Skip to main content

Advertisement

Log in

Interdisciplinary approach to compensation of hypoglycemia in diabetic patients with chronic heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a chronic disease requiring lifelong control with hypoglycemic agents that must demonstrate excellent efficacy and safety profiles. In patients taking glucose-lowering drugs, hypoglycemia is a common cause of death associated with arrhythmias, increased thrombus formation, and specific effects of catecholamines due to sympathoadrenal activation. Focus is now shifting from merely glycemic control to multifactorial approach. In the context of individual drugs and classes, this article reviews interdisciplinary strategies evaluating metabolic effects of drugs for treatment of chronic heart failure (CHF) which can mask characteristic hypoglycemia symptoms. Hypoglycemia unawareness and cardiac autonomic neuropathy are discussed. Data suggesting that hypoglycemia modulates immune response are reviewed. The potential role of gut microbiota in improving health of patients with diabetes and CHF is emphasized. Reports stating that nondiabetic CHF patients can have life-threatening hypoglycemia associated with imbalance of thyroid hormones are discussed. Regular glycemic control based on HbA1c measurements and adequate pharmacotherapy remain the priorities in diabetes management. New antihyperglycemic drugs with safer profiles should be preferred in vulnerable CHF patients. Multidrug interactions must be considered. Emerging therapies with reduced hypoglycemia risk, telemedicine, sensor technologies, and genetic testing predicting hypoglycemia risk may help solving the challenges of hypoglycemia in CHF patients with diabetes. Interdisciplinary work may involve cardiologists, diabetologists/endocrinologists, immunologists, gastroenterologists, microbiologists, nutritionists, imaging specialists, geneticists, telemedicine experts, and other relevant specialists. This review emphasizes that systematic knowledge on pathophysiology of hypoglycemia in diabetic patients with CHF is largely lacking and the gaps in our understanding require further discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8

    Article  Google Scholar 

  2. Kristensen SL, Preiss D, Jhund PS, Squire I, Cardoso JS, Merkely B, Martinez F, Starling RC, Desai AS, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, McMurray JJ, Packer M, PARADIGM-HF Investigators and Committees (2016) Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 9(1). https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560

  3. Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591. https://doi.org/10.1056/NEJMoa0706245

    Article  CAS  PubMed  Google Scholar 

  4. Chatterjee S, Sharma A, Lichstein E, Mukherjee D (2013) Intensive glucose control in diabetics with an acute myocardial infarction does not improve mortality and increases risk of hypoglycemia-a meta-regression analysis. Curr Vasc Pharmacol 11:100–104

    Article  CAS  PubMed  Google Scholar 

  5. Lipska KJ, Krumholz HM (2017) Is hemoglobin A1c the right outcome for studies of diabetes? JAMA 317:1017–1018. https://doi.org/10.1001/jama.2017.0029

    Article  PubMed  PubMed Central  Google Scholar 

  6. National Institute for Health and Care Excellence (2015) Type 2 diabetes in adults: management: NICE www.nice.org.uk/guidance/ng28. Accessed 10 July 2017

  7. American Diabetes Association (2016) 5. Glycemic targets. Diabetes Care 39(Suppl 1):S39–S46. https://doi.org/10.2337/dc16-S008. 26696679

    Article  Google Scholar 

  8. Bolli GB, Dimitriadis GD, Pehling GB, Baker BA, Haymond MW, Cryer PE, Gerich JE (1984) Abnormal glucose counterregulation after subcutaneous insulin in insulin-dependent diabetes mellitus. N Engl J Med 310:1706–1711

    Article  CAS  PubMed  Google Scholar 

  9. White NH, Skor DA, Cryer PE, Levandoski LA, Bier DM, Santiago JV (1983) Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med 308:485–491. https://doi.org/10.1056/NEJM198303033080903

    Article  CAS  PubMed  Google Scholar 

  10. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986. https://doi.org/10.1056/NEJM199309303291401.8366922

    Article  Google Scholar 

  11. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853. https://doi.org/10.1016/S0140-6736(98)07019-6. 9742976

    Article  Google Scholar 

  12. Gubitosi-Klug RA, Braffett BH, White NH, Sherwin RS, Service FJ, Lachin JM, Tamborlane WV, Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group (2017) The risk of severe hypoglycemia in type 1 diabetes over 30 years of follow-up in the DCCT/EDIC study. Diabetes Care. https://doi.org/10.2337/dc16-2723

  13. Kalra S, Deepak MC, Narang P, Singh V, Uvaraj MG, Agrawal N (2013) Usage pattern, glycemic improvement, hypoglycemia, and body mass index changes with sulfonylureas in real-life clinical practice: results from OBSTACLE hypoglycemia study. Diabetes Technol Ther 15:129–135. https://doi.org/10.1089/dia.2012.0237

    Article  CAS  PubMed  Google Scholar 

  14. Drake TC, Hsu FC, Hire D, Chen SH, Cohen RM, McDuffie R, Nylen E, O'Connor P, Rehman S, Seaquist ER (2016) Factors associated with failure to achieve a glycated haemoglobin target of <8.0% in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Obes Metab 18:92–95. https://doi.org/10.1111/dom.12569

    Article  CAS  PubMed  Google Scholar 

  15. Khunti K, Alsifri S, Aronson R, Cigrovski Berković M, Enters-Weijnen C, Forsén T, Galstyan G, Geelhoed-Duijvestijn P, Goldfracht M, Gydesen H, Kapur R, Lalic N, Ludvik B, Moberg E, Pedersen-Bjergaard U, Ramachandran A, HAT Investigator Group (2016) Rates and predictors of hypoglycaemia in 27 585 people from 24 countries with insulin-treated type 1 and type 2 diabetes: the global HAT study. Diabetes Obes Metab 18:907–915. https://doi.org/10.1111/dom.12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM, Zinman B, Cleary P, Brillon D, Backlund JY, Lachin JM (2015) Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA 313:45–53. https://doi.org/10.1001/jama.2014.16107

    Article  CAS  Google Scholar 

  17. Fährmann ER, Adkins L, Loader CJ, Han H, Rice KM, Denvir J, Driscoll HK (2015) Severe hypoglycemia and coronary artery calcification during the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Res Clin Pract 107:280–289. https://doi.org/10.1016/j.diabres.2014.10.007

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez-Gutierrez R, Lipska KJ, RG MC, Ospina NS, Ting HH, Montori VM, Hypoglycemia as a Quality Measure in Diabetes Study Group (2016) Hypoglycemia as an indicator of good diabetes care. BMJ 352:i1084. https://doi.org/10.1136/bmj.i1084

    Article  PubMed  CAS  Google Scholar 

  19. Frier BM (2004) Morbidity of hypoglycemia in type 1 diabetes. Diabetes Res Clin Pract 65(Suppl 1):S47–S52

    Article  CAS  PubMed  Google Scholar 

  20. Martín-Timón I, Del Cañizo-Gómez FJ (2015) Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes 6:912–926. https://doi.org/10.4239/wjd.v6.i7.912

    Article  PubMed  PubMed Central  Google Scholar 

  21. DeRosa MA, Cryer PE (2004) Hypoglycemia and the sympathoadrenal system: neurogenic symptoms are largely the result of sympathetic neural, rather than adrenomedullary, activation. Am J Physiol Endocrinol Metab 287:E32–E41

    Article  CAS  PubMed  Google Scholar 

  22. Towler DA, Havlin CE, Craft S, Cryer P (1993) Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 42:1791–1798. https://doi.org/10.2337/diab.42.12.1791

    Article  CAS  PubMed  Google Scholar 

  23. Gao L, Ortega-Sáenz P, García-Fernández M, González-Rodríguez P, Caballero-Eraso C, López-Barneo J (2014) Glucose sensing by carotid body glomus cells: potential implications in disease. Front Physiol 5:398. https://doi.org/10.3389/fphys.2014.00398

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ortega-Sáenz P, Villadiego J, Pardal R, Toledo-Aral JJ, López-Barneo J (2015) Neurotrophic properties, chemosensory responses and neurogenic niche of the human carotid body. Adv Exp Med Biol 860:139–152. https://doi.org/10.1007/978-3-319-18440-1_16

    Article  PubMed  CAS  Google Scholar 

  25. Valensi P (1998) Diabetic autonomic neuropathy: what are the risks? Diabetes Metab 24(Suppl 3):66–72

    PubMed  Google Scholar 

  26. Pop-Busui R, Braffett BH, Zinman B, Martin C, White NH, Herman WH, Genuth S, Gubitosi-Klug R, DCCT/EDIC Research Group (2017) Cardiovascular autonomic neuropathy and cardiovascular outcomes in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care 40:94–100. https://doi.org/10.2337/dc16-1397

    Article  PubMed  Google Scholar 

  27. Schnell O, Cappuccio F, Genovese S, Standl E, Valensi P, Ceriello A (2013) Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol 12:156. https://doi.org/10.1186/1475-2840-12-156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bellmann B, Tschöpe C (2014) Heart failure. Cardiovascular autonomic neuropathy in patients with diabetes mellitus. Herz 39:306–311. https://doi.org/10.1007/s00059-014-4093-2

    Article  CAS  PubMed  Google Scholar 

  29. Lin YD, Hsu KL, Wu ET, Tsai MS, Wang CH, Chang CY, Chang KC (2008) Autonomic neuropathy precedes cardiovascular dysfunction in rats with diabetes. Eur J Clin Investig 38:607–614. https://doi.org/10.1111/j.1365-2362.2008.01992.x

    Article  CAS  Google Scholar 

  30. Cryer PE (2015) Hypoglycemia-associated autonomic failure in diabetes: maladaptive, adaptive, or both? Diabetes 64:2322–2323. https://doi.org/10.2337/db15-0331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, Sheridan PJ, Heller SR (2014) Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63:1738–1747. https://doi.org/10.2337/db13-0468

    Article  CAS  PubMed  Google Scholar 

  32. Cryer PE (2014) Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63:2188–2195. https://doi.org/10.2337/db14-0059

    Article  PubMed  Google Scholar 

  33. ORIGIN Trial Investigators, Mellbin LG, Rydén L, Riddle MC, Probstfield J, Rosenstock J, Díaz R, Yusuf S, Gerstein HC (2013) Does hypoglycaemia increase the risk of cardiovascular events? A report from the ORIGIN trial. Eur Heart J 34:3137–3144. https://doi.org/10.1093/eurheartj/eht332

    Article  CAS  Google Scholar 

  34. Joy NG, Tate DB, Younk LM, Davis SN (2015) Effects of acute and antecedent hypoglycemia on endothelial function and markers of atherothrombotic balance in healthy humans. Diabetes 64:2571–2580. https://doi.org/10.2337/db14-1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giménez M, Gilabert R, Monteagudo J, Alonso A, Casamitjana R, Paré C, Conget I (2011) Repeated episodes of hypoglycemia as a potential aggravating factor for preclinical atherosclerosis in subjects with type 1 diabetes. Diabetes Care 34:198–203. https://doi.org/10.2337/dc10-1371

    Article  PubMed  CAS  Google Scholar 

  36. Ceriello A, Novials A, Ortega E, La Sala L, Pujadas G, Testa R, Bonfigli AR, Esposito K, Giugliano D (2012) Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 61:2993–2997. https://doi.org/10.2337/db12-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reno CM, Daphna-Iken D, Chen YS, VanderWeele J, Jethi K, Fisher SJ (2013) Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation. Diabetes 62:3570–3581. https://doi.org/10.2337/db13-0216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van der Weele JJ, Daphna-Iken D, Chen YS, Hoffman RS, Clark AL, Fisher SJ (2014) Antecedent recurrent hypoglycemia reduces lethal cardiac arrhythmias induced by severe hypoglycemia in diabetic rats. Diabetes 53(Suppl 1):A39

    Google Scholar 

  39. Seaquist ER, Miller ME, Bonds DE, Feinglos M, Goff DC Jr, Peterson K, Senior P, Investigators ACCORD (2012) The impact of frequent and unrecognized hypoglycemia on mortality in the ACCORD study. Diabetes Care 35:409–414. https://doi.org/10.2337/dc11-0996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Billot L, Woodward M, Ninomiya T, Neal B, MacMahon S, Grobbee DE, Kengne AP, Marre M, Heller S, ADVANCE Collaborative Group (2010) Severe hypoglycemia and risks of vascular events and death. N Engl J Med 363(15):1410–1418. https://doi.org/10.1056/NEJMoa1003795

    Article  CAS  PubMed  Google Scholar 

  41. Imam MH, Karmakar CK, Jelinek HF, Palaniswami M, Khandoker AH (2015) Analyzing systolic-diastolic interval interaction characteristics in diabetic cardiac autonomic neuropathy progression. IEEE J Transl Eng Health Med 3:1900510. https://doi.org/10.1109/JTEHM.2015.2462339

    Article  PubMed  Google Scholar 

  42. Ohno T, Toyama T, Hoshizaki H, Okamoto E, Naito S, Nogami A, Kamiyama H, Ohshima S, Yuasa K, Taniguchi K, Tomono S, Kawazu S (1996) Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness. Intern Med 35:94–99. https://doi.org/10.2169/internalmedicine.35.94

    Article  CAS  PubMed  Google Scholar 

  43. Rao H, Gaur N, Tipre D (2017) Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy. Nucl Med Commun 38:275–284. https://doi.org/10.1097/MNM.0000000000000653

    Article  PubMed  Google Scholar 

  44. Dagogo-Jack S, Rattarasarn C, Cryer PE (1994) Reversal of hypoglycemia unawareness, but not defective glucose counterregulation, in IDDM. Diabetes 43(12):1426–1434

    Article  CAS  PubMed  Google Scholar 

  45. Fanelli C, Pampanelli S, Epifano L, Rambotti AM, Di Vincenzo A, Modarelli F, Ciofetta M, Lepore M, Annibale B, Torlone E et al (1994) Long-term recovery from unawareness, deficient counterregulation and lack of cognitive dysfunction during hypoglycaemia, following institution of rational, intensive insulin therapy in IDDM. Diabetologia 37:1265–1276

    Article  CAS  PubMed  Google Scholar 

  46. Bolli GB (1997) Hypoglycaemia unawareness. Diabetes Metab 23(Suppl 3):29–35

    PubMed  Google Scholar 

  47. Fritsche A, Stumvoll M, Häring HU, Gerich JE (2000) Reversal of hypoglycemia unawareness in a long-term type 1 diabetic patient by improvement of beta-adrenergic sensitivity after prevention of hypoglycemia. J Clin Endocrinol Metab 85:523–525

    CAS  PubMed  Google Scholar 

  48. Yang HK, Ham DS, Park HS, Rhee M, You YH, Kim MJ, Kim JW, Lee SH, Hong TH, Choi BG, Cho JH, Yoon KH (2015) Reversal of hypoglycemia unawareness with a single-donor, marginal dose allogeneic islet transplantation in Korea: a case report. J Korean Med Sci 30:991–994. https://doi.org/10.3346/jkms.2015.30.7.991

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Galan BE, Tack CJ, Lenders JW, Pasman JW, Elving LD, Russel FG, Lutterman JA, Smits P (2002) Theophylline improves hypoglycemia unawareness in type 1 diabetes. Diabetes 51:790–796. https://doi.org/10.2337/diabetes.51.3.790

    Article  PubMed  Google Scholar 

  50. Afanasiev SA, Pavliukova EN, Kuzmichkina MA, Rebrova TY, Anfinogenova Y, Likhomanov KS, Karpov RS (2016) Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann Noninvasive Electrocardiol 21:548–556. https://doi.org/10.1111/anec.12349

    Article  PubMed  Google Scholar 

  51. Pujadas G, De Nigris V, Prattichizzo F, La Sala L, Testa R, Ceriello A (2017) The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory. Endocrine 56:509–520. https://doi.org/10.1007/s12020-016-1052-0

    Article  CAS  PubMed  Google Scholar 

  52. Chen Z, Miao F, Paterson AD, Lachin JM, Zhang L, Schones DE, Wu X, Wang J, Tompkins JD, Genuth S, Braffett BH, Riggs AD, DCCT/EDIC Research Group, Natarajan R (2016) Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A 113:E3002–E3011. https://doi.org/10.1073/pnas.1603712113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanefeld M, Ganz X, Nolte C (2014) Hypoglycemia and cardiac arrhythmia in patients with diabetes mellitus type 2. Herz 39:312–319. https://doi.org/10.1007/s00059-014-4086-1

    Article  CAS  PubMed  Google Scholar 

  54. Nordin C (2014) The proarrhythmic effect of hypoglycemia: evidence for increased risk from ischemia and bradycardia. Acta Diabetol 51:5–14. https://doi.org/10.1007/s00592-013-0528-0

    Article  CAS  PubMed  Google Scholar 

  55. Lip GY, Varughese GI (2005) Diabetes mellitus and atrial fibrillation: perspectives on epidemiological and pathophysiological links. Int J Cardiol 105:319–321. https://doi.org/10.1016/j.ijcard.2005.03.003

    Article  PubMed  Google Scholar 

  56. Tsujimoto T, Yamamoto-Honda R, Kajio H, Kishimoto M, Noto H, Hachiya R, Kimura A, Kakei M, Noda M (2014) Vital signs, QT prolongation, and newly diagnosed cardiovascular disease during severe hypoglycemia in type 1 and type 2 diabetic patients. Diabetes Care 37:217–225. https://doi.org/10.2337/dc13-0701

    Article  CAS  PubMed  Google Scholar 

  57. Marques JL, George E, Peacey SR, Harris ND, Macdonald IA, Cochrane T, Heller SR (1997) Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet Med 14:648–654. https://doi.org/10.1002/(SICI)1096-9136(199708)14:8<648::AID-DIA418>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  58. Marques JLB, George E, Cochrane T, Harris ND, Heller SR (1995) Qtc interval prolongation during hypoglycemia: a possible mechanism of sudden death (abstract). Diabet Med 12(Suppl 1):S9

    Google Scholar 

  59. Landstedt-Hallin L, Englund A, Adamson U, Lins PE (1999) Increased QT dispersion during hypoglycaemia in patients with type 2 diabetes mellitus. J Intern Med 246:299–307

    Article  CAS  PubMed  Google Scholar 

  60. Robinson RT, Harris ND, Ireland RH, Lee S, Newman C, Heller SR (2003) Mechanisms of abnormal cardiac repolarization during insulin-induced hypoglycemia. Diabetes 52:1469–1474. https://doi.org/10.2337/diabetes.52.6.1469

    Article  CAS  PubMed  Google Scholar 

  61. Pandya B, Spagnola J, Sheikh A, Karam B, Anugu VR, Khan A, Lafferty J, Kenigsberg D, Kowalski M (2016) Anti-arrhythmic medications increase non-cardiac mortality—a meta-analysis of randomized control trials. J Arrhythm 32:204–211. https://doi.org/10.1016/j.joa.2016.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  62. King R, Ajjan R (2016) Hypoglycaemia, thrombosis and vascular events in diabetes. Expert Rev Cardiovasc Ther 14:1099–1101. https://doi.org/10.1080/14779072.2016.1215916

    Article  CAS  PubMed  Google Scholar 

  63. Chow EYK, Iqbal A, Phoenix F, Heller SR, Ajjan RA (2013) Hypoglycaemia promotes thrombosis and inflammation for at least one week in patients with type 2 diabetes (abstract). Diabetologia 56:S243

    Google Scholar 

  64. Gajos G, Konieczynska M, Zalewski J, Undas A (2015) Low fasting glucose is associated with enhanced thrombin generation and unfavorable fibrin clot properties in type 2 diabetic patients with high cardiovascular risk. Cardiovasc Diabetol 14:44. https://doi.org/10.1186/s12933-015-0207-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Long B, Koyfman A (2017) Clinical mimics: an emergency medicine-focused review of stroke mimics. J Emerg Med 52:176–183. https://doi.org/10.1016/j.jemermed.2016.09.021

    Article  PubMed  Google Scholar 

  66. Ratter JM, Rooijackers HM, Tack CJ, Hijmans AG, Netea MG, de Galan BE, Stienstra R (2017) Proinflammatory effects of hypoglycemia in humans with or without diabetes. Diabetes 66:1052–1061. https://doi.org/10.2337/db16-1091

    Article  CAS  PubMed  Google Scholar 

  67. Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119:159–176. https://doi.org/10.1161/CIRCRESAHA.116.308030

    Article  CAS  PubMed  Google Scholar 

  68. Fadini GP, Avogaro A (2011) Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vasc Pharmacol 55:10–16. https://doi.org/10.1016/j.vph.2011.05.001

    Article  CAS  Google Scholar 

  69. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185. https://doi.org/10.1038/nature21363

    Article  CAS  PubMed  Google Scholar 

  70. Kothari V, Galdo JA, Mathews ST (2016) Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res 9:27–38. https://doi.org/10.2147/JIR.S86917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lancaster GI, Febbraio MA (2014) The immunomodulating role of exercise in metabolic disease. Trends Immunol 35:262–269. https://doi.org/10.1016/j.it.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  72. Scheen AJ, Esser N, Paquot N (2015) Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab 41:183–194. https://doi.org/10.1016/j.diabet.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  73. Potenza MA, Nacci C, De Salvia MA, Sgarra L, Collino M, Montagnani M (2017) Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: current and perspective therapeutic options. Pharmacol Res 120:226–241. https://doi.org/10.1016/j.phrs.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  74. Mallat Z, Gojova A, Sauzeau V, Brun V, Silvestre JS, Esposito B, Merval R, Groux H, Loirand G, Tedgui A (2003) Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ Res 93:884–888. https://doi.org/10.1161/01.RES.0000099062.55042.9A

    Article  CAS  PubMed  Google Scholar 

  75. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT, Fujii Y, Schwenke DO, Tsuchimochi H, Yoshimoto M, Umetani K, Kelly DJ, Shirai M (2013) Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc Diabetol 12:111. https://doi.org/10.1186/1475-2840-12-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sako A, Yasunaga H, Matsui H, Fushimi K, Hamasaki H, Katsuyama H, Tsujimoto T, Goto A, Yanai H (2017) Hospitalization with hypoglycemia in patients without diabetes mellitus: a retrospective study using a national inpatient database in Japan, 2008-2012. Medicine (Baltimore) 96(25):e7271. https://doi.org/10.1097/MD.0000000000007271

    Article  Google Scholar 

  78. Deng Y, Zheng W, Zhu J (2012) Successful treatment of thyroid crisis accompanied by hypoglycemia, lactic acidosis, and multiple organ failure. Am J Emerg Med 30:2094.e5–2094.e6. https://doi.org/10.1016/j.ajem.2012.01.003

    Article  Google Scholar 

  79. Nakatani Y, Monden T, Sato M, Domeki N, Matsumura M, Banba N, Nakamoto T (2012) Severe hypoglycemia accompanied with thyroid crisis. Case Rep Endocrinol 2012:168565. https://doi.org/10.1155/2012/168565

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yoshino T, Kawano D, Azuhata T, Kuwana T, Kogawa R, Sakurai A, Tanjoh K, Yanagawa T (2010) A patient with Graves’ disease who survived despite developing thyroid storm and lactic acidosis. Ups J Med Sci 115:282–286. https://doi.org/10.3109/03009734.2010.486908

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kalra S, Unnikrishnan AG, Sahay R (2014) The hypoglycemic side of hypothyroidism. Indian J Endocrinol Metab 18:1–3. https://doi.org/10.4103/2230-8210.126517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Howlett JG, MacFadyen JC (2013) Treatment of diabetes in people with heart failure. Can J Diabetes 37(Suppl 1):S126–S128. https://doi.org/10.1016/j.jcjd.2013.01.036

    Article  Google Scholar 

  83. Kasznicki J, Drzewoski J (2014) Heart failure in the diabetic population—pathophysiology, diagnosis and management. Arch Med Sci 10:546–556. https://doi.org/10.5114/aoms.2014.43748

    Article  PubMed  PubMed Central  Google Scholar 

  84. Moore N, Kreft-Jais C, Haramburu F, Noblet C, Andrejak M, Ollagnier M, Bégaud B (1997) Reports of hypoglycaemia associated with the use of ACE inhibitors and other drugs: a case/non-case study in the French pharmacovigilance system database. Br J Clin Pharmacol 44(5):513–518. https://doi.org/10.1046/j.1365-2125.1997.00615.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thamer M, Ray NF, Taylor T (1999) Association between antihypertensive drug use and hypoglycemia: a case-control study of diabetic users of insulin or sulfonylureas. Clin Ther 21:1387–1400. https://doi.org/10.1016/S0149-2918(99)80039-3

    Article  CAS  PubMed  Google Scholar 

  86. Zitzmann S, Reimann IR, Schmechel H (2002) Severe hypoglycemia in an elderly patient treated with metformin. Int J Clin Pharmacol Ther 40:108–110

    Article  CAS  PubMed  Google Scholar 

  87. Morris AD, Boyle DI, McMahon AD, Pearce H, Evans JM, Newton RW, Jung RT, MacDonald TM (1997) ACE inhibitor use is associated with hospitalization for severe hypoglycemia in patients with diabetes. DARTS/MEMO Collaboration. Diabetes Audit and Research in Tayside, Scotland. Medicines Monitoring Unit. Diabetes Care 20:1363–1367

    Article  CAS  PubMed  Google Scholar 

  88. Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A (1995) Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme. Lancet 345:1195–1198. https://doi.org/10.1016/S0140-6736(95)91988-0

    Article  CAS  PubMed  Google Scholar 

  89. Pila Pérez R, Pila Peláez R, Paulino Basulto M, del Sol SJ, López Franco F (2005) Severe hypoglycemia secondary to captopril: a case report. Revista Archivo Médico de Camagüey 9:137–142

    Google Scholar 

  90. Elorriaga-Sánchez F, Corrales-Bobadilla H, Sosa-Trinidad E, Domínguez-Quezada B (2001) Severe hypoglycemia secondary to angiotensin-converting-enzyme inhibitors in the absence of diabetes mellitus. Report of a case. Gac Med Mex 137:249–252

    PubMed  Google Scholar 

  91. Rave K, Flesch S, Kühn-Velten WN, Hompesch BC, Heinemann L, Heise T (2005) Enhancement of blood glucose lowering effect of a sulfonylurea when coadministered with an ACE inhibitor: results of a glucose-clamp study. Diabetes Metab Res Rev 21:459–464. https://doi.org/10.1002/dmrr.563

    Article  CAS  PubMed  Google Scholar 

  92. Oltmanns KM, Deininger E, Wellhoener P, Schultes B, Kern W, Marx E, Dominiak P, Born J, Fehm HL, Peters A (2003) Influence of captopril on symptomatic and hormonal responses to hypoglycaemia in humans. Br J Clin Pharmacol 55:347–353. https://doi.org/10.1046/j.1365-2125.2003.01771.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deininger E, Oltmanns KM, Wellhoener P, Fruehwald-Schultes B, Kern W, Heuer B, Dominiak P, Born J, Fehm HL, Peters A (2001) Losartan attenuates symptomatic and hormonal responses to hypoglycemia in humans. Clin Pharmacol Ther 70:362–369. https://doi.org/10.1016/S0009-9236(01)26448-0

    Article  CAS  PubMed  Google Scholar 

  94. Wai B, Kearney LG, Hare DL, Ord M, Burrell LM, Srivastava PM (2012) Beta blocker use in subjects with type 2 diabetes mellitus and systolic heart failure does not worsen glycaemic control. Cardiovasc Diabetol 11:14. https://doi.org/10.1186/1475-2840-11-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haas SJ, Vos T, Gilbert RE, Krum H (2003) Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 146:848–853. https://doi.org/10.1016/S0002-8703(03)00403-4

    Article  CAS  PubMed  Google Scholar 

  96. Reveno WS, Rosenbaum H (1968) Propranolol and hypoglycaemia. Lancet 1:920

    Article  CAS  PubMed  Google Scholar 

  97. Tsujimoto T, Sugiyama T, Shapiro MF, Noda M, Kajio H (2017) Risk of cardiovascular events in patients with diabetes mellitus on β-blockers. Hypertension 70:103–110. https://doi.org/10.1161/HYPERTENSIONAHA.117.09259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Viberti GC, Keen H, Bloom SR (1980) Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in normal subjects. Metabolism 29:866–872. https://doi.org/10.1016/0026-0495(80)90126-2

    Article  CAS  PubMed  Google Scholar 

  99. Kerr D, MacDonald IA, Heller SR, Tattersall RB (1990) Beta-adrenoceptor blockade and hypoglycaemia. A randomised, double-blind, placebo controlled comparison of metoprolol CR, atenolol and propranolol LA in normal subjects. Br J Clin Pharmacol 29:685–693. https://doi.org/10.1111/j.1365-2125.1990.tb03689.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McGill JB, Bakris GL, Fonseca V, Raskin P, Messerli FH, Phillips RA, Katholi RE, Wright JT Jr, Iyengar M, Anderson KM, Lukas MA, Dalal MR, Bell DS (2007) Beta-blocker use and diabetes symptom score: results from the GEMINI study. Diabetes Obes Metab 9(3):408–417. https://doi.org/10.1111/j.1463-1326.2006.00693.x

    Article  CAS  PubMed  Google Scholar 

  101. Fonseca VA (2010) Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin 26:615–629. https://doi.org/10.1185/03007990903533681

    Article  CAS  PubMed  Google Scholar 

  102. Aleksandrov AA, Shatskaya OА, Kuharenko SS, Drozdova EN, Bondarenko IZ, Tabidze ND, Shestakova MV (2008) Heart failure, diabetes, beta-blockers and risk of hypoglycemia. Ration Pharmacother Cardiol 3:47–51. 10.20996/1819–6446–2008-4-3-47-51

    Article  Google Scholar 

  103. Weidmann P, Boehlen LM, de Courten M, Ferrari P (1992) Antihypertensive therapy in diabetic patients. J Hum Hypertens 6(Suppl 2):S23–S36

    PubMed  Google Scholar 

  104. Ramadan WH, Kabbara WK (2015) Sitagliptin/simvastatin: a first combination tablet to treat type 2 diabetes and hypercholesterolemia—a review of its characteristics. Vasc Health Risk Manag 11:125–132. https://doi.org/10.2147/VHRM.S79198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin YY, Hsu CW, Sheu WH, Chu SJ, Wu CP, Tsai SH (2010) Risk factors for recurrent hypoglycemia in hospitalized diabetic patients admitted for severe hypoglycemia. Yonsei Med J 51:367–374. https://doi.org/10.3349/ymj.2010.51.3.367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schelleman H, Bilker WB, Brensinger CM, Wan F, Hennessy S (2010) Anti-infectives and the risk of severe hypoglycemia in users of glipizide or glyburide. Clin Pharmacol Ther 88:214–222. https://doi.org/10.1038/clpt.2010.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Micheli L, Sbrilli M, Nencini C (2012) Severe hypoglycemia associated with levofloxacin in type 2 diabetic patients receiving polytherapy: two case reports. Int J Clin Pharmacol Ther 50:302–306. https://doi.org/10.5414/CP201594

    Article  CAS  PubMed  Google Scholar 

  108. Sattar N, Petrie MC, Zinman B, Januzzi JL Jr (2017) Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 69:2646–2656. https://doi.org/10.1016/j.jacc.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  109. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699. https://doi.org/10.1016/j.cardfail.2006.08.211

    Article  CAS  PubMed  Google Scholar 

  110. Luginbuhl KM, Schaal JL, Umstead B, Mastria EM, Li X, Banskota S, Arnold S, Feinglos M, D’Alessio D, Chilkoti A (2017) One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat Biomed Eng 1:0078. https://doi.org/10.1038/s41551-017-0078

    Article  PubMed  PubMed Central  Google Scholar 

  111. Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, Hussein MA (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34:90–95. https://doi.org/10.2337/dc10-1393

    Article  CAS  PubMed  Google Scholar 

  112. Liu Q, Adams L, Broyde A, Fernandez R, Baron AD, Parkes DG (2010) The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc Diabetol 9:32. https://doi.org/10.1186/1475-2840-9-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76. https://doi.org/10.1186/1475-2840-9-76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965. https://doi.org/10.1161/01.CIR.0000120505.91348.58

    Article  CAS  PubMed  Google Scholar 

  115. Marso SP, Holst AG, Vilsbøll T (2017) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 376:891–892. https://doi.org/10.1056/NEJMc1615712

    Article  PubMed  Google Scholar 

  116. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, Steering Committee LEADER, Trial Investigators LEADER (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray JJ, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, Investigators ELIXA (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257. https://doi.org/10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  118. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, CANVAS Program Collaborative Group (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. https://doi.org/10.1056/NEJMoa1611925

  119. Li Y, Sun J, Li D, Lin J (2016) Activation and conformational dynamics of a class B G-protein-coupled glucagon receptor. Phys Chem Chem Phys 18:12642–12650. https://doi.org/10.1039/c6cp00798h

    Article  CAS  PubMed  Google Scholar 

  120. Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJ, Cooke RM, Weir M, Marshall FH (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–277. https://doi.org/10.1038/nature17414

    Article  CAS  PubMed  Google Scholar 

  121. Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC, Robertson NJ, Fiez-Vandal C, Andrews SP, Congreve M, Bortolato A, Mason JS, Baig AH, Teobald I, Doré AS, Weir M, Cooke RM, Marshall FH (2017) Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546:254–258. https://doi.org/10.1038/nature22800

    Article  CAS  PubMed  Google Scholar 

  122. Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu ZJ, Wang MW, Stevens RC (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315. https://doi.org/10.1038/nature22378

    Article  CAS  PubMed  Google Scholar 

  123. Zhang H, Qiao A, Yang D, Yang L, Dai A, de Graaf C, Reedtz-Runge S, Dharmarajan V, Zhang H, Han GW, Grant TD, Sierra RG, Weierstall U, Nelson G, Liu W, Wu Y, Ma L, Cai X, Lin G, Wu X, Geng Z, Dong Y, Song G, Griffin PR, Lau J, Cherezov V, Yang H, Hanson MA, Stevens RC, Zhao Q, Jiang H, Wang MW, Wu B (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–264. https://doi.org/10.1038/nature22363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Sun Kobilka T, Kobilka BK, Skiniotis G (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253. https://doi.org/10.1038/nature22394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie M, Ye H, Wang H, Charpin-El Hamri G, Lormeau C, Saxena P, Stelling J, Fussenegger M (2016) β-cell-mimetic designer cells provide closed-loop glycemic control. Science 354:1296–1301. https://doi.org/10.1126/science.aaf4006

    Article  CAS  PubMed  Google Scholar 

  126. Chong CR, Chan WP, Nguyen TH, Liu S, Procter NE, Ngo DT, Sverdlov AL, Chirkov YY, Horowitz JD (2014) Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther 28:347–360. https://doi.org/10.1007/s10557-014-6538-5

    Article  CAS  PubMed  Google Scholar 

  127. Wang BF, Yoshioka J (2017) The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 22:219–229. https://doi.org/10.1177/1074248416675731

    Article  CAS  PubMed  Google Scholar 

  128. Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, Cohen P, Sneddon JB, Perin L, Longo VD (2017) Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168:775–788.e12. https://doi.org/10.1016/j.cell.2017.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lane W, Bailey TS, Gerety G, Gumprecht J, Philis-Tsimikas A, Hansen CT, Nielsen TSS, Warren M, Group Information; SWITCH 1 (2017) Effect of insulin degludec vs insulin glargine U100 on hypoglycemia in patients with type 1 diabetes: the SWITCH 1 randomized clinical trial. JAMA 318:33–44. https://doi.org/10.1001/jama.2017.7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wysham C, Bhargava A, Chaykin L, de la Rosa R, Handelsman Y, Troelsen LN, Kvist K, Norwood P (2017) Effect of insulin degludec vs insulin glargine U100 on hypoglycemia in patients with type 2 diabetes: the SWITCH 2 randomized clinical trial. JAMA 318:45–56. https://doi.org/10.1001/jama.2017.7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H (2012) Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab 14:859–864. https://doi.org/10.1111/j.1463-1326.2012.01627.x

    Article  CAS  PubMed  Google Scholar 

  132. Heise T, Hövelmann U, Nosek L, Hermanski L, Bøttcher SG, Haahr H (2015) Comparison of the pharmacokinetic and pharmacodynamic profiles of insulin degludec and insulin glargine. Expert Opin Drug Metab Toxicol 11:1193–1201. https://doi.org/10.1517/17425255.2015.1058779

    Article  CAS  PubMed  Google Scholar 

  133. Monami M, Iacomelli I, Marchionni N, Mannucci E (2010) Dipeptydil peptidase-4 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 20:224–235. https://doi.org/10.1016/j.numecd.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  134. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R, American Heart Association; American Diabetes Association (2003) Thiazolidinedione use, fluid retention, and congestive heart failure. A consensus statement from the American Heart Association and American Diabetes Association. Circulation 108:2941–2948. https://doi.org/10.1161/01.CIR.0000103683.99399.7E

    Article  PubMed  Google Scholar 

  135. Prospective Diabetes Study UK (UKPDS) Group (1998) Effect of intensive blood glucose control with metaformin on complications in overweight patients with type-2 diabetes (UKPDS 34). Lancet 352:854–865. https://doi.org/10.1016/S0140-6736(98)07037-8

    Article  Google Scholar 

  136. Lind M, Olsson M, Rosengren A, Svensson AM, Bounias I, Gudbjornsdottir S (2012) The relationship between glycaemic control and heart failure in 83021 patients with type 2 diabetes. Diabetologia 55:2946–2953. https://doi.org/10.1007/s00125-012-2681-3

    Article  CAS  PubMed  Google Scholar 

  137. Aguilar D, Chan W, Bozkurt B, Ramasubbu K, Deswal A (2011) Metformin use and mortality in ambulatory patients with diabetes and heart failure. Circ Heart Fail 4:53–58

    Article  CAS  PubMed  Google Scholar 

  138. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE (2003) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 163:2594–2602. https://doi.org/10.1001/archinte.163.21.2594

    Article  PubMed  Google Scholar 

  139. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE (2010) Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 4:CD002967. https://doi.org/10.1002/14651858.CD002967.pub4

    Article  Google Scholar 

  140. Maniar K, Moideen A, Mittal A, Patil A, Chakrabarti A, Banerjee D (2017) A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: genesis of a wonder drug? Pharmacol Res 117:103–128. https://doi.org/10.1016/j.phrs.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  141. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. https://doi.org/10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ho J, Reimer RA, Doulla M, Huang C (2016) Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 17:347. https://doi.org/10.1186/s13063-016-1486-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sandek A, Anker SD, von Haehling S (2009) The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab 10:22–28. https://doi.org/10.2174/138920009787048374

    Article  CAS  PubMed  Google Scholar 

  144. Pasini E, Aquilani R, Corsetti G, Dioguardi FS (2015) Malnutrition and gut flora dysbiosis: specific therapies for emerging comorbidities in heart failure. Biomed Res Int 2015:382585. https://doi.org/10.1155/2015/382585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220–227. https://doi.org/10.1016/j.jchf.2015.10.009

    Article  PubMed  Google Scholar 

  146. Mardinoglu A, Boren J, Smith U (2016) Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab 23:10–12. https://doi.org/10.1016/j.cmet.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  147. Kristensen PL, Pedersen-Bjergaard U, Due-Andersen R, Høi-Hansen T, Grimmeshave L, Lyssenko V, Groop L, Holst JJ, Vaag AA, Thorsteinsson B (2016) Impact of the TCF7L2 genotype on risk of hypoglycaemia and glucagon secretion during hypoglycaemia. Endocr Connect 5:53–60. https://doi.org/10.1530/EC-16-0050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duan F, Guo Y, Zhang L, Chen P, Wang X, Liu Z, Hu Y, Chen S, Chen D (2016) Association of KCNQ1 polymorphisms with gliclazide efficacy in Chinese type 2 diabetic patients. Pharmacogenet Genomics. https://doi.org/10.1097/FPC.0000000000000204

  149. Pedersen-Bjergaard U, Agerholm-Larsen B, Pramming S, Hougaard P, Thorsteinsson B (2003) Prediction of severe hypoglycaemia by angiotensin-converting enzyme activity and genotype in type 1 diabetes. Diabetologia 46:89–96. https://doi.org/10.1007/s00125-002-0969-4

    Article  CAS  PubMed  Google Scholar 

  150. Nunes AP, Iglay K, Radican L, Engel SS, Yang J, Doherty MC, Dore DD (2017) Hypoglycaemia seriousness and weight gain as determinants of cardiovascular disease outcomes among sulfonylurea users. Diabetes Obes Metab. https://doi.org/10.1111/dom.13000

  151. Zhou K, Pedersen HK, Dawed AY, Pearson ER (2016) Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 12:337–346. https://doi.org/10.1038/nrendo.2016.51

    Article  CAS  PubMed  Google Scholar 

  152. Ragia G, Petridis I, Tavridou A, Christakidis D, Manolopoulos VG (2009) Presence of CYP2C9*3 allele increases risk for hypoglycemia in type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics 10:1781–1787. https://doi.org/10.2217/pgs.09.96

    Article  CAS  PubMed  Google Scholar 

  153. Ragia G, Tavridou A, Elens L, Van Schaik RH, Manolopoulos VG (2014) CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas. Exp Clin Endocrinol Diabetes 122:60–63. https://doi.org/10.1055/s-0033-1361097

    Article  CAS  PubMed  Google Scholar 

  154. Mosikian A, Dolgorukova A, Zalevskaya A (2016) Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia. Pharmacogenomics 17:2115–2126. https://doi.org/10.2217/pgs-2016-0121

    Article  CAS  PubMed  Google Scholar 

  155. Scott RA, Freitag DF, Li L, Chu AY, Surendran P, Young R, Grarup N, Stancáková A, Chen Y, Varga TV, Yaghootkar H, Luan J, Zhao JH, Willems SM, Wessel J, Wang S, Maruthur N, Michailidou K, Pirie A, van der Lee SJ, Gillson C, Al Olama AA, Amouyel P, Arriola L, Arveiler D, Aviles-Olmos I, Balkau B, Barricarte A, Barroso I, Garcia SB, Bis JC, Blankenberg S, Boehnke M, Boeing H, Boerwinkle E, Borecki IB, Bork-Jensen J, Bowden S, Caldas C, Caslake M, CVD50 consortium, Cupples LA, Cruchaga C, Czajkowski J, den Hoed M, Dunn JA, Earl HM, Ehret GB, Ferrannini E, Ferrieres J, Foltynie T, Ford I, Forouhi NG, Gianfagna F, Gonzalez C, Grioni S, Hiller L, Jansson JH, Jørgensen ME, Jukema JW, Kaaks R, Kee F, Kerrison ND, Key TJ, Kontto J, Kote-Jarai Z, Kraja AT, Kuulasmaa K, Kuusisto J, Linneberg A, Liu C, Marenne G, Mohlke KL, Morris AP, Muir K, Müller-Nurasyid M, Munroe PB, Navarro C, Nielsen SF, Nilsson PM, Nordestgaard BG, Packard CJ, Palli D, Panico S, Peloso GM, Perola M, Peters A, Poole CJ, Quirós JR, Rolandsson O, Sacerdote C, Salomaa V, Sánchez MJ, Sattar N, Sharp SJ, Sims R, Slimani N, Smith JA, Thompson DJ, Trompet S, Tumino R, van der A DL, van der Schouw YT, Virtamo J, Walker M, Walter K, GERAD_EC Consortium; Neurology Working Group of the Cohorts for Heart; Aging Research in Genomic Epidemiology (CHARGE); Alzheimer’s Disease Genetics Consortium; Pancreatic Cancer Cohort Consortium; European Prospective Investigation into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD); EPIC-InterAct, Abraham JE, Amundadottir LT, Aponte JL, Butterworth AS, Dupuis J, Easton DF, Eeles RA, Erdmann J, Franks PW, Frayling TM, Hansen T, Howson JM, Jørgensen T, Kooner J, Laakso M, Langenberg C, MI MC, Pankow JS, Pedersen O, Riboli E, Rotter JI, Saleheen D, Samani NJ, Schunkert H, Vollenweider P, O'Rahilly S, CHARGE consortium; CHD Exome+ Consortium; CARDIOGRAM Exome Consortium, Deloukas P, Danesh J, Goodarzi MO, Kathiresan S, Meigs JB, Ehm MG, Wareham NJ, Waterworth DM (2016) A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci Transl Med 8:341ra76. https://doi.org/10.1126/scitranslmed.aad3744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Florez JC (2017) Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool? Diabetologia 60:800–807. https://doi.org/10.1007/s00125-017-4227-1

    Article  CAS  PubMed  Google Scholar 

  157. Walford GA, Colomo N, Todd JN, Billings LK, Fernandez M, Chamarthi B, Warner AS, Davis J, Littleton KR, Hernandez AM, Fanelli RR, Lanier A, Barbato C, Ackerman RJ, Khan SQ, Bui R, Garber L, Stolerman ES, Moore AF, Huang C, Kaur V, Harden M, Taylor A, Chen L, Manning AK, Huang P, Wexler D, McCarthy RM, Lo J, Thomas MK, Grant RW, Goldfine A, Hudson MS, Florez JC (2015) The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS One 10:e0121553. https://doi.org/10.1371/journal.pone.0121553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Young LA, Buse JB, Weaver MA, Vu MB, Mitchell CM, Blakeney T, Grimm K, Rees J, Niblock F, Donahue KE, Monitor Trial Group (2017) Glucose self-monitoring in non-insulin-treated patients with type 2 diabetes in primary care settings: a randomized trial. JAMA Intern Med 177:920–929. https://doi.org/10.1001/jamainternmed.2017.1233

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wang J, Zgibor J, Matthews JT, Charron-Prochownik D, Sereika SM, Siminerio L (2012) Self-monitoring of blood glucose is associated with problem-solving skills in hyperglycemia and hypoglycemia. Diabetes Educ 38:207–218. https://doi.org/10.1177/0145721712440331

    Article  PubMed  Google Scholar 

  160. Wild SH, Hanley J, Lewis SC, McKnight JA, McCloughan LB, Padfield PL, Parker RA, Paterson M, Pinnock H, Sheikh A, McKinstry B (2016) Supported telemonitoring and glycemic control in people with type 2 diabetes: the Telescot diabetes pragmatic multicenter randomized controlled trial. PLoS Med 13:e1002098. https://doi.org/10.1371/journal.pmed.1002098

    Article  PubMed  PubMed Central  Google Scholar 

  161. Graham C (2017) Continuous glucose monitoring and global reimbursement: an update. Diabetes Technol Ther 19(S3):S60–S66. https://doi.org/10.1089/dia.2017.0096

    Article  PubMed  Google Scholar 

  162. Heinemann L, DeVries JH (2016) Reimbursement for continuous glucose monitoring. Diabetes Technol Ther 18(Suppl 2):S248–S252. https://doi.org/10.1089/dia.2015.0296

    Article  PubMed  Google Scholar 

  163. Rodbard D (2017) Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Ther 19(S3):S25–S37. https://doi.org/10.1089/dia.2017.0035

    Article  PubMed  CAS  Google Scholar 

  164. Turton W (2017) Nobody needs this silicon valley-made blood sugar tracker for ‘wellness’ and lifestyle. https://gizmodo.com/nobody-needs-this-silicon-valley-made-blood-sugar-track-1791564339?utm_medium=sharefromsite&utm_source=Gizmodo_twitter. Accessed 08 July 2017

  165. New sweat sensors for detecting low blood glucose levels and other conditions (2011) Medgadget. https://www.medgadget.com/2011/08/new-sweat-sensors-for-detecting-low-blood-glucose-levels-and-other-conditions.html. Accessed 27 June, 2017

  166. Bergenstal RM, Klonoff DC, Garg SK, Bode BW, Meredith M, Slover RH, Ahmann AJ, Welsh JB, Lee SW, Kaufman FR, ASPIRE In-Home Study Group (2013) Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med 369:224–232

    Article  CAS  PubMed  Google Scholar 

  167. Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, Kollman C, Kruger D, JB MG, Polonsky W, Toschi E, Wolpert H, Price D, DIAMOND Study Group (2017) Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 317:371–378. https://doi.org/10.1001/jama.2016.19975

    Article  CAS  PubMed  Google Scholar 

  168. A diabetes exchange activity. Type 2 diabetes management: a team approach to managing hypoglycemia, comorbidities, and patient challenges. http://rockpointe.com/grandrounds/3476T2DM/. Accessed 22 July 2017

  169. Stanisstreet D, Walden E, Jones C, Graveling A (2010) The hospital management of hypoglycaemia in adults with diabetes mellitus. http://www.diabetologists-abcd.org.uk/JBDS/JBDS_IP_Hypo_Adults.pdf. Accessed 22 July 2017

  170. Korytkowski M (2007) Hypoglycemia and the rapid response team. http://rapidresponsesystems.org/Pittsburgh2007/downloads/Korytkowski.pdf. Accessed on 22 July 2017

  171. Rodriguez A, Magee M, Ramos P, Seley JJ, Nolan A, Kulasa K, Caudell KA, Lamb A, MacIndoe J, Maynard G (2014) Best practices for interdisciplinary care management by hospital glycemic teams: results of a Society of Hospital Medicine Survey among 19 U.S. hospitals. Diabetes Spectr 27:197–206. https://doi.org/10.2337/diaspect.27.3.197

    Article  PubMed  PubMed Central  Google Scholar 

  172. American Association for Diabetic Educators (2016) Role of the diabetes educator in inpatient diabetes management. Position Statement. https://www.diabeteseducator.org/docs/default-source/default-document-library/role-of-the-diabetes-educator-in-inpatient-diabetes-management.pdf?sfvrsn=0. Accessed on 22 July 2017

Download references

Acknowledgements

This review article was written in a framework of projects supported, in part, by the Russian Science Foundation (#17-15-01111) and by the Ministry of Education and Science of the Russian Federation (#4.8192.2017) (to MS and YA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Anfinogenova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anfinogenova, Y., Grakova, E.V., Shvedova, M. et al. Interdisciplinary approach to compensation of hypoglycemia in diabetic patients with chronic heart failure. Heart Fail Rev 23, 481–497 (2018). https://doi.org/10.1007/s10741-017-9647-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9647-y

Keywords

Navigation