Skip to main content

Advertisement

Log in

Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. ImageJ can be download from http://imagej.nih.gov/ij/ or http://fiji.sc/Fiji.

References

  1. Cooper G, Phillips A, Choong S (2004) Regeneration of the heart in diabetes by selective copper chelation. Diabetes 53:2501–2508

    Article  CAS  PubMed  Google Scholar 

  2. Soeller C, Crossman D, Gilbert R, Cannell MB (2007) Analysis of ryanodine receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci 104:14958–14963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Crossman DJ, Ruygrok PR, Soeller C, Cannell MB (2011) Changes in the organization of excitation–contraction coupling structures in failing human heart. PLoS ONE 6:e17901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Jayasinghe ID, Crossman DJ, Soeller C, Cannell MB (2010) A new twist in cardiac muscle: dislocated and helicoid arrangements of myofibrillar z-disks in mammalian ventricular myocytes. J Mol Cell Cardiol 48:964–971

    Article  CAS  PubMed  Google Scholar 

  5. Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS ONE 6:e20645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fritzky L, Lagunoff D (2013) Advanced methods in fluorescence microscopy. Anal Cell Pathol (Amst) 36:5–17

    Article  CAS  Google Scholar 

  7. Caves PK, Stinson EB, Graham AF et al (1973) Percutaneous transvenous endomyocardial biopsy. JAMA 225:288–291

    Article  CAS  PubMed  Google Scholar 

  8. Richardson P (1974) King’s endomyocardial bioptome. Lancet 303:660–661

    Article  Google Scholar 

  9. From A, Maleszewski J, Rihal C (2011) Current status of endomyocardial biopsy. Mayo Clin Proc 86:1095–1102

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cooper L, Baughman K (2007) Endomyocardial biopsy in the management of cardiovascular disease a scientific statement from the American Heart Association, the American College of Cardiology. Eur Heart J 28:3076–3093

    Article  PubMed  Google Scholar 

  11. Bennett MK, Gilotra NA, Harrington C et al (2013) Evaluation of the role of endomyocardial biopsy in 851 patients with unexplained heart failure from 2000-2009. Circ Heart Fail 6:676–684

    Article  PubMed  Google Scholar 

  12. Thiene G, Bruneval P, Veinot J, Leone O (2013) Diagnostic use of the endomyocardial biopsy: a consensus statement. Virchows Arch 463:1–5

    Article  CAS  PubMed  Google Scholar 

  13. Magnani JW, Dec GW (2006) Myocarditis: current trends in diagnosis and treatment. Circulation 113:876–890

    Article  PubMed  Google Scholar 

  14. Cooper L, Berry G, Shabetai R (1997) Idiopathic giant-cell myocarditis—natural history and treatment. N Engl J Med 336:1860–1866

    Article  PubMed  Google Scholar 

  15. Seward JB, Casaclang-Verzosa G (2010) Infiltrative cardiovascular diseases: cardiomyopathies that look alike. J Am Coll Cardiol 55:1769–1779

    Article  PubMed  Google Scholar 

  16. Cunningham KS, Veinot JP, Butany J (2006) An approach to endomyocardial biopsy interpretation. J Clin Pathol 59:121–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zerbe TR, Arena V (1988) Diagnostic reliability of endomyocardial biopsy for assessment of cardiac allograft rejection. Hum Pathol 19:1307–1314

    Article  CAS  PubMed  Google Scholar 

  18. Yilmaz A, Kindermann I, Kindermann M et al (2010) Comparative evaluation of left and right ventricular endomyocardial biopsy: differences in complication rate and diagnostic performance. Circulation 122:900–909

    Article  PubMed  Google Scholar 

  19. Corrado D, Basso C, Leoni L et al (2005) Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 111:3042–3050

    Article  PubMed  Google Scholar 

  20. Amitai M, Schnittger I, Popp R (2007) Comparison of three-dimensional echocardiography to two-dimensional echocardiography and fluoroscopy for monitoring of endomyocardial biopsy. Am J Cardiol 99:864–866

    Article  PubMed  Google Scholar 

  21. Platts D, Brown M, Javorsky G et al (2010) Comparison of fluoroscopic versus real-time three-dimensional transthoracic echocardiographic guidance of endomyocardial biopsies. Eur J Echocardiogr 11:637–643

    Article  PubMed  Google Scholar 

  22. Leone O, Veinot J, Angelini A (2012) 2011 consensus statement on endomyocardial biopsy from the association for European cardiovascular pathology and the society for cardiovascular pathology. Cardiovasc Pathol 21:245–274

    Article  PubMed  Google Scholar 

  23. Narula N, Narula J, Dec G (2005) Endomyocardial biopsy for non-transplant-related disorders. Am J Clin Pathol 123:S1–S13

    Google Scholar 

  24. Stewart S, Winters G (2005) Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 24:1710–1720

    Article  PubMed  Google Scholar 

  25. Basso C, Calabrese F, Angelini A et al (2013) Classification and histological, immunohistochemical, and molecular diagnosis of inflammatory myocardial disease. Heart Fail Rev 18:673–681

    Article  CAS  PubMed  Google Scholar 

  26. Arbustini E, Morbini P, Verga L (1997) Light and electron microscopy immunohistochemical characterization of amyloid deposits. Amyloid 4:157–170

    Article  CAS  Google Scholar 

  27. Quarta CC, Kruger JL, Falk RH (2012) Cardiac amyloidosis. Circulation 126:e178–e182

    Article  PubMed  Google Scholar 

  28. Banypersad S, Moon J (2012) Updates in cardiac amyloidosis: a review. J Am Heart Assoc 1:e000364

    Article  PubMed Central  PubMed  Google Scholar 

  29. Falk RH (2005) Diagnosis and management of the cardiac amyloidoses. Circulation 112:2047–2060

    Article  PubMed  Google Scholar 

  30. Riva MA, Manzoni M, Isimbaldi G et al (2014) Histochemistry: historical development and current use in pathology. Biotech Histochem 89:81–90

    Article  CAS  PubMed  Google Scholar 

  31. Yang H-M, Lai CK, Gjertson DW et al (2009) Has the 2004 revision of the international society of heart and lung transplantation grading system improved the reproducibility of the diagnosis and grading of cardiac transplant rejection? Cardiovasc Pathol 18:198–204

    Article  PubMed  Google Scholar 

  32. Calabrese F, Thiene G (2003) Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res 60:11–25

    Article  CAS  PubMed  Google Scholar 

  33. Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002

    Article  CAS  PubMed  Google Scholar 

  34. Vrana JA, Gamez JD, Madden BJ et al (2009) Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 114:4957–4959

    Article  CAS  PubMed  Google Scholar 

  35. Benson MD, Breall J, Cummings OW, Liepnieks JJ (2009) Biochemical characterisation of amyloid by endomyocardial biopsy. Amyloid 16:9–14

    Article  CAS  PubMed  Google Scholar 

  36. Drummen GPC (2012) Fluorescent probes and fluorescence (microscopy) techniques—illuminating biological and biomedical research. Molecules 17:14067–14090

    Article  CAS  PubMed  Google Scholar 

  37. Halling KC, Kipp BR (2007) Fluorescence in situ hybridization in diagnostic cytology. Hum Pathol 38:1137–1144

    Article  CAS  PubMed  Google Scholar 

  38. Hoppert M (2003) Microscopic techniques in biotechnology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  39. Soeller C, Baddeley D (2013) Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol 58:32–40

    Article  CAS  PubMed  Google Scholar 

  40. Burry RW (2009) Immunocytochemistry: a practical guide for biomedical research. Springer, New York

    Google Scholar 

  41. Rojo MG, Bueno G, Slodkowska J (2009) Review of imaging solutions for integrated quantitative immunohistochemistry in the pathology daily practice. Folia Histochem Cytobiol 47:349–354

    PubMed  Google Scholar 

  42. Al-Janabi S, Huisman A, Van Diest PJ (2012) Digital pathology: current status and future perspectives. Histopathology 61:1–9

    Article  PubMed  Google Scholar 

  43. Pawley J (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  44. Espada J, Valverde P, Stockert J (1993) Selective fluorescence of eosinophilic structures in grasshopper and mammalian testis stained with haematoxylin-eosin. Histochemistry 99:385–390

    Article  CAS  PubMed  Google Scholar 

  45. Trinh L, McCutchen M, Bonner-Fraser M et al (2007) Fluorescent in situ hybridization employing the conventional NBT/BCIP chromogenic stain. Biotechniques 42:756–759

    Article  CAS  Google Scholar 

  46. Ragazzi M, Piana S, Longo C et al (2014) Fluorescence confocal microscopy for pathologists. Mod Pathol 27:460–471

  47. Keller HE (2006) Objective lenses for confocal microscopy. In: Pawley J (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 145–161

    Chapter  Google Scholar 

  48. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  49. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Leung BO, Chou KC (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65:967–980

    Article  CAS  PubMed  Google Scholar 

  52. Baddeley D, Jayasinghe ID, Cremer C et al (2009) Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J 96:L22–L24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Rust MJ, Bates M, Zhuang X (2006) Imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hess S, Girirajan T, Mason M (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  56. Van de Linde S, Löschberger A, Klein T et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  Google Scholar 

  57. Sjollema KA, Schnell U, Kuipers J et al (2012) Correlated light microscopy and electron microscopy. Methods Cell Biol 111:157–173

    Article  CAS  PubMed  Google Scholar 

  58. Wong J, Baddeley D, Bushong EA et al (2013) Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions. Biophys J 104:L22–L24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Huang F, Hartwich TMP, Rivera-Molina FE et al (2013) Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 10:653–658

    Article  CAS  PubMed  Google Scholar 

  60. Huisman A, Looijen A, van den Brink SM, van Diest PJ (2010) Creation of a fully digital pathology slide archive by high-volume tissue slide scanning. Hum Pathol 41:751–757

    Article  PubMed  Google Scholar 

  61. Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Cir Res 84:266–275

    Article  CAS  Google Scholar 

  62. Paul M, Stypmann J, Gerss J et al (2011) Safety of endomyocardial biopsy in patients with arrhythmogenic right ventricular cardiomyopathy: a study analyzing 161 diagnostic procedures. JACC Cardiovasc Interv 4:1142–1148

    Article  PubMed  Google Scholar 

  63. Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J 31:806–814

    Article  PubMed Central  PubMed  Google Scholar 

  64. Tavora F, Zhang M, Cresswell N (2013) Quantitative immunohistochemistry of desmosomal proteins (plakoglobin, desmoplakin and plakophilin), connexin-43, and N-cadherin in arrhythmogenic cardiomyopathy: an autopsy study. Open Cardiovasc Med J 7:28–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Asimaki A, Tandri H (2009) A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 360:1075–1084

    Article  CAS  PubMed  Google Scholar 

  66. Chopra P, Narula J, Talwar KK et al (1990) Histomorphologic characteristics of endomyocardial fibrosis: an endomyocardial biopsy study. Hum Pathol 21:613–616

    Article  CAS  PubMed  Google Scholar 

  67. Cheng Z, Cui Q, Tian Z, Zhao D (2013) Electron microscopy in patients with clinically suspected of cardiac amyloidosis who underwent endomyocardial biopsy and negative Congo red staining. Int J Cardiol 168:3013–3015

    Article  PubMed  Google Scholar 

  68. Kieninger B, Eriksson M, Kandolf R et al (2010) Amyloid in endomyocardial biopsies. Virchows Arch 456:523–532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jacqui Ross and Nicky Kingston for assistance with microscopy, Auckland City Hospital staff for assistance in obtaining tissue and transplant recipients, and donor families for donating tissue. Research funding was provided by the Auckland Medical Research Foundation and the Health Research Council of New Zealand.

Ethical standard

Human cardiac tissue was obtained with the written informed consent of heart transplant recipients and from families of organ donors as approved by the New Zealand Health and Disability Ethics Committee (NTY/05/08/050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Crossman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crossman, D.J., Ruygrok, P.N., Hou, Y.F. et al. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy. Heart Fail Rev 20, 203–214 (2015). https://doi.org/10.1007/s10741-014-9455-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9455-6

Keywords

Navigation