063 CrossRefPubMedGoogle Scholar
  15. 15.
    Goel S, Simes RJ, Beith JM (2011) Exploratory analysis of cardiac biomarkers in women with normal cardiac function receiving trastuzumab for breast cancer. Asia Pac J Clin Oncol 7(3):276–280.  https://doi.org/10.1111/j.1743-7563.2011.01422.x CrossRefPubMedGoogle Scholar
  16. 16.
    Stachowiak P, Kornacewicz-Jach Z, Safranow K (2014) Prognostic role of troponin and natriuretic peptides as biomarkers for deterioration of left ventricular ejection fraction after chemotherapy. Arch Med Sci 10(5):1007–1018.  https://doi.org/10.5114/aoms.2013.34987 CrossRefPubMedGoogle Scholar
  17. 17.
    Institute. NC. Common Terminology Criteria for Adverse Events v.3.0and v.4.03 (CTCAE). Available at: http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf
  18. 18.
    Broeyer FJ, Osanto S, Ritsema van Eck HJ et al (2008) Evaluation of biomarkers for cardiotoxicity of anthracyclin-based chemotherapy. J Cancer Res Clin Oncol 134(9):961–968.  https://doi.org/10.1007/s00432-008-0372-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee HS, Son CB, Shin SH, Kim YS (2008) Clinical correlation between brain natriutetic peptide and anthracyclin-induced cardiac toxicity. Cancer Res Treat 40(3):121–126.  https://doi.org/10.4143/crt.2008.40.3.121 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, Kurabayashi M, Yamaoki K, Mitani K, Hirai H, Nagai R, Yazaki Y (1998) Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J 136(2):362–363.  https://doi.org/10.1053/hj.1998.v136.89908 CrossRefPubMedGoogle Scholar
  21. 21.
    Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, Leon M, Civelli M, Martinelli G, Cipolla CM (2005) N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem 51(8):1405–1410.  https://doi.org/10.1373/clinchem.2005.050153 CrossRefPubMedGoogle Scholar
  22. 22.
    Skovgaard D, Hasbak P, Kjaer A (2014) BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One 9(5):e96736.  https://doi.org/10.1371/journal.pone.0096736 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Okumura H, Iuchi K, Yoshida T, Nakamura S, Takeshima M, Takamatsu H, Ikeno A, Usuda K, Ishikawa T, Ohtake S, Matsuda T (2000) Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 104(4):158–163.  https://doi.org/10.1159/000046508 CrossRefPubMedGoogle Scholar
  24. 24.
    Snowden JA, Hill GR, Hunt P, Carnoutsos S, Spearing RL, Espiner E, Hart DNJ (2000) Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transplant 26(3):309–313.  https://doi.org/10.1038/sj.bmt.1702507 CrossRefPubMedGoogle Scholar
  25. 25.
    Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Vuolteenaho O, Hartikainen J (2002) Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 251(3):228–234.  https://doi.org/10.1046/j.1365-2796.2002.00951.x CrossRefPubMedGoogle Scholar
  26. 26.
    Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KT, Abildgaard U, Hesse B, Kjaer A (2005) Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail 7(1):87–93.  https://doi.org/10.1016/j.ejheart.2004.03.009 CrossRefPubMedGoogle Scholar
  27. 27.
    Meinardi MT, van Veldhuisen DJ, Gietema JA, Dolsma WV, Boomsma F, van den Berg MP, Volkers C, Haaksma J, de Vries EGE, Sleijfer DT, van der Graaf WTA (2001) Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 19(10):2746–2753.  https://doi.org/10.1200/JCO.2001.19.10.2746 CrossRefPubMedGoogle Scholar
  28. 28.
    Cil T, Kaplan AM, Altintas A, Akin AM, Alan S, Isikdogan A (2009) Use of N-terminal pro-brain natriuretic peptide to assess left ventricular function after adjuvant doxorubicin therapy in early breast cancer patients: a prospective series. Clin Drug Investig 29(2):131–137.  https://doi.org/10.2165/0044011-200929020-00007 CrossRefPubMedGoogle Scholar
  29. 29.
    Tanindi A, Demirci U, Tacoy G, Buyukberber S, Alsancak Y, Coskun U, Yalcin R, Benekli M (2011) Assessment of right ventricular functions during cancer chemotherapy. Eur J Echocardiogr 12(11):834–840.  https://doi.org/10.1093/ejechocard/jer142 CrossRefPubMedGoogle Scholar
  30. 30.
    Ekstein S, Nir A, Rein AJ et al (2007) N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hematol Oncol 29(7):440–444.  https://doi.org/10.1097/MPH.0b013e3180640d42 CrossRefPubMedGoogle Scholar
  31. 31.
    Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AHB, Goldberg LR, Jessup M, Cappola TP (2012) Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail 5(2):183–190.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.965020 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63(8):809–816.  https://doi.org/10.1016/j.jacc.2013.10.061 CrossRefPubMedGoogle Scholar
  33. 33.
    Sun F, Qi X, Geng C, Li X (2015) Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am J Med Sci 349(5):406–412.  https://doi.org/10.1097/MAJ.0000000000000432 CrossRefPubMedGoogle Scholar
  34. 34.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5(5):596–603.  https://doi.org/10.1161/CIRCIMAGING.112.973321 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Feng YY, Yang ZJ (2015) Clinical application of the heart rate deceleration capacity test to predict Epirubicin-induced cardiotoxicity. J Cardiovasc Pharmacol 66(4):371–375.  https://doi.org/10.1097/FJC.0000000000000289 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shortt CR, Worster A, Hill SA, Kavsak PA (2013) Comparison of hs-cTnI, hs-cTnT, hFABP and GPBB for identifying early adverse cardiac events in patients presenting within six hours of chest pain-onset. Clin Chim Acta 419:39–41.  https://doi.org/10.1016/j.cca.2013.01.008 CrossRefPubMedGoogle Scholar
  37. 37.
    Horacek JM, Tichy M, Jebavy L, Ulrychova M, Pudil R (2007) Glycogen phosphorylase BB as a marker of cardiac toxicity during high-dose chemotherapy followed by hematopoietic cell transplantation. Ann Oncol 18(12):2041.  https://doi.org/10.1093/annonc/mdm499 CrossRefPubMedGoogle Scholar
  38. 38.
    Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu M, Breidthardt T, Twerenbold R, Winkler K, Bingisser R, Mueller C (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361(9):858–867.  https://doi.org/10.1056/NEJMoa0900428 CrossRefPubMedGoogle Scholar
  39. 39.
    Tang WH, Francis GS, Morrow DA et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation 116(5):e99–109.  https://doi.org/10.1161/CIRCULATIONAHA.107.185267 CrossRefPubMedGoogle Scholar
  40. 40.
    Enroth S, Enroth SB, Johansson A, Gyllensten U (2015) Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci Rep 5(1):17282.  https://doi.org/10.1038/srep17282 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Martin JA, Phillips JA, Parekh P, Sefah K, Tan W (2011) Capturing cancer cells using aptamer-immobilized square capillary channels. Mol BioSyst 7(5):1720–1727.  https://doi.org/10.1039/c0mb00311e CrossRefPubMedGoogle Scholar
  42. 42.
    Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan W (2011) In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci 2(3):175–181.  https://doi.org/10.1021/cn100114k CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ahmad KM, Oh SS, Kim S, McClellen FM, Xiao Y, Soh HT (2011) Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One 6(11):e27051.  https://doi.org/10.1371/journal.pone.0027051 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650PubMedGoogle Scholar
  45. 45.
    Giannitsis E, Mueller-Hennessen M, Katus HA (2017) Aptamer-based proteomic profiling for prognostication in pulmonary arterial hypertension. Lancet Respir Med 5(9):671–672.  https://doi.org/10.1016/S2213-2600(17)30209-6 CrossRefPubMedGoogle Scholar
  46. 46.
    Cho EJ, Collett JR, Szafranska AE, Ellington AD (2006) Optimization of aptamer microarray technology for multiple protein targets. Anal Chim Acta 564(1):82–90.  https://doi.org/10.1016/j.aca.2005.12.038 CrossRefPubMedGoogle Scholar
  47. 47.
    Rhodes CJ, Wharton J, Ghataorhe P, Watson G, Girerd B, Howard LS, Gibbs JSR, Condliffe R, Elliot CA, Kiely DG, Simonneau G, Montani D, Sitbon O, Gall H, Schermuly RT, Ghofrani HA, Lawrie A, Humbert M, Wilkins MR (2017) Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respir Med 5(9):717–726.  https://doi.org/10.1016/S2213-2600(17)30161-3 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ngo D, Sinha S, Shen D, Kuhn EW, Keyes MJ, Shi X, Benson MD, O’Sullivan JF, Keshishian H, Farrell LA, Fifer MA, Vasan RS, Sabatine MS, Larson MG, Carr SA, Wang TJ, Gerszten RE (2016) Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation 134(4):270–285.  https://doi.org/10.1161/CIRCULATIONAHA.116.021803 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Smith JG, Gerszten RE (2017) Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation 135(17):1651–1664.  https://doi.org/10.1161/CIRCULATIONAHA.116.025446 CrossRefPubMedGoogle Scholar
  50. 50.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856.  https://doi.org/10.1038/nrc1739 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of CardiologyMD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Endocrine Neoplasia and Hormonal DisordersMD Anderson Cancer CenterHoustonUSA

Personalised recommendations