Skip to main content
Log in

RV diastolic dysfunction: time to re-evaluate its importance in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Right ventricular (RV) diastolic dysfunction was first reported as an indicator for the assessment of ventricular dysfunction in heart failure a little over two decades ago. However, the underlying mechanisms and precise role of RV diastolic dysfunction in heart failure remain poorly described. Complexities in the structure and function of the RV make the detailed assessment of the contractile performance challenging when compared to its left ventricular (LV) counterpart. LV dysfunction is known to directly affect patient outcome in heart failure. As such, the focus has therefore been on LV function. Nevertheless, a strategy for the diagnosis and assessment of RV diastolic dysfunction has not been established. Here, we review the different causal mechanisms underlying RV diastolic dysfunction, summarising the current assessment techniques used in a clinical environment. Finally, we explore the role of load-independent indices of RV contractility, derived from the conductance technique, to fully interrogate the RV and expand our knowledge and understanding of RV diastolic dysfunction. Accurate assessment of RV contractility may yield further important prognostic information that will benefit patients with diastolic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riggs TW (1993) Abnormal right ventricular filling in patients with dilated cardiomyopathy. Pediatric Cardiol 14(1):1–4

    CAS  Google Scholar 

  2. Cicala S, Galderisi M, Caso P, Petrocelli A, D’Errico A, de Divitiis O, Calabro R (2002) Right ventricular diastolic dysfunction in arterial systemic hypertension: analysis by pulsed tissue Doppler. Eur J Echocardiogr 3(2):135–142

    Article  CAS  PubMed  Google Scholar 

  3. Dourvas IN, Parharidis GE, Efthimiadis GK, Karvounis HI, Gemitzis KD, Styliadis IH, Karoulas TN, Louridas GE (2004) Right ventricular diastolic function in patients with chronic aortic regurgitation. Am J Cardiol 93(1):115–117

    Article  PubMed  Google Scholar 

  4. Florea VG, Florea ND, Sharma R, Coats AJ, Gibson DG, Hodson ME, Henein MY (2000) Right ventricular dysfunction in adult severe cystic fibrosis. Chest 118(4):1063–1068

    Article  CAS  PubMed  Google Scholar 

  5. Chakko S, de Marchena E, Kessler KM, Materson BJ, Myerburg RJ (1990) Right ventricular diastolic function in systemic hypertension. Am J Cardiol 65(16):1117–1120

    Article  CAS  PubMed  Google Scholar 

  6. Habib GB, Zoghbi WA (1992) Doppler assessment of right ventricular filling dynamics in systemic hypertension: comparison with left ventricular filling. Am Heart J 124(5):1313–1320

    Article  CAS  PubMed  Google Scholar 

  7. Caso P, Galderisi M, Cicala S, Cioppa C, D’Andrea A, Lagioia G, Liccardo B, Martiniello AR, Mininni N (2001) Association between myocardial right ventricular relaxation time and pulmonary arterial pressure in chronic obstructive lung disease: analysis by pulsed Doppler tissue imaging. J Am Soc Echocardiogr 14(10):970–977

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz ER, Dashti R (2010) The clinical quandary of left and right ventricular diastolic dysfunction and diastolic heart failure. Cardiovasc J Afr 21(4):212–220

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Bellofiore A, Chesler NC (2013) Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Ann Biomed Eng. doi:10.1007/s10439-013-0752-3

    Google Scholar 

  10. Dell’Italia LJ (1991) The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol 16(10):653–720

    PubMed  Google Scholar 

  11. Goor DA, Lillehei CW (1975) Congenital malformations of the heart : embryology, anatomy, and operative considerations. Grune & Stratton, New York

    Google Scholar 

  12. Ho SY, Nihoyannopoulos P (2006) Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92(Suppl 1):i2–i13. doi:10.1136/hrt.2005.077875

    Article  PubMed Central  PubMed  Google Scholar 

  13. Zipes DP, Libby P, Bonow RO, Braunwald E (eds) (2005) Braunwald’s heart disease: a textbook of cardiovascular medicine, 7th edn. Elsevier, Oxford, Philadelphia

  14. Brookes CI, White PA, Bishop AJ, Oldershaw PJ, Redington AN, Moat NE (1998) Validation of a new intraoperative technique to evaluate load-independent indices of right ventricular performance in patients undergoing cardiac operations. J Thorac Cardiovasc Surg 116(3):468–476

    Article  CAS  PubMed  Google Scholar 

  15. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40(4):289–308

    Article  CAS  PubMed  Google Scholar 

  16. Saleh S, Liakopoulos OJ, Buckberg GD (2006) The septal motor of biventricular function. Eur J Cardiothorac Surg 29(Suppl 1):S126–S138. doi:10.1016/j.ejcts.2006.02.048

    Article  PubMed  Google Scholar 

  17. Torrent-Guasp F, Ballester M, Buckberg GD, Carreras F, Flotats A, Carrio I, Ferreira A, Samuels LE, Narula J (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122(2):389–392. doi:10.1067/mtc.2001.113745

    Article  CAS  PubMed  Google Scholar 

  18. Van Herck PL, Vrints CJ, Carlier SG (2005) Coronary circulation and interventional cardiology. Ann Biomed Eng 33(12):1735–1742. doi:10.1007/s10439-005-8778-9

    Article  PubMed  Google Scholar 

  19. Chin KM, Coghlan G (2012) Characterizing the right ventricle: advancing our knowledge. Am J Cardiol 110(6 Suppl):3S–8S. doi:10.1016/j.amjcard.2012.06.010

    Article  PubMed  Google Scholar 

  20. Wauthy P, Pagnamenta A, Vassalli F, Naeije R, Brimioulle S (2004) Right ventricular adaptation to pulmonary hypertension: an interspecies comparison. Am J Physiol Heart Circ Physiol 286(4):H1441–H1447. doi:10.1152/ajpheart.00640.2003

    Article  CAS  PubMed  Google Scholar 

  21. Moon MR, DeAnda A, Castro LJ, Daughters GT 2nd, Ingels NB Jr, Miller DC (1997) Effects of mechanical left ventricular support on right ventricular diastolic function. J Heart Lung Transplant 16(4):398–407

    CAS  PubMed  Google Scholar 

  22. Chin KM, Kingman M, de Lemos JA, Warner JJ, Reimold S, Peshock R, Torres F (2008) Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. Am J Cardiol 101(11):1669–1672. doi:10.1016/j.amjcard.2008.01.055

    Article  PubMed  Google Scholar 

  23. Zeng WJ, Sun YJ, Xiong CM, Gu Q, He JG (2011) Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in idiopathic pulmonary arterial hypertension. Chin Med J (Engl) 124(11):1672–1677

    Google Scholar 

  24. Guazzi M, Castelvecchio S, Bandera F, Menicanti L (2012) Right ventricular pulmonary hypertension. Curr Heart Fail Rep 9(4):303–308. doi:10.1007/s11897-012-0106-8

    Article  PubMed  Google Scholar 

  25. Zimbarra Cabrita I, Ruisanchez C, Grapsa J, Dawson D, North B, Pinto FJ, Gibbs JS, Nihoyannopoulos P (2013) Validation of the isovolumetric relaxation time for the estimation of pulmonary systolic arterial blood pressure in chronic pulmonary hypertension. Eur Heart J Cardiovasc Imaging 14(1):51–55. doi:10.1093/ehjci/jes093

    Article  PubMed  Google Scholar 

  26. Kilner PJ (2011) The role of cardiovascular magnetic resonance in adults with congenital heart disease. Prog Cardiovasc Dis 54(3):295–304. doi:10.1016/j.pcad.2011.07.006

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31(7):794–805. doi:10.1093/eurheartj/ehp586

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kolb TM, Hassoun PM (2012) Right ventricular dysfunction in chronic lung disease. Cardiol Clin 30(2):243–256. doi:10.1016/j.ccl.2012.03.005

    Article  PubMed Central  PubMed  Google Scholar 

  29. McKay RG, Spears JR, Aroesty JM, Baim DS, Royal HD, Heller GV, Lincoln W, Salo RW, Braunwald E, Grossman W (1984) Instantaneous measurement of left and right ventricular stroke volume and pressure–volume relationships with an impedance catheter. Circulation 69(4):703–710

    Article  CAS  PubMed  Google Scholar 

  30. McCabe C, White PA, Hoole SP, Axell RG, Priest AN, Gopalan D, Taboada D, MacKenzie Ross R, Morrell NW, Shapiro LM, Pepke-Zaba J (2014) Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: a pressure–volume study using the conductance catheter. J Appl Physiol 116(4):355–363. doi:10.1152/japplphysiol.01123.2013

    Article  PubMed Central  PubMed  Google Scholar 

  31. Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92(Suppl 1):i27–i38. doi:10.1136/hrt.2005.077438

    Article  PubMed Central  PubMed  Google Scholar 

  32. Warnes CA (2009) Adult congenital heart disease importance of the right ventricle. J Am Coll Cardiol 54(21):1903–1910. doi:10.1016/j.jacc.2009.06.048

    Article  PubMed  Google Scholar 

  33. Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T (2008) Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging 24(7):691–698. doi:10.1007/s10554-008-9314-4

    Article  PubMed  Google Scholar 

  34. Leibundgut G, Rohner A, Grize L, Bernheim A, Kessel-Schaefer A, Bremerich J, Zellweger M, Buser P, Handke M (2010) Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr 23(2):116–126. doi:10.1016/j.echo.2009.11.016

    Article  PubMed  Google Scholar 

  35. Danton MH, Greil GF, Byrne JG, Hsin M, Cohn L, Maier SE (2003) Right ventricular volume measurement by conductance catheter. Am J Physiol Heart Circ Physiol 285(4):H1774–H1785. doi:10.1152/ajpheart.00048.2003

    Article  CAS  PubMed  Google Scholar 

  36. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 5(4):918–927

    Article  CAS  PubMed  Google Scholar 

  37. Wilkins MR, Paul GA, Strange JW, Tunariu N, Gin-Sing W, Banya WA, Westwood MA, Stefanidis A, Ng LL, Pennell DJ, Mohiaddin RH, Nihoyannopoulos P, Gibbs JS (2005) Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) study. Am J Respir Crit Care Med 171(11):1292–1297. doi:10.1164/rccm.200410-1411OC

    Article  PubMed  Google Scholar 

  38. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28(10):1250–1257. doi:10.1093/eurheartj/ehl477

    Article  PubMed  Google Scholar 

  39. Niemann PS, Pinho L, Balbach T, Galuschky C, Blankenhagen M, Silberbach M, Broberg C, Jerosch-Herold M, Sahn DJ (2007) Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 50(17):1668–1676. doi:10.1016/j.jacc.2007.07.031

    Article  PubMed  Google Scholar 

  40. Winter MM, Bernink FJ, Groenink M, Bouma BJ, van Dijk AP, Helbing WA, Tijssen JG, Mulder BJ (2008) Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson 10:40. doi:10.1186/1532-429X-10-40

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sheehan FH, Ge S, Vick GW 3rd, Urnes K, Kerwin WS, Bolson EL, Chung T, Kovalchin JP, Sahn DJ, Jerosch-Herold M, Stolpen AH (2008) Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol 101(1):107–113. doi:10.1016/j.amjcard.2007.07.080

    Article  PubMed  Google Scholar 

  42. Babu-Narayan SV, Goktekin O, Moon JC, Broberg CS, Pantely GA, Pennell DJ, Gatzoulis MA, Kilner PJ (2005) Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation 111(16):2091–2098. doi:10.1161/01.CIR.0000162463.61626.3B

    Article  PubMed  Google Scholar 

  43. Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewski H, Rienmueller R (2008) Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1(1):23–30. doi:10.1161/CIRCIMAGING.108.780247

    Article  PubMed  Google Scholar 

  44. Folse R, Braunwald E (1962) Determination of fraction of left ventricular volume ejected per beat and of ventricular end-diastolic and residual volumes. Experimental and clinical observations with a precordial dilution technic. Circulation 25:674–685

    Article  CAS  PubMed  Google Scholar 

  45. Vogel M, Gutberlet M, Dittrich S, Hosten N, Lange PE (1997) Comparison of transthoracic three dimensional echocardiography with magnetic resonance imaging in the assessment of right ventricular volume and mass. Heart 78(2):127–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Pignatelli RH, McMahon CJ, Chung T, Vick GW 3rd (2003) Role of echocardiography versus MRI for the diagnosis of congenital heart disease. Curr Opin Cardiol 18(5):357–365

    Article  PubMed  Google Scholar 

  47. Samyn MM (2004) A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging 20(6):569–578

    Article  PubMed  Google Scholar 

  48. Weiss JL, Frederiksen JW, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58(3):751–760. doi:10.1172/JCI108522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Raff GL, Glantz SA (1981) Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res 48(6 Pt 1):813–824

    Article  CAS  PubMed  Google Scholar 

  50. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure-time curve in the canine left ventricle. Better alternative to exponential time constant. Circulation 92(8):2318–2326

    Article  CAS  PubMed  Google Scholar 

  51. Bachman TN, Bursic JJ, Simon MA, Champion HC (2013) A novel acquisition technique to utilize swan-ganz catheter data as a surrogate for high-fidelity micromanometry within the right ventricle and pulmonary circuit. Cardiovasc Eng Tech 4(2):183–191. doi:10.1007/s13239-013-0124-z

    Article  Google Scholar 

  52. Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, Temmerman D, Senden J, Buis B (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70(5):812–823

    Article  CAS  PubMed  Google Scholar 

  53. Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K (1986) Determination of left ventricular end-systolic pressure–volume relationships by the conductance (volume) catheter technique. Circulation 73(3):586–595

    Article  CAS  PubMed  Google Scholar 

  54. Kass DA, Midei M, Graves W, Brinker JA, Maughan WL (1988) Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure–volume relationships in man. Cathet Cardiovasc Diagn 15(3):192–202

    Article  CAS  PubMed  Google Scholar 

  55. Geddes LA, Baker LE (1967) The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5(3):271–293

    Article  CAS  PubMed  Google Scholar 

  56. Baan J, Jong TT, Kerkhof PL, Moene RJ, van Dijk AD, van der Velde ET, Koops J (1981) Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 15(6):328–334

    Article  CAS  PubMed  Google Scholar 

  57. Steendijk P, van der Velde ET, Baan J (1992) Single and dual excitation of the conductance-volume catheter analysed in a spheroidal mathematical model of the canine left ventricle. Eur Heart J 13(Suppl E):28–34

    Article  PubMed  Google Scholar 

  58. Bishop A, White P, Groves P, Chaturvedi R, Brookes C, Redington A, Oldershaw P (1997) Right ventricular dysfunction during coronary artery occlusion: pressure–volume analysis using conductance catheters during coronary angioplasty. Heart 78(5):480–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tabima DM, Hacker TA, Chesler NC (2010) Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure–volume loops. Am J Physiol Heart Circ Physiol 299(6):H2069–H2075. doi:10.1152/ajpheart.00805.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. White PA, Bishop AJ, Conroy B, Oldershaw PJ, Redington AN (1995) The determination of volume of right ventricular casts using a conductance catheter. Eur Heart J 16(10):1425–1429

    CAS  PubMed  Google Scholar 

  61. Salo RW (1989) The theoretical basis of a computational model for the determination of volume by impedance. Automedica 11:299–310

    Google Scholar 

  62. White PA, Chaturvedi RR, Bishop AJ, Brookes CI, Oldershaw PJ, Redington AN (1996) Does parallel conductance vary during systole in the human right ventricle? Cardiovasc Res 32(5):901–908

    Article  CAS  PubMed  Google Scholar 

  63. WhitePa Redington AN (2000) Right ventricular volume measurement: can conductance do it better? Physiol Meas 21(3):R23–R41

    Article  CAS  PubMed  Google Scholar 

  64. Kornet L, Schreuder JJ, van der Velde ET, Baan J, Jansen JR (2000) A new approach to determine parallel conductance for left ventricular volume measurements. Cardiovasc Res 48(3):455–463

    Article  CAS  PubMed  Google Scholar 

  65. Coffman JD, Gregg DE (1960) Reactive hyperemia characteristics of the myocardium. Am J Physiol 199:1143–1149

    CAS  PubMed  Google Scholar 

  66. Ramanathan T, Skinner H (2005) Coronary blood flow. Contin Educ Anaesth Crit Care Pain 5(2):61–64. doi:10.1093/bjaceaccp/mki012

    Article  Google Scholar 

  67. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8. doi:10.1186/1476-7120-3-8

    Article  PubMed Central  PubMed  Google Scholar 

  68. Mancini GB, McGillem MJ, DeBoe SF, Gallagher KP (1989) The diastolic hyperemic flow versus pressure relation. A new index of coronary stenosis severity and flow reserve. Circulation 80(4):941–950

    Article  CAS  PubMed  Google Scholar 

  69. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W (1996) Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 94(8):1842–1849

    Article  PubMed  Google Scholar 

  70. Marcus ML, Wilson RF, White CW (1987) Methods of measurement of myocardial blood flow in patients: a critical review. Circulation 76(2):245–253

    Article  CAS  PubMed  Google Scholar 

  71. Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86(4):1263–1308. doi:10.1152/physrev.00029.2005

    Article  CAS  PubMed  Google Scholar 

  72. De Rosa R, Piccolo R, Cassese S, Petretta A, D’Andrea C, D’Anna C, Piscione F, Chiariello M (2011) Coronary flow reserve evaluation: basics, techniques and clinical applications. Minerva Cardioangiol 59(6):569–580

    PubMed  Google Scholar 

  73. Galderisi M, D’Errico A (2008) Beta-blockers and coronary flow reserve: the importance of a vasodilatory action. Drugs 68(5):579–590

    Article  CAS  PubMed  Google Scholar 

  74. Cortigiani L, Rigo F, Sicari R, Gherardi S, Bovenzi F, Picano E (2009) Prognostic correlates of combined coronary flow reserve assessment on left anterior descending and right coronary artery in patients with negative stress echocardiography by wall motion criteria. Heart 95(17):1423–1428. doi:10.1136/hrt.2009.166439

    Article  CAS  PubMed  Google Scholar 

  75. Rigo F, Ciampi Q, Ossena G, Grolla E, Picano E, Sicari R (2011) Prognostic value of left and right coronary flow reserve assessment in nonischemic dilated cardiomyopathy by transthoracic Doppler echocardiography. J Card Fail 17(1):39–46. doi:10.1016/j.cardfail.2010.08.003

    Article  PubMed  Google Scholar 

  76. Galderisi M, Cicala S, De Simone L, Caso P, Petrocelli A, Pietropaolo L, Celentano A, Mininni N, de Divitiis O (2001) Impact of myocardial diastolic dysfunction on coronary flow reserve in hypertensive patients with left ventricular hypertrophy. Ital Heart J 2(9):677–684

    CAS  PubMed  Google Scholar 

  77. Galderisi M, Cicala S, Caso P, De Simone L, D’Errico A, Petrocelli A, de Divitiis O (2002) Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol 90(8):860–864

    Article  PubMed  Google Scholar 

  78. Teragaki M, Yanagi S, Toda I, Sakamoto K, Hirota K, Takeuchi K, Yoshikawa J (2003) Coronary flow reserve correlates left ventricular diastolic dysfunction in patients with dilated cardiomyopathy. Catheter Cardiovasc Interv 58(1):43–50. doi:10.1002/ccd.10349

    Article  PubMed  Google Scholar 

  79. Galderisi M, de Simone G, D’Errico A, Sidiropulos M, Viceconti R, Chinali M, Mondillo S, de Divitiis O (2008) Independent association of coronary flow reserve with left ventricular relaxation and filling pressure in arterial hypertension. Am J Hypertens 21(9):1040–1046. doi:10.1038/ajh.2008.226

    Article  PubMed  Google Scholar 

  80. Strauer BE, Motz W, Vogt M, Schwartzkopff B (1997) Evidence for reduced coronary flow reserve in patients with insulin-dependent diabetes. A possible cause for diabetic heart disease in man. Exp Clin Endocrinol Diabetes 105(1):15–20. doi:10.1055/s-0029-1211722

    Article  CAS  PubMed  Google Scholar 

  81. Kalkan GY, Gur M, Sahin DY, Baykan AO, Elbasan Z, Kuloglu O, Kivrak A, Turkoglu C, Arik OZ, Cayli M (2013) Coronary flow reserve and myocardial performance index in newly diagnosed diabetic patients. Echocardiography. doi:10.1111/echo.12275

    Google Scholar 

  82. Hadjiloizou N, Davies JE, Malik IS, Aguado-Sierra J, Willson K, Foale RA, Parker KH, Hughes AD, Francis DP, Mayet J (2008) Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. Am J Physiol Heart Circ Physiol 295(3):H1198–H1205. doi:10.1152/ajpheart.00510.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Bernheim PL (1910) L’asystolie veneuse dans l’hypertrophie du coeur gauche par stenote concomitante du ventricule droit. Rev Med 39:785

    Google Scholar 

  84. Henderson Y, Prince AL (1914) The relative systolic discharges of the right and left ventricles and their bearing on pulmonary congestion and depletion. Heart 4:217–226

    Google Scholar 

  85. Efthimiadis GK, Parharidis GE, Gemitzis KD, Nouskas IG, Karvounis HI, Styliadis IK, Louridas GE (1999) Doppler echocardiographic evaluation of right ventricular diastolic function in isolated valvular aortic stenosis. J Heart Valve Dis 8(3):261–269

    CAS  PubMed  Google Scholar 

  86. Efthimiadis GK, Parharidis GE, Karvounis HI, Gemitzis KD, Styliadis IH, Louridas GE (2002) Doppler echocardiographic evaluation of right ventricular diastolic function in hypertrophic cardiomyopathy. Eur J Echocardiogr 3(2):143–148

    Article  CAS  PubMed  Google Scholar 

  87. Kitahori K, He H, Kawata M, Cowan DB, Friehs I, Del Nido PJ, McGowan FX Jr (2009) Development of left ventricular diastolic dysfunction with preservation of ejection fraction during progression of infant right ventricular hypertrophy. Circ Heart Fail 2(6):599–607. doi:10.1161/CIRCHEARTFAILURE.109.862664

    Article  PubMed Central  PubMed  Google Scholar 

  88. Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JM, Helbing WA (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure–volume loops. Am J Physiol Heart Circ Physiol 291(4):H1580–H1586. doi:10.1152/ajpheart.00286.2006

    Article  CAS  PubMed  Google Scholar 

  89. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245(5 Pt 1):H773–H780

    CAS  PubMed  Google Scholar 

  90. Yaginuma T, Noda T, Tsuchiya M, Takazawa K, Tanaka H, Kotoda K, Hosoda S (1985) Interaction of left ventricular contraction and aortic input impedance in experimental and clinical studies. Jpn Circ J 49(2):206–214

    Article  CAS  PubMed  Google Scholar 

  91. Sasayama S, Asanoi H (1991) Coupling between the heart and arterial system in heart failure. Am Journal Med 90(5B):14S–18S

    Article  CAS  Google Scholar 

  92. Grignola JC, Gines F, Bia D, Armentano R (2007) Improved right ventricular-vascular coupling during active pulmonary hypertension. Int J Cardiol 115(2):171–182. doi:10.1016/j.ijcard.2006.03.007

    Article  PubMed  Google Scholar 

  93. Saouti N, Westerhof N, Helderman F, Marcus JT, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2010) Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure. Am J Respir Crit Care Med 182(10):1315–1320. doi:10.1164/rccm.200910-1643OC

    Article  PubMed  Google Scholar 

  94. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA (1998) Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 32(5):1221–1227

    Article  CAS  PubMed  Google Scholar 

  95. Leite-Moreira AF, Correia-Pinto J, Gillebert TC (1999) Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res 43(2):344–353

    Article  CAS  PubMed  Google Scholar 

  96. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56(4):586–595

    Article  CAS  PubMed  Google Scholar 

  97. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107(5):714–720

    Article  PubMed  Google Scholar 

  98. Hoette S, O’Callaghan DS, Jardim C, Souza R (2010) Dual receptor blockade by bosentan: clinical experience in treatment of pulmonary hypertension. J Receptor Ligand Channel Res 3:113–121

    CAS  Google Scholar 

  99. Tedford RJ, Mudd JO, Girgis RE, Mathai SC, Zaiman AL, Housten-Harris T, Boyce D, Kelemen BW, Bacher AC, Shah AA, Hummers LK, Wigley FM, Russell SD, Saggar R, Saggar R, Maughan WL, Hassoun PM, Kass DA (2013) Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 6(5):953–963. doi:10.1161/circheartfailure.112.000008

    Article  CAS  PubMed  Google Scholar 

  100. Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ (1990) Changes in the pressure–volume relation of the right ventricle when its loading conditions are modified. Br Heart J 63(1):45–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE, Dutka DP (2011) A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv 4(3):266–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr Richard Axell is funded by a National Institute for Health Research Chief Scientific Officer Healthcare Scientist Doctoral Fellowship Grant (NIHR-HCS-D12-14). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard G. Axell or Paul A. White.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axell, R.G., Hoole, S.P., Hampton-Till, J. et al. RV diastolic dysfunction: time to re-evaluate its importance in heart failure. Heart Fail Rev 20, 363–373 (2015). https://doi.org/10.1007/s10741-015-9472-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9472-0

Keywords

Navigation