Skip to main content
Log in

Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Assessment of left ventricular (LV) systolic function is the cornerstone of the echocardiographic examination. There are many echocardiographic parameters that can be used for clinical and research purposes, each one with its pros and cons. The LV ejection fraction is the most used one due to its feasibility and predictability, but it also has many limits, related to both the imaging technique used for calculation and to the definition itself. LV longitudinal function is expression of subendocardial fibers contraction. Because the subendocardium is often involved early in many pathological processes, its analysis has been a fertile field for the development of sensitive parameters. Longitudinal function can be evaluated in many ways, such as M-mode echocardiography, tissue Doppler imaging, and speckle tracking echocardiography. This latter is a relatively new tool to assess LV function through measurement of myocardial strain, with a high temporal and spatial resolution and a better inter- and intra-observer reproducibility compared to Doppler strain. It is angle independent, not affected by translation cardiac movements, and can assess simultaneously the entire myocardium along all the three-dimensional geometrical (longitudinal, circumferential, and radial) axes. Speckle tracking echocardiography also allows the analysis of LV torsion. The aim of this paper was to review the main echocardiographic parameters of LV systolic function and to describe its pros and cons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ho SY (2009) Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur J Echocardiogr 10:iii3–iii7

    Article  PubMed  Google Scholar 

  2. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W (2006) American Society of Echocardiography’s N, Standards C, Task Force on Chamber Q, American College of Cardiology Echocardiography C, American Heart A, European Association of Echocardiography ESoC. Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  3. Moss AJ (1983) Prognosis after myocardial infarction. Am J Cardiol 52:667–669

    Article  PubMed  CAS  Google Scholar 

  4. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) Guidelines ESCCfP. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  5. Task Force on the management of STseamiotESoC, Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di MarioC, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619

    Article  CAS  Google Scholar 

  6. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, Caso P, Dudek D, Gielen S, Huber K, Ohman M, Petrie MC, Sonntag F, Uva MS, Storey RF, Wijns W, Zahger D (2011) Guidelines ESCCfP. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 32:2999–3054

    Article  PubMed  Google Scholar 

  7. Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Iung B, Lancellotti P, Pierard L, Price S, Schafers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    Article  Google Scholar 

  8. Jensen-Urstad K, Bouvier F, Hojer J, Ruiz H, Hulting J, Samad B, Thorstrand C, Jensen-Urstad M (1998) Comparison of different echocardiographic methods with radionuclide imaging for measuring left ventricular ejection fraction during acute myocardial infarction treated by thrombolytic therapy. Am J Cardiol 81:538–544

    Article  PubMed  CAS  Google Scholar 

  9. Marwick TH (2003) Techniques for comprehensive two dimensional echocardiographic assessment of left ventricular systolic function. Heart 89(Suppl 3):iii2–iii8

    PubMed  PubMed Central  Google Scholar 

  10. Lang RM, Borow KM, Neumann A, Janzen D (1986) Systemic vascular resistance: an unreliable index of left ventricular afterload. Circulation 74:1114–1123

    Article  PubMed  CAS  Google Scholar 

  11. Quinones MA, Waggoner AD, Reduto LA, Nelson JG, Young JB, Winters WL Jr, Ribeiro LG, Miller RR (1981) A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation 64:744–753

    Article  PubMed  CAS  Google Scholar 

  12. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37:7–11

    Article  PubMed  CAS  Google Scholar 

  13. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 59:1799–1808

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zaca V, Ballo P, Galderisi M, Mondillo S (2010) Echocardiography in the assessment of left ventricular longitudinal systolic function: current methodology and clinical applications. Heart Fail Rev 15:23–37

    Article  PubMed  Google Scholar 

  15. Mele D, Campana M, Sclavo M, Seveso G, Aschieri D, Nesta F, D’Aiello I, Ferrari R, Levine RA (2003) Impact of tissue harmonic imaging in patients with distorted left ventricles: improvement in accuracy and reproducibility of visual, manual and automated echocardiographic assessment of left ventricular ejection fraction. Eur J Echocardiogr 4:59–67

    Article  PubMed  CAS  Google Scholar 

  16. Gopal AS, Shen Z, Sapin PM, Keller AM, Schnellbaecher MJ, Leibowitz DW, Akinboboye OO, Rodney RA, Blood DK, King DL (1995) Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation 92:842–853

    Article  PubMed  CAS  Google Scholar 

  17. Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44:878–886

    Article  PubMed  Google Scholar 

  18. Nikitin NP, Constantin C, Loh PH, Ghosh J, Lukaschuk EI, Bennett A, Hurren S, Alamgir F, Clark AL, Cleland JG (2006) New generation 3-dimensional echocardiography for left ventricular volumetric and functional measurements: comparison with cardiac magnetic resonance. Eur J Echocardiogr 7:365–372

    Article  PubMed  Google Scholar 

  19. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, Gerard O, Allain P, Zamorano JL, de Isla LP, Mor-Avi V, Lang RM (2006) Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 27:460–468

    Article  PubMed  Google Scholar 

  20. Mor-Avi V, Sugeng L, Lang RM (2009) Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation 119:314–329

    Article  PubMed  Google Scholar 

  21. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH (2009) Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 30:98–106

    Article  PubMed  Google Scholar 

  22. Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick T, Franke A, Ebner C, Freed BH, Steringer-Mascherbauer R, Pollard H, Weinert L, Niel J, Sugeng L, Lang RM (2008) Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging 1:413–423

    Article  PubMed  Google Scholar 

  23. Mele D (2012) Left ventricular ejection fraction: pathophysiological aspects and intrinsic limitations. G Ital Cardiol 13:793–808

    Google Scholar 

  24. Rhodes J, Udelson JE, Marx GR, Schmid CH, Konstam MA, Hijazi ZM, Bova SA, Fulton DR (1993) A new noninvasive method for the estimation of peak dP/dt. Circulation 88:2693–2699

    Article  PubMed  CAS  Google Scholar 

  25. Nishimura RA, Tajik AJ (1988) Determination of left-sided pressure gradients by utilizing Doppler aortic and mitral regurgitant signals: validation by simultaneous dual catheter and Doppler studies. J Am Coll Cardiol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  26. Chen C, Rodriguez L, Guerrero JL, Marshall S, Levine RA, Weyman AE, Thomas JD (1991) Noninvasive estimation of the instantaneous first derivative of left ventricular pressure using continuous-wave Doppler echocardiography. Circulation 83:2101–2110

    Article  PubMed  CAS  Google Scholar 

  27. Bargiggia GS, Bertucci C, Recusani F, Raisaro A, de Servi S, Valdes-Cruz LM, Sahn DJ, Tronconi L (1989) A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation 80:1287–1292

    Article  PubMed  CAS  Google Scholar 

  28. Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, Tajik AJ, Seward JB (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol 26:357–366

    PubMed  CAS  Google Scholar 

  29. Lakoumentas JA, Panou FK, Kotseroglou VK, Aggeli KI, Harbis PK (2005) The Tei index of myocardial performance: applications in cardiology. Hell J Cardiol 46:52–58

    Google Scholar 

  30. Eto G, Ishii M, Tei C, Tsutsumi T, Akagi T, Kato H (1999) Assessment of global left ventricular function in normal children and in children with dilated cardiomyopathy. J Am Soc Echocardiogr 12:1058–1064

    Article  PubMed  CAS  Google Scholar 

  31. Tei C, Nishimura RA, Seward JB, Tajik AJ (1997) Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 10:169–178

    Article  PubMed  CAS  Google Scholar 

  32. Dujardin KS, Tei C, Yeo TC, Hodge DO, Rossi A, Seward JB (1998) Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am J Cardiol 82:1071–1076

    Article  PubMed  CAS  Google Scholar 

  33. St John Sutton M, Wiegers SE (2000) The Tei index—a role in the diagnosis of heart failure? Eur Heart J 21:1822–1824

    Article  PubMed  CAS  Google Scholar 

  34. Harjai KJ, Scott L, Vivekananthan K, Nunez E, Edupuganti R (2002) The Tei index: a new prognostic index for patients with symptomatic heart failure. J Am Soc Echocardiogr 15:864–868

    Article  PubMed  Google Scholar 

  35. Ascione L, De Michele M, Accadia M, Rumolo S, Damiano L, D’Andrea A, Guarini P, Tuccillo B (2003) Myocardial global performance index as a predictor of in-hospital cardiac events in patients with first myocardial infarction. J Am Soc Echocardiogr 16:1019–1023

    Article  PubMed  Google Scholar 

  36. Haque A, Otsuji Y, Yoshifuku S, Kumanohoso T, Zhang H, Kisanuki A, Minagoe S, Sakata R, Tei C (2002) Effects of valve dysfunction on Doppler Tei index. J Am Soc Echocardiogr 15:877–883

    Article  PubMed  Google Scholar 

  37. Moller JE, Poulsen SH, Egstrup K (1999) Effect of preload alternations on a new Doppler echocardiographic index of combined systolic and diastolic performance. J Am Soc Echocardiogr 12:1065–1072

    Article  PubMed  CAS  Google Scholar 

  38. Karatzis EN, Giannakopoulou AT, Papadakis JE, Karazachos AV, Nearchou NS (2009) Myocardial performance index (Tei index): evaluating its application to myocardial infarction. Hell J Cardiol 50:60–65

    Google Scholar 

  39. Carlsson M, Ugander M, Mosen H, Buhre T, Arheden H (2007) Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 292:H1452–H1459

    Article  PubMed  CAS  Google Scholar 

  40. Yuda S, Inaba Y, Fujii S, Kokubu N, Yoshioka T, Sakurai S, Nishizato K, Fujii N, Hashimoto A, Uno K, Nakata T, Tsuchihashi K, Miura T, Ura N, Natori H, Shimamoto K (2006) Assessment of left ventricular ejection fraction using long-axis systolic function is independent of image quality: a study of tissue Doppler imaging and m-mode echocardiography. Echocardiography 23:846–852

    Article  PubMed  Google Scholar 

  41. Simonson JS, Schiller NB (1989) Descent of the base of the left ventricle: an echocardiographic index of left ventricular function. J Am Soc Echocardiogr 2:25–35

    Article  PubMed  CAS  Google Scholar 

  42. Alam M, Hoglund C, Thorstrand C, Philip A (1990) Atrioventricular plane displacement in severe congestive heart failure following dilated cardiomyopathy or myocardial infarction. J Intern Med 228:569–575

    Article  PubMed  CAS  Google Scholar 

  43. Mondillo S, Galderisi M, Ballo P, Marino PN (2006) Study Group of Echocardiography of the Italian Society of C. Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 19:1085–1091

    Article  PubMed  Google Scholar 

  44. Petrie MC, Caruana L, Berry C, McMurray JJ (2002) “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction? Heart 87:29–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Koulouris SN, Kostopoulos KG, Triantafyllou KA, Karabinos I, Bouki TP, Karvounis HI, Omran H, Filippatos G, Kranidis AI (2005) Impaired systolic dysfunction of left ventricular longitudinal fibers: a sign of early hypertensive cardiomyopathy. Clin Cardiol 28:282–286

    Article  PubMed  Google Scholar 

  46. Takeda S, Rimington H, Smeeton N, Chambers J (2001) Long axis excursion in aortic stenosis. Heart 86:52–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Ballo P, Quatrini I, Giacomin E, Motto A, Mondillo S (2007) Circumferential versus longitudinal systolic function in patients with hypertension: a nonlinear relation. J Am Soc Echocardiogr 20:298–306

    Article  PubMed  Google Scholar 

  48. Willenheimer R, Cline C, Erhardt L, Israelsson B (1997) Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. Heart 78:230–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rydberg E, Erhardt L, Brand B, Willenheimer R (2003) Left atrioventricular plane displacement determined by echocardiography: a clinically useful, independent predictor of mortality in patients with stable coronary artery disease. J Intern Med 254:479–485

    Article  PubMed  CAS  Google Scholar 

  50. Rydberg E, Arlbrandt M, Gudmundsson P, Erhardt L, Willenheimer R (2003) Left atrioventricular plane displacement predicts cardiac mortality in patients with chronic atrial fibrillation. Int J Cardiol 91:1–7

    Article  PubMed  Google Scholar 

  51. Sundblad P, Wranne B (2002) Influence of posture on left ventricular long- and short-axis shortening. Am J Physiol Heart Circ Physiol 283:H1302–H1306

    Article  PubMed  CAS  Google Scholar 

  52. Emilsson K, Wandt B (2000) The relation between ejection fraction and mitral annulus motion before and after direct-current electrical cardioversion. Clin Physiol 20:218–224

    Article  PubMed  CAS  Google Scholar 

  53. Galderisi M, Nistri S, Ansalone G, Dini FL, Di Salvo G, Gallina S, Mele D, Montisci R, Sciomer S, Mondillo S, Di Bello V, Marino PN (2007) Gruppo di Studio di Ecocardiografia della Societa Italiana di C (Pulsed tissue Doppler illustrated to a resident in cardiology). G Ital Cardiol 8:92–101

    Google Scholar 

  54. Thomas JD, Popovic ZB (2006) Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 48:2012–2025

    Article  PubMed  Google Scholar 

  55. Ha JW, Ommen SR, Tajik AJ, Barnes ME, Ammash NM, Gertz MA, Seward JB, Oh JK (2004) Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol 94:316–319

    Article  PubMed  Google Scholar 

  56. Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA, Doppler Quantification Task Force of the N, Standards Committee of the American Society of E (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification task force of the nomenclature and standards committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15:167–184

    Article  PubMed  Google Scholar 

  57. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  PubMed  CAS  Google Scholar 

  58. Borges MC, Colombo RC, Goncalves JG (2006) Ferreira Jde O, Franchini KG. Longitudinal mitral annulus velocities are reduced in hypertensive subjects with or without left ventricle hypertrophy. Hypertension 47:854–860

    Article  PubMed  CAS  Google Scholar 

  59. Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R, Marian AJ (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104:128–130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Sokmen G, Sokmen A, Duzenli A, Soylu A, Ozdemir K (2007) Assessment of myocardial velocities and global function of the left ventricle in asymptomatic patients with moderate-to-severe chronic aortic regurgitation: a tissue Doppler echocardiographic study. Echocardiography 24:609–614

    Article  PubMed  Google Scholar 

  61. Koyama J, Ray-Sequin PA, Davidoff R, Falk RH (2002) Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am J Cardiol 89:1067–1071

    Article  PubMed  Google Scholar 

  62. Dandel M, Wellnhofer E, Hummel M, Meyer R, Lehmkuhl H, Hetzer R (2003) Early detection of left ventricular dysfunction related to transplant coronary artery disease. J Heart Lung Transpl 22:1353–1364

    Article  Google Scholar 

  63. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110:3081–3087

    Article  PubMed  Google Scholar 

  64. Cardim N, Cordeiro R, Correia MJ, Gomes E, Longo S, Ferreira T, Pereira A, Gouveia A, Reis RP, Correia JM (2002) Tissue Doppler imaging and long axis left ventricular function: hypertrophic cardiomyopathy versus athlete’s heart. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia. Port J Cardiol 21:679–707

    Google Scholar 

  65. Citro R, Galderisi M (2005) Myocardial postsystolic motion in ischemic and not ischemic myocardium: the clinical value of tissue Doppler. Echocardiography 22:525–532

    Article  PubMed  Google Scholar 

  66. Galderisi M, Cicala S, Sangiorgi G, Caso P, de Divitiis O (2002) Tissue Doppler-derived postsystolic motion in a patient with left bundle branch block: a sign of myocardial wall asynchrony. Echocardiography 19:79–81

    Article  PubMed  Google Scholar 

  67. Pislaru C, Belohlavek M, Bae RY, Abraham TP, Greenleaf JF, Seward JB (2001) Regional asynchrony during acute myocardial ischemia quantified by ultrasound strain rate imaging. J Am Coll Cardiol 37:1141–1148

    Article  PubMed  CAS  Google Scholar 

  68. Jamal F, Kukulski T, Strotmann J, Szilard M, D’Hooge J, Bijnens B, Rademakers F, Hatle L, De Scheerder I, Sutherland GR (2001) Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closed chest pigs: an ultrasonic strain rate and strain study. J Am Soc Echocardiogr 14:874–884

    Article  PubMed  CAS  Google Scholar 

  69. Okuda K, Asanuma T, Hirano T, Masuda K, Otani K, Ishikura F, Beppu S (2006) Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr 19:781–787

    Article  PubMed  Google Scholar 

  70. Asanuma T, Nakatani S (2015) Myocardial ischaemia and post-systolic shortening. Heart 101:509–516

    Article  PubMed  Google Scholar 

  71. Pislaru C, Anagnostopoulos PC, Seward JB, Greenleaf JF, Belohlavek M (2002) Higher myocardial strain rates during isovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. J Am Coll Cardiol 40:1487–1494

    Article  PubMed  Google Scholar 

  72. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, Platsch G, Kuwert T, Daniel WG, Flachskampf FA (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126

    Article  PubMed  Google Scholar 

  73. Claus P, Weidemann F, Dommke C, Bito V, Heinzel FR, D’Hooge J, Sipido KR, Sutherland GR, Bijnens B (2007) Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modelling and comparison with experimental ischemic substrates. Ultrasound Med Biol 33:1963–1970

    Article  PubMed  Google Scholar 

  74. Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, Nixdorff U, Flachskampf FA, Daniel WG (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423

    Article  PubMed  Google Scholar 

  75. Asanuma T, Fukuta Y, Masuda K, Hioki A, Iwasaki M, Nakatani S (2012) Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC Cardiovasc Imagi 5:1–11

    Article  Google Scholar 

  76. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, Ballo P, D’Andrea A, Muraru D, Losi M, Agricola E, D’Errico A, Buralli S, Sciomer S, Nistri S, Badano L (2011) Echocardiography study group of the Italian society of C. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med 30:71–83

    PubMed  Google Scholar 

  77. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima JA, Smiseth OA, Slordahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  78. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1:154–170

    Article  PubMed  Google Scholar 

  79. van Dalen BM, Soliman OI, Vletter WB, Kauer F, van der Zwaan HB, ten Cate FJ, Geleijnse ML (2009) Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography. Eur J Echocardiogr 10:669–676

    Article  PubMed  Google Scholar 

  80. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  81. Teske AJ, De Boeck BW, Melman PG, Sieswerda GT, Doevendans PA, Cramer MJ (2007) Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imag 2:356–364

    Article  Google Scholar 

  83. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54:618–624

    Article  PubMed  Google Scholar 

  84. Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, Monin JL, Rande JL, Gueret P, Lim P (2010) Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imag 3:249–256

    Article  Google Scholar 

  85. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy—a systematic review. J Am Coll Cardiol 63(25 Pt A):2751–2768

    Article  PubMed  Google Scholar 

  86. Gjesdal O, Hopp E, Vartdal T, Lunde K, Helle-Valle T, Aakhus S, Smith HJ, Ihlen H, Edvardsen T (2007) Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci 113:287–296

    Article  PubMed  Google Scholar 

  87. Woo JS, Kim WS, Yu TK, Ha SJ, Kim SY, Bae JH, Kim KS (2011) Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction. Am J Cardiol 108:340–347

    Article  PubMed  Google Scholar 

  88. Perk G, Tunick PA, Kronzon I (2007) Non-Doppler two-dimensional strain imaging by echocardiography–from technical considerations to clinical applications. J Am Soc Echocardiogr 20:234–243

    Article  PubMed  Google Scholar 

  89. Sjoli B, Orn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imag 2:24–33

    Article  Google Scholar 

  90. Vartdal T, Brunvand H, Pettersen E, Smith HJ, Lyseggen E, Helle-Valle T, Skulstad H, Ihlen H, Edvardsen T (2007) Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion. J Am Coll Cardiol 49:1715–1721

    Article  PubMed  Google Scholar 

  91. Winter R, Jussila R, Nowak J, Brodin LA (2007) Speckle tracking echocardiography is a sensitive tool for the detection of myocardial ischemia: a pilot study from the catheterization laboratory during percutaneous coronary intervention. J Am Soc Echocardiogr 20:974–981

    Article  PubMed  Google Scholar 

  92. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA, Bleeker GB, Schalij MJ, Bax JJ (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51:1944–1952

    Article  PubMed  Google Scholar 

  93. Mele D (2010) Speckle tracking echocardiography for cardiac resynchronization therapy: has the right ultrasound technique finally been found? J Am Soc Echocardiogr 23:190–194

    Article  PubMed  Google Scholar 

  94. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, Cleland J, Deharo JC, Delgado V, Elliott PM, Gorenek B, Israel CW, Leclercq C, Linde C, Mont L, Padeletti L, Sutton R, Vardas PE, Guidelines ESCCFP, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Document R, Kirchhof P, Blomstrom-Lundqvist C, Badano LP, Aliyev F, Bansch D, Baumgartner H, Bsata W, Buser P, Charron P, Daubert JC, Dobreanu D, Faerestrand S, Hasdai D, Hoes AW, Le Heuzey JY, Mavrakis H, McDonagh T, Merino JL, Nawar MM, Nielsen JC, Pieske B, Poposka L, Ruschitzka F, Tendera M, Van Gelder IC, Wilson CM (2013) ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 34:2281–2329

    Article  PubMed  Google Scholar 

  95. Nucci EM, Lisi M, Cameli M, Baldi L, Puccetti L, Mondillo S, Favilli R, Lunghetti S (2014) The role of 3D and speckle tracking echocardiography in cardiac amyloidosis: a case report. Eur Rev Med Pharmacol Sci 18:74–77

    PubMed  CAS  Google Scholar 

  96. Hsiao JF, Koshino Y, Bonnichsen CR, Yu Y, Miller FA Jr, Pellikka PA, Cooper LT Jr, Villarraga HR (2013) Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imag 29:275–284

    Article  Google Scholar 

  97. He XW, Song ZZ (2013) Evaluation of left ventricular function, rotation, twist and untwist in patients with hypertrophic cardiomyopathy. Exp Clin Cardiol 18:e47–e49

    PubMed  PubMed Central  Google Scholar 

  98. Aly MF, Brouwer WP, Kleijn SA, van Rossum AC, Kamp O (2014) Three-dimensional speckle tracking echocardiography for the preclinical diagnosis of hypertrophic cardiomyopathy. Int J Cardiovasc Imag 30:523–533

    Article  Google Scholar 

  99. Ingul CB, Stoylen A, Slordahl SA, Wiseth R, Burgess M, Marwick TH (2007) Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J Am Coll Cardiol 49:1651–1659

    Article  PubMed  Google Scholar 

  100. Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, Tanabe K, Nakatani S, Investigators J (2012) Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J 76:2623–2632

    Article  PubMed  Google Scholar 

  101. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J 3rd (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113:960–968

    Article  PubMed  Google Scholar 

  102. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369; quiz 453–355

  103. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  104. Zghal F, Bougteb H, Reant P, Lafitte S, Roudaut R (2011) Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography 28:978–982

    Article  PubMed  Google Scholar 

  105. Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr 11:176–183

    Article  PubMed  Google Scholar 

  106. Tanaka H, Tatsumi K, Matsumoto K, Kawai H, Hirata K (2013) Emerging role of three-dimensional speckle tracking strain for accurate quantification of left ventricular dyssynchrony. Echocardiography 30:E292–E295

    PubMed  Google Scholar 

  107. Nesser HJ, Winter S (2009) Speckle tracking in the evaluation of left ventricular dyssynchrony. Echocardiography 26:324–336

    Article  PubMed  Google Scholar 

  108. Langeland S, D’Hooge J, Torp H, Bijnens B, Suetens P (2003) Comparison of time-domain displacement estimators for two-dimensional RF tracking. Ultrasound Med Biol 29:1177–1186

    Article  PubMed  CAS  Google Scholar 

  109. Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, Bucker A, Hanrath P, Hoffmann R (2006) Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 92:1102–1108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Artis NJ, Oxborough DL, Williams G, Pepper CB, Tan LB (2008) Two-dimensional strain imaging: a new echocardiographic advance with research and clinical applications. Int J Cardiol 123:240–248

    Article  PubMed  CAS  Google Scholar 

  111. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    Article  PubMed  Google Scholar 

  112. Lorenz CH, Pastorek JS, Bundy JM (2000) Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2:97–108

    Article  PubMed  CAS  Google Scholar 

  113. Wu MT, Tseng WY, Su MY, Liu CP, Chiou KR, Wedeen VJ, Reese TG, Yang CF (2006) Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation 114:1036–1045

    Article  PubMed  Google Scholar 

  114. Arts T, Reneman RS (1989) Dynamics of left ventricular wall and mitral valve mechanics–a model study. J Biomech 22:261–271

    Article  PubMed  CAS  Google Scholar 

  115. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, Rosen BD, Lima JA, Torp H, Ihlen H, Smiseth OA (2005) New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  116. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45:2034–2041

    Article  PubMed  Google Scholar 

  117. Hui L, Pemberton J, Hickey E, Li XK, Lysyansky P, Ashraf M, Niemann PS, Sahn DJ (2007) The contribution of left ventricular muscle bands to left ventricular rotation: assessment by a 2-dimensional speckle tracking method. J Am Soc Echocardiogr 20:486–491

    Article  PubMed  PubMed Central  Google Scholar 

  118. Burns AT, McDonald IG, Thomas JD, Macisaac A, Prior D (2008) Doin’ the twist: new tools for an old concept of myocardial function. Heart 94:978–983

    Article  PubMed  CAS  Google Scholar 

  119. Esch BT, Warburton DE (2009) Left ventricular torsion and recoil: implications for exercise performance and cardiovascular disease. J Appl Physiol 106:362–369

    Article  PubMed  Google Scholar 

  120. Burns AT, La Gerche A, MacIsaac AI, Prior DL (2008) Augmentation of left ventricular torsion with exercise is attenuated with age. J Am Soc Echocardiogr 21:315–320

    Article  PubMed  Google Scholar 

  121. Lumens J, Delhaas T, Arts T, Cowan BR, Young AA (2006) Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol Heart Circ Physiol 291:H1573–H1579

    Article  PubMed  CAS  Google Scholar 

  122. Kroeker CA, Tyberg JV, Beyar R (1995) Effects of ischemia on left ventricular apex rotation. An experimental study in anesthetized dogs. Circulation 92:3539–3548

    Article  PubMed  CAS  Google Scholar 

  123. Cameli M, Lisi M, Righini FM, Massoni A, Mondillo S (2013) Left ventricular remodeling and torsion dynamics in hypertensive patients. Int J Cardiovasc Imag 29:79–86

    Article  Google Scholar 

  124. Fonseca CG, Dissanayake AM, Doughty RN, Whalley GA, Gamble GD, Cowan BR, Occleshaw CJ, Young AA (2004) Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol 94:1391–1395

    Article  PubMed  Google Scholar 

  125. Chung J, Abraszewski P, Yu X, Liu W, Krainik AJ, Ashford M, Caruthers SD, McGill JB, Wickline SA (2006) Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J Am Coll Cardiol 47:384–390

    Article  PubMed  Google Scholar 

  126. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2007) Left ventricular untwisting rate by speckle tracking echocardiography. Circulation 116:2580–2586

    Article  PubMed  Google Scholar 

  127. Fuchs E, Muller MF, Oswald H, Thony H, Mohacsi P, Hess OM (2004) Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail 6:715–722

    Article  PubMed  Google Scholar 

  128. Dong SJ, Hees PS, Huang WM, Buffer SA Jr, Weiss JL, Shapiro EP (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277:H1053–H1060

    PubMed  CAS  Google Scholar 

  129. Cameli M, Ballo P, Righini FM, Caputo M, Lisi M, Mondillo S (2011) Physiologic determinants of left ventricular systolic torsion assessed by speckle tracking echocardiography in healthy subjects. Echocardiography 28:641–648

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cameli.

Ethics declarations

Conflict of interest

None.

Additional information

On behalf of Gruppo di Studio Ecocardiografia of the Società Italiana di Cardiologia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameli, M., Mondillo, S., Solari, M. et al. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev 21, 77–94 (2016). https://doi.org/10.1007/s10741-015-9521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9521-8

Keywords

Navigation