Skip to main content

Advertisement

Log in

MicroRNAs, heart failure, and aging: potential interactions with skeletal muscle

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview of miRNA alterations in skeletal muscle during the ubiquitous process of aging and perspectives on miRNA interactions during heart failure are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391(1):73–77. doi:10.1016/j.bbrc.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  2. Akat KM, Moore-McGriff D, Morozov P, Brown M, Gogakos T, Correa Da Rosa J, Mihailovic A, Sauer M, Ji R, Ramarathnam A, Totary-Jain H, Williams Z, Tuschl T, Schulze PC (2014) Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci USA 111(30):11151–11156. doi:10.1073/pnas.1401724111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aoi W, Sakuma K (2014) Does regulation of skeletal muscle function involve circulating microRNAs? Front Physiol 5:39. doi:10.3389/fphys.2014.00039

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Munoz-Canoves P (2012) PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 196(1):163–175. doi:10.1083/jcb.201105013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008. doi:10.1073/pnas.1019055108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124(5):2136–2146. doi:10.1172/JCI70577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  8. Bi S, Wang C, Jin Y, Lv Z, Xing X, Lu Q (2015) Correlation between serum exosome derived miR-208a and acute coronary syndrome. Int J Clin Exp Med 8(3):4275–4280

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boeckel J-N, Reis SM, Leistner D, Thome CE, Zeiher AM, Fichtlscherer S, Keller T (2015) From heart to toe: Heart’s contribution on peripheral microRNA levels. Int J Cardiol 172(3):616–617

    Article  Google Scholar 

  10. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115(3):163–169. doi:10.1159/000268088

    Article  CAS  PubMed  Google Scholar 

  12. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966. doi:10.1261/rna.7135204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cakmak HA, Coskunpinar E, Ikitimur B, Barman HA, Karadag B, Tiryakioglu NO, Kahraman K, Vural VA (2015) The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown) 16(6):431–437. doi:10.2459/JCM.0000000000000233

    Article  CAS  Google Scholar 

  14. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. doi:10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  15. Cederholm T, Morley JE (2015) Sarcopenia: the new definitions. Curr Opin Clin Nutr Metab Care 18(1):1–4. doi:10.1097/MCO.0000000000000119

    Article  PubMed  Google Scholar 

  16. Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA (1994) Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J 72(2 Suppl):S36–S39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen S, Bigazzi PE, Yoshida T (1974) Commentary. Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol 12(1):150–159

    Article  CAS  PubMed  Google Scholar 

  18. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506. doi:10.1161/CIRCGENETICS.110.957415

    Article  PubMed  Google Scholar 

  19. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi:10.1093/eurheartj/ehq167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492–1526. doi:10.1089/ars.2011.4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danowski N, Manthey I, Jakob HG, Siffert W, Peters J, Frey UH (2013) Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology 125(2):125–130. doi:10.1159/000348563

    Article  CAS  PubMed  Google Scholar 

  22. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM (2011) High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 110(2):309–317. doi:10.1152/japplphysiol.00901.2010

    Article  PubMed  Google Scholar 

  23. De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124(18):1936–1944. doi:10.1161/CIRCULATIONAHA.111.037572

    Article  PubMed  CAS  Google Scholar 

  24. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K (2012) Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 93(4):633–644. doi:10.1093/cvr/cvs007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doroudgar S, Glembotski CC (2011) The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med 17(4):207–214. doi:10.1016/j.molmed.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85(5):1751–1759

    Article  CAS  PubMed  Google Scholar 

  27. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB (2008) Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab 295(6):E1333–E1340. doi:10.1152/ajpendo.90562.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603. doi:10.1152/physiolgenomics.00148.2010

    Article  CAS  PubMed  Google Scholar 

  29. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178, 176p following 178. doi:10.1161/CIRCRESAHA.108.182535

  30. Dumonde DC, Wolstencroft RA, Panayi GS, Matthew M, Morley J, Howson WT (1969) “Lymphokines”: non-antibody mediators of cellular immunity generated by lymphocyte activation. Nature 224(5214):38–42

    Article  CAS  PubMed  Google Scholar 

  31. Eitel I, Adams V, Dieterich P, Fuernau G, de Waha S, Desch S, Schuler G, Thiele H (2012) Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J 164(5):706–714. doi:10.1016/j.ahj.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  32. Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G (2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120(23):2377–2385. doi:10.1161/CIRCULATIONAHA.109.879429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM (2015) Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med 13:314. doi:10.1186/s12967-015-0672-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: Is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33(3):114–119

    Article  PubMed  Google Scholar 

  35. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684. doi:10.1161/CIRCRESAHA.109.215566

    Article  CAS  PubMed  Google Scholar 

  36. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775(1):181–232. doi:10.1016/j.bbcan.2006.10.001

    CAS  PubMed  Google Scholar 

  37. Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Coute Y, Rome S (2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: A new paradigm for myoblast-myotube cross talk? PLoS ONE 9(1):e84153. doi:10.1371/journal.pone.0084153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H, Rome S (2014) Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 13(1):78–89. doi:10.4161/cc.26808

    Article  CAS  PubMed  Google Scholar 

  39. Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28(4):1654–1665. doi:10.1096/fj.13-239426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21(1):76–80. doi:10.1038/nm.3710

    Article  CAS  PubMed  Google Scholar 

  41. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7(3):e30679. doi:10.1371/journal.pone.0030679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, Diez-Juan A, Sepulveda P (2015) Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS ONE 10(9):e0138849. doi:10.1371/journal.pone.0138849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Genneback N, Hellman U, Malm L, Larsson G, Ronquist G, Waldenstrom A, Morner S (2013) Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles. doi:10.3402/jev.v2i0.20167

    PubMed  PubMed Central  Google Scholar 

  44. Godnic I, Zorc M, Jevsinek Skok D, Calin GA, Horvat S, Dovc P, Kovac M, Kunej T (2013) Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS ONE 8(6):e65165. doi:10.1371/journal.pone.0065165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldraich LA, Martinelli NC, Matte U, Cohen C, Andrades M, Pimentel M, Biolo A, Clausell N, Rohde LE (2014) Transcoronary gradient of plasma microRNA 423-5p in heart failure: evidence of altered myocardial expression. Biomarkers 19(2):135–141. doi:10.3109/1354750X.2013.870605

    Article  CAS  PubMed  Google Scholar 

  46. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14(2):147–154. doi:10.1093/eurjhf/hfr155

    Article  CAS  PubMed  Google Scholar 

  47. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240. doi:10.1038/nature03120

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144. doi:10.1093/nar/gkj112

    Article  CAS  Google Scholar 

  49. Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):H3052–H3056. doi:10.1152/ajpheart.01355.2006

    Article  CAS  PubMed  Google Scholar 

  50. Han H, Qu G, Han C, Wang Y, Sun T, Li F, Wang J, Luo S (2015) MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med 47:e138. doi:10.1038/emm.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901. doi:10.1016/j.cell.2006.03.043

    Article  CAS  PubMed  Google Scholar 

  52. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD (2010) Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121(3):419–425. doi:10.1161/CIRCULATIONAHA.109.882068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ho KK, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4):6A–13A

    Article  CAS  PubMed  Google Scholar 

  54. Huang MB, Xu H, Xie SJ, Zhou H, Qu LH (2011) Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE 6(12):e29173. doi:10.1371/journal.pone.0029173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31(3):367–373. doi:10.1152/physiolgenomics.00144.2007

    Article  CAS  PubMed  Google Scholar 

  56. Ikeda S, Pu WT (2010) Expression and function of microRNAs in heart disease. Curr Drug Targets 11(8):913–925

    Article  CAS  PubMed  Google Scholar 

  57. Kaminsky LA, Tuttle MS (2015) Functional assessment of heart failure patients. Heart Fail Clin 11(1):29–36. doi:10.1016/j.hfc.2014.08.002

    Article  PubMed  Google Scholar 

  58. Khanabdali R, Rosdah AA, Dusting GJ, Lim SY (2016) Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol. doi:10.1016/j.bcp.2016.02.012

    PubMed  Google Scholar 

  59. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452. doi:10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13(1):39–53. doi:10.1111/j.1582-4934.2008.00556.x

    Article  CAS  PubMed  Google Scholar 

  61. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454. doi:10.1161/CIRCGENETICS.110.958975

    Article  CAS  PubMed  Google Scholar 

  62. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  63. Lai KB, Sanderson JE, Izzat MB, Yu CM (2015) Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int J Cardiol 199:79–83. doi:10.1016/j.ijcard.2015.07.043

    Article  PubMed  Google Scholar 

  64. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162–2167. doi:10.1016/j.cub.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  65. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862. doi:10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  66. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864. doi:10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  67. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  68. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liew CC, Dzau VJ (2004) Molecular genetics and genomics of heart failure. Nat Rev Genet 5(11):811–825. doi:10.1038/nrg1470

    Article  CAS  PubMed  Google Scholar 

  70. Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18(2):187–195

    Article  CAS  PubMed  Google Scholar 

  71. Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198. doi:10.1126/science.1121638

    Article  CAS  PubMed  Google Scholar 

  72. Marantz PR, Tobin JN, Wassertheil-Smoller S, Steingart RM, Wexler JP, Budner N, Lense L, Wachspress J (1988) The relationship between left ventricular systolic function and congestive heart failure diagnosed by clinical criteria. Circulation 77(3):607–612

    Article  CAS  PubMed  Google Scholar 

  73. Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW 2nd (2012) Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res 111(5):521–531. doi:10.1161/CIRCRESAHA.112.265736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, Dorn LE, Watson MA, Margulies KB, Dorn GW 2nd (2009) Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 119(9):1263–1271. doi:10.1161/CIRCULATIONAHA.108.813576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779(11):682–691. doi:10.1016/j.bbagrm.2008.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McCarthy JJ (2011) The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39(3):150–154. doi:10.1097/JES.0b013e31821c01e1

    Article  PubMed  PubMed Central  Google Scholar 

  77. McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102(1):306–313. doi:10.1152/japplphysiol.00932.2006

    Article  CAS  PubMed  Google Scholar 

  78. McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE (2009) Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39(3):219–226. doi:10.1152/physiolgenomics.00042.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Melman YF, Shah R, Das S (2014) MicroRNAs in heart failure: Is the picture becoming less miRky? Circ Heart Fail 7:203–214

    Article  PubMed  Google Scholar 

  80. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921. doi:10.1161/01.RES.0000147315.71699.51

    Article  CAS  PubMed  Google Scholar 

  81. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766. doi:10.1182/blood-2011-02-338004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL (2010) Structure and activity of putative intronic miRNA promoters. RNA 16(3):495–505. doi:10.1261/rna.1731910

    Article  PubMed  PubMed Central  Google Scholar 

  83. Naga Prasad SV, Duan ZH, Gupta MK, Surampudi VS, Volinia S, Calin GA, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM, Sen S, Wu Q, Plow EF, Croce CM, Karnik S (2009) Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 284(40):27487–27499. doi:10.1074/jbc.M109.036541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282. doi:10.1038/nrg3162

    CAS  PubMed  Google Scholar 

  85. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. doi:10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  86. Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, Trappe S (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112(10):1625–1636. doi:10.1152/japplphysiol.00435.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, Parnell LD, Fielding RA (2014) Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J 28(9):4133–4147. doi:10.1096/fj.14-254490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910. doi:10.1101/gr.2722704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P, Contaldi C, Saccani Jotti G, Franzone A, Galastri L, Latronico MV, Imbriaco M, Esposito G, De Windt L, Betocchi S, Condorelli G (2014) Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 63(9):920–927. doi:10.1016/j.jacc.2013.09.041

    Article  CAS  PubMed  Google Scholar 

  90. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M (2010) Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail 16(5):404–410. doi:10.1016/j.cardfail.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  91. Schipper ME, van Kuik J, de Jonge N, Dullens HF, de Weger RA (2008) Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. J Heart Lung Transpl 27(12):1282–1285. doi:10.1016/j.healun.2008.09.005

    Article  Google Scholar 

  92. Seeger T, Boon RA (2015) MicroRNAs in cardiovascular ageing. J Physiol. doi:10.1113/JP270557

    PubMed Central  Google Scholar 

  93. Seeger T, Haffez F, Fischer A, Koehl U, Leistner DM, Seeger FH, Boon RA, Zeiher AM, Dimmeler S (2013) Immunosenescence-associated microRNAs in age and heart failure. Eur J Heart Fail 15(4):385–393. doi:10.1093/eurjhf/hfs184

    Article  CAS  PubMed  Google Scholar 

  94. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13. doi:10.1186/gb-2004-5-3-r13

    Article  PubMed  PubMed Central  Google Scholar 

  95. Siracusa J, Koulmann N, Bourdon S, Goriot ME, Banzet S (2016) Circulating miRNAs as biomarkers of acute muscle damage in rats. Am J Pathol 186(5):1313–1327. doi:10.1016/j.ajpath.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  96. Slivka D, Raue U, Hollon C, Minchev K, Trappe S (2008) Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Integr Comp Physiol 295(1):R273–R280. doi:10.1152/ajpregu.00093.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30(4):859–868. doi:10.1161/ATVBAHA.109.197434

    Article  CAS  PubMed  Google Scholar 

  98. Small EM, O’Rourke JR, Moresi V, Sutherland LB, McAnally J, Gerard RD, Richardson JA, Olson EN (2010) Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci USA 107(9):4218–4223. doi:10.1073/pnas.1000300107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45(2):185–192. doi:10.1016/j.yjmcc.2008.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81(2):518–527

    Article  CAS  PubMed  Google Scholar 

  101. Sygitowicz G, Tomaniak M, Blaszczyk O, Koltowski L, Filipiak KJ, Sitkiewicz D (2015) Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis 108(12):634–642. doi:10.1016/j.acvd.2015.07.003

    Article  PubMed  Google Scholar 

  102. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267. doi:10.1161/CIRCULATIONAHA.107.687947

    Article  CAS  PubMed  Google Scholar 

  103. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233. doi:10.1093/nar/gkr254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  105. van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, Schellings MW, Swinnen M, Cleutjens JP, van Zandvoort MA, Heymans S, Schroen B (2011) MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10(5):769–779. doi:10.1111/j.1474-9726.2011.00714.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. van Rooij E, Liu N, Olson EN (2008) MicroRNAs flex their muscles. Trends Genet 24(4):159–166. doi:10.1016/j.tig.2008.01.007

    Article  PubMed  CAS  Google Scholar 

  107. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17(5):662–673. doi:10.1016/j.devcel.2009.10.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260. doi:10.1073/pnas.0608791103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579. doi:10.1126/science.1139089

    Article  PubMed  CAS  Google Scholar 

  110. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105(35):13027–13032. doi:10.1073/pnas.0805038105

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433. doi:10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Villar AV, Garcia R, Merino D, Llano M, Cobo M, Montalvo C, Martin-Duran R, Hurle MA, Nistal JF (2013) Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 167(6):2875–2881. doi:10.1016/j.ijcard.2012.07.021

    Article  PubMed  Google Scholar 

  113. von Haehling S (2015) The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc. doi:10.1017/S0029665115002438

    Google Scholar 

  114. Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE 7(4):e34653. doi:10.1371/journal.pone.0034653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi:10.1093/eurheartj/ehq013

    Article  PubMed  CAS  Google Scholar 

  116. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K, Thum T (2015) MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 17(4):405–415. doi:10.1002/ejhf.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T (2011) Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 51(5):872–875. doi:10.1016/j.yjmcc.2011.07.011

    Article  CAS  PubMed  Google Scholar 

  118. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  119. Xu Y, Zhu W, Sun Y, Wang Z, Yuan W, Du Z (2015) functional network analysis reveals versatile microRNAs in human heart. Cell Physiol Biochem 36:1628–1643

    Article  CAS  PubMed  Google Scholar 

  120. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016. doi:10.1101/gad.1158803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zacharewicz E, Della Gatta P, Reynolds J, Garnham A, Crowley T, Russell AP, Lamon S (2014) Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS ONE 9(12):e114009. doi:10.1371/journal.pone.0114009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Pond A, Grim-Stieger M, Cvecka J, Sedliak M, Tirpakova V, Mayr W, Sarabon N, Rossini K, Barberi L, De Rossi M, Romanello V, Boncompagni S, Musaro A, Sandri M, Protasi F, Carraro U, Kern H (2015) Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 70(2):163–173. doi:10.1093/gerona/glu006

    Article  CAS  PubMed  Google Scholar 

  123. Zhang H, Yang H, Zhang C, Jing Y, Wang C, Liu C, Zhang R, Wang J, Zhang J, Zen K, Zhang C, Li D (2015) Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci 70(1):102–109. doi:10.1093/gerona/glu145

    Article  CAS  PubMed  Google Scholar 

  124. Zhang T, Birbrair A, Wang ZM, Messi ML, Marsh AP, Leng I, Nicklas BJ, Delbono O (2015) Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol 62:7–13. doi:10.1016/j.exger.2014.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144. doi:10.1016/j.molcel.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  126. Zhuo R, Fu S, Li S, Yao M, Lv D, Xu T, Bei Y (2014) Desregulated microRNAs in aging-related heart failure. Front Genet 5:186. doi:10.3389/fgene.2014.00186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG (2011) Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet 4(6):614–619. doi:10.1161/CIRCGENETICS.111.959841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR061939 to J.J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. McCarthy.

Ethics declarations

Conflict of interest

Drs. Kevin A. Murach and John J. McCarthy have no conflicts of interest of financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murach, K.A., McCarthy, J.J. MicroRNAs, heart failure, and aging: potential interactions with skeletal muscle. Heart Fail Rev 22, 209–218 (2017). https://doi.org/10.1007/s10741-016-9572-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9572-5

Keywords

Navigation