Skip to main content
Log in

Amino acids and derivatives, a new treatment of chronic heart failure?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Amino acids play a key role in multiple cellular processes. Amino acids availability is reduced in patients with heart failure (HF) with deleterious consequences on cardiac and whole-body metabolism. Several metabolic abnormalities have been identified in the failing heart, and many of them lead to an increased need of amino acids. Recently, several clinical trials have been conducted to demonstrate the benefits of amino acids supplementation in patients with HF. Although they have shown an improvement of exercise tolerance and, in some cases, of left ventricular function, they have many limitations, namely small sample size, differences in patients’ characteristics and nutritional supplementations, and lack of data regarding outcomes. Moreover recent data suggest that a multi-nutritional approach, including also antioxidants, vitamins, and metals, may be more effective. Larger trials are needed to ascertain safety, efficacy, and impact on prognosis of such an approach in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

6MWD:

6-min walking distance

AAs:

Amino acids

ATP:

Adenosine triphosphate

BID:

Twice daily

BMI:

Body mass index

BW:

Body weight

CAD:

Coronary arteries disease

CHF:

Chronic heart failure

COPD:

Chronic obstructive pulmonary disease

CRP:

C-reactive protein

GH:

Growth hormone

HF:

Heart failure

HFpEF:

Heart failure preserved ejection fraction

IGF-1:

Insulin-like growth factor 1

IL-1:

Interleukin 1

IV:

Intravenous

LVEDD:

Left ventricle end-diastolic diameter

LVEDV:

Left ventricle end-diastolic volume

LVEF:

Left ventricle ejection fraction

LVESV:

Left ventricle end-systolic volume

MET:

Metabolic equivalent

MLWHFQ:

Minnesota Living With Heart Failure Questionnaire

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NYHA:

New York Heart Association

OD:

Once daily

sPAP:

Systolic pulmonary artery pressure

RVEF:

Right ventricle ejection fraction

TID:

Three times daily

TNF-α:

Tumor necrosis factor α

References

  1. Rosamond W, Flegal K, Furie K et al (2008) Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146

    Article  PubMed  Google Scholar 

  2. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  3. Yancy CW, Jessup M, Bozkurt B et al (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852

    Article  PubMed  Google Scholar 

  4. Gheorghiade M, Pang PS (2009) Acute heart failure syndromes. J Am Coll Cardiol 53:557–573

    Article  PubMed  Google Scholar 

  5. Fang J, Mensah GA, Croft JB, Keenan NL (2008) Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol 52:428–434

    Article  PubMed  Google Scholar 

  6. Heidenreich PA, Albert NM, Allen LA et al (2013) Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 6:606–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jhund PS, Macintyre K, Simpson CR et al (2009) Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation 119:515–523

    Article  PubMed  Google Scholar 

  8. Ahmed A, Allman RM, Fonarow GC et al (2008) Incident heart failure hospitalization and subsequent mortality in chronic heart failure: a propensity-matched study. J Card Fail 14:211–218

    Article  PubMed Central  PubMed  Google Scholar 

  9. Soukoulis V, Dihu JB, Sole M et al (2009) Micronutrient deficiencies: an unmet need in heart failure. J Am Coll Cardiol 54:1660–1673

    Article  CAS  PubMed  Google Scholar 

  10. Von Haehling S, Steinbeck L, Doehner W, Springer J, Anker SD (2013) Muscle wasting in heart failure: an overview. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2013.04.025

  11. Taegtmeyer H, Harinstein ME, Gheorghiade M (2008) More than bricks and mortar: comments on protein and amino acid metabolism in the heart. Am J Cardiol 101:3E–7E

    Article  CAS  PubMed  Google Scholar 

  12. Anker SD, Volterrani M, Pflaum CD et al (2001) Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. JACC 38(2):443–452

    Article  CAS  PubMed  Google Scholar 

  13. Pasini E, Aquilani R, Dioguardi FS (2004) Amino acids: chemistry and metabolism in normal and hypercatabolic states. Am J Cardiol 93(suppl):3A–5A

    Article  CAS  PubMed  Google Scholar 

  14. Pasini E, Aquilani R, Gheorghiade M, Dioguardi FS (2003) Malnutrition, muscle wasting and cachexia in chronic heart failure: the nutritional approach. Ital Heart J 4:232–235

    PubMed  Google Scholar 

  15. Ingwall JS, Shen W (2010) On energy circuits in the failing myocardium. Eur J Heart Fail 12(12):1268–1270

    Article  PubMed  Google Scholar 

  16. Razeghi P, Sharma S, Ying J et al (2003) Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 108:2536–2541

    Article  CAS  PubMed  Google Scholar 

  17. Herrero P, Dence CS, Coggan AR et al (2007) L-3-11C-lactate as a PET tracer of myocardial metabolism: a feasibility study. J Nucl Med 48(12):2046–2055

    Article  CAS  PubMed  Google Scholar 

  18. Kalantar-Zadeh K, Anker SD, Horwich TB et al (2008) Nutritional and anti-inflammatory interventions in chronic heart failure. Am J Cardiol 101:89E–103E

    Article  CAS  PubMed  Google Scholar 

  19. Hara K, Yonezawa K, Weng QP et al (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism [published correction appears in J Biol Chem 1998;273:22160]. J Biol Chem 273:14484–14494

    Article  CAS  PubMed  Google Scholar 

  20. Flati V, Pasini E, D’Antona G et al (2008) Intracellular Mechanisms of Metabolism Regulation: the Role of Signaling via the Mammalian Target of Rapamycin Pathway and Other Routes. Am J Cardiol 101(suppl):16E–21E

    Article  CAS  PubMed  Google Scholar 

  21. Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    Article  CAS  PubMed  Google Scholar 

  22. Baquet A, Lavoinne A, Hue L (1991) Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem J 273(Pt 1):57–62

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Huang Y, Zhou M, Sun H et al (2011) Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 90(2):220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lu G, Ren S, Korge P et al (2007) A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes Dev 21(7):784–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sharma S, Guthrie PH, Chan SS et al (2007) Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovasc Res 76:71–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. She P, Reid TM, Bronson SK et al (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6:181–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Scholte HR, Rodrigues Pereira R, de Jonge PC et al (1990) Primary carnitine deficiency. J Clin Chem Clin Biochem 28:351–357

    CAS  PubMed  Google Scholar 

  28. Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    Article  CAS  PubMed  Google Scholar 

  29. Fascetti AL, Reed JR, Rogers QR et al (2003) Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases. J Am Vet Med Assoc 223:1137–1141

    Article  CAS  PubMed  Google Scholar 

  30. Wyss M, Walliman T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133(134):51–56

    Article  PubMed  Google Scholar 

  31. Arsenian MA (1997) Carnitine and its derivatives in cardiovascular disease. Prog Cardiovasc Dis 40:265–286

    Article  CAS  PubMed  Google Scholar 

  32. Schonekess BO, Allard MF, Lopaschuk GD (1995) Propionyl L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77:726–734

    Article  CAS  PubMed  Google Scholar 

  33. Pepine CJ (1991) The therapeutic potential of carnitine in cardiovascular disorders. Clin Ther 13:2–18

    CAS  PubMed  Google Scholar 

  34. Siliprandi N, Di Lisa F, Menabo R (1991) Propionyl-L-carnitine: biochemical significance and possible role in cardiac metabolism. Cardiovasc Drugs Ther 5(Suppl 1):11–15

    Article  PubMed  Google Scholar 

  35. Allard ML, Jeejeebhoy NK, Sole MJ (2006) The management of conditioned nutritional requirements in heart failure. Heart Fail Rev 11:75–82

    Article  CAS  PubMed  Google Scholar 

  36. Nascimben L, Ingwall JS, Pauletto P et al (1996) Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901

    Article  CAS  PubMed  Google Scholar 

  37. Azuma J, Sawamura A, Awata N (1992) Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ 56:95–99

    Article  CAS  Google Scholar 

  38. Grimble RF, Jackson AA, Persaud C et al (1992) Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J Nutr 122:2066–2073

    CAS  PubMed  Google Scholar 

  39. Visser M, Paulus WJ, Vermeulen MAR et al (2010) The role of asymmetric dimethylarginine and arginine in the failing heart and its vasculature. Eur J Heart Fail 12:1274–1281

    Article  CAS  PubMed  Google Scholar 

  40. Johnson P, Fedyna JS, Schindzielorz A et al (1982) Regulation of muscle phosphorylase activity by carnosine and anserine. Biochem Biophys Res Commun 109:769–775

    Article  CAS  PubMed  Google Scholar 

  41. Stuenenburg HJ, Kunze K (1999) Concentration of free carnosine (a putative membrane-protective antioxidant) in human muscle biopsies and rat muscles. Arch Gerontol Geriatr 29:107–113

    Article  Google Scholar 

  42. McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175

    Article  CAS  PubMed  Google Scholar 

  43. McFarland GA, Holliday R (1999) Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol 34:35–45

    Article  CAS  PubMed  Google Scholar 

  44. Quinn PR, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13:379–444

    Article  CAS  PubMed  Google Scholar 

  45. Hipkiss AR, Brownson C (2000) A possible new role for the anti-ageing peptide carnosine. Cell Mol Life Sci 57:747–753

    Article  CAS  PubMed  Google Scholar 

  46. Ziêba R, Wagrowska-Danilewicz M (2003) Influence of carnosine on the cardiotoxicity of doxorubicin in rabbits. Pol J Pharmacol 55:1079–1087

    PubMed  Google Scholar 

  47. Muller M, Bottcher OS, Weselmann S, Boker K, Schwarze M, Von zur Muhlen A, Manns MP (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69:1194–1201

    CAS  PubMed  Google Scholar 

  48. Moulias R, Meaume S, Raynaud-Simon A (1999) Sarcopenia, hypermetabolism and aging. Z Gerontol Geriatr 6:425–432

    Article  Google Scholar 

  49. Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534

    Article  CAS  PubMed  Google Scholar 

  50. Von Haehling S, Doehner W, Anker S (2007) Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res 73:298–309

    Article  Google Scholar 

  51. Cicoira M, Kalra PR, Anker SD (2003) Growth hormone resistance in chronic heart failure and its therapeutic implications. J Card Fail 9:219–226

    Article  CAS  PubMed  Google Scholar 

  52. Isgaard J, Bergh CH, Caidahl K et al (1998) A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 19:1704–1711

    Article  CAS  PubMed  Google Scholar 

  53. Osterziel KJ, Strohm O, Schuler J et al (1998) Randomised, double blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237

    Article  CAS  PubMed  Google Scholar 

  54. Frustaci A, Gentiloni N, Russo MA (1996) Growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 335:672–673

    Article  CAS  PubMed  Google Scholar 

  55. Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD et al (2003) Hormonal profile in patients with congestive heart failure. Int J Cardiol 87:179–183

    Article  PubMed  Google Scholar 

  56. Malkin CJ, Pugh PJ, West JN et al (2003) Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J 27:57–64

    Article  Google Scholar 

  57. Caminiti G, Volterrani M, Iellamo F et al (2009) Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure. J Am Coll Cardiol 54:919–927

    Article  CAS  PubMed  Google Scholar 

  58. Doehner W, Rauchhaus M, Ponikowski P et al (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46:1019–1026

    Article  CAS  PubMed  Google Scholar 

  59. Swan JW, Anker SD, Walton C et al (1997) Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol 30:527–532

    Article  CAS  PubMed  Google Scholar 

  60. Mamas A, Deaton C, Rutter MK et al (2010) Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J Cardiac Fail 16:761–768

    Article  CAS  Google Scholar 

  61. Leyva F, Anker SD, Egerer K et al (1998) Hyperleptinaemia in chronic heart failure. Relationships with insulin. Eur Heart J 19:1547–1551

    Article  CAS  PubMed  Google Scholar 

  62. Frankel DS, Vasan RS, D’Agostino RB et al (2009) Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol 53:754–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Nagaya N, Uematsu M, Kojima M et al (2001) Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 104:2034–2038

    Article  CAS  PubMed  Google Scholar 

  64. Vary TC, O’Neill P, Cooney RN, Maish G, Shumate M (1999) Chronic infusion of interleukin 1 induces hyperlactatemia and altered regulation of lactate metabolism in skeletal muscle. JPEN 23:213–217

    Article  CAS  Google Scholar 

  65. Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrates metabolism in the diabetic heart. Cardiovasc Res 34:25–33

    Article  CAS  PubMed  Google Scholar 

  66. Aquilani R, Opasich C, Gualco A (2008) Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail 10:1127–1135

    Article  CAS  PubMed  Google Scholar 

  67. Opasich C, Aquilani R, Dossena M et al (1996) Biochemical analysis of muscle biopsy in overnight fasting patients with severe chronic heart failure. Eur Heart J 17:1686–1693

    Article  CAS  PubMed  Google Scholar 

  68. Aquilani R, Viglio S, Iadarola P et al (2008) Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am J Cardiol 101(Suppl):104E–110E

    Article  CAS  PubMed  Google Scholar 

  69. Orozco-Gutiérrez JJ, Castillo-Martínez L, Orea-Tejeda A et al (2010) Effect of L-arginine or L-citrulline oral supplementation on blood pressure and right ventricular function in heart failure patients with preserved ejection fraction. Cardiol J. 17(6):612–618

    PubMed  Google Scholar 

  70. Aquilani R, La Rovere MT, Febo O et al (2011) Preserved muscle protein metabolism in obese patients with chronic heart failure. Int J Cardiol. doi:10.1016/j.ijcard.2011.03.032

  71. Harinstein ME, Berliner JI, Shah SJ et al (2008) Normalization of ejection fraction and resolution of symptoms in chronic severe heart failure is possible with modern medical therapy: clinical observation in 11 patients. Am J Ther 15:206–213

    Article  PubMed  Google Scholar 

  72. Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J 139:S120–S123

    Article  CAS  PubMed  Google Scholar 

  73. Jeejeebhoy F, Keith M, Freeman M et al (2002) Nutrition supplementation with MyoVive repletes essential cardiac myocyte nutrients and reduces left ventricular size in patients with left ventricular dysfunction. Am Heart J 143:1092–1100

    Article  CAS  PubMed  Google Scholar 

  74. Witte KK, Nikitin NP, Parker AC et al (2005) The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 26:2238–2244

    Article  CAS  PubMed  Google Scholar 

  75. Sukkar SG, Gallo F, Borrini C et al (2012) Effects of a new mixture of essential amino acids (Aminotrofic(®)) in malnourished haemodialysis patients. Med J Nutr Metab 5(3):259–266

    Article  Google Scholar 

  76. Hiroshige K, Sonta T, Suda T et al (2001) Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol Dial Transplant 16(9):1856–1862

    Article  CAS  PubMed  Google Scholar 

  77. Leenders M, van Loon LJ (2011) Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev 69(11):675–689

    Article  PubMed  Google Scholar 

  78. Macotela Y, Emanuelli B, Bång AM et al (2011) Dietary leucine–an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6(6):e21187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Scognamiglio R, Testa A, Aquilani R et al (2008) Impairment in walking capacity and myocardial function in the elderly: is there a role for nonpharmacologic therapy with nutritional amino acid supplements? Am J Cardiol 101(Suppl):78E–81E

    Article  CAS  PubMed  Google Scholar 

  80. Mancini M, Rengo F, Lingetti M et al (1992) Controlled study on the therapeutic efficacy of propionyl-L-carnitine in patients with congestive heart failure. Arzneimittelforschung 42:1101–1104

    CAS  PubMed  Google Scholar 

  81. Iliceto S, Scrutinio D, Bruzzi P et al (1995) Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) trial. J Am Coll Cardiol 26:380–387

    Article  CAS  PubMed  Google Scholar 

  82. Anand I, Chandrashekhan Y, De Giuli F et al (1998) Acute and chronic effects of propionyl-L-carnitine on the hemodynamics, exercise capacity, and hormones in patients with congestive heart failure. Cardiovasc Drugs Ther 12:291–299

    Article  CAS  PubMed  Google Scholar 

  83. The Investigators of the Study on Propionyl-L-Carnitine in Chronic Heart Failure (1999) Study on propionyl-L-carnitine in chronic heart failure. Eur Heart J 20:70–76

    Article  Google Scholar 

  84. Loster H, Miehe K, Punzel M et al (1999) Prolonged oral L-carnitine substitution increases bicycle ergometer performance in patients with severe, ischemically induced cardiac insufficiency. Cardiovasc Drugs Ther 13:537–546

    Article  CAS  PubMed  Google Scholar 

  85. Azuma J, Hasegawa H, Sawamura A et al (1983) Therapy of congestive heart failure with orally administered taurine. Clin Ther 5:398–408

    CAS  PubMed  Google Scholar 

  86. Azuma J, Sawamura A, Awata N et al (1985) Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol 8:276–282

    Article  CAS  PubMed  Google Scholar 

  87. Azuma J, Sawamura A, Awata N (1992) Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 56:95–99

    Article  CAS  PubMed  Google Scholar 

  88. Beyranvand MR, Khalafi MK, Roshan VD et al (2011) Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 57:333–337

    Article  PubMed  Google Scholar 

  89. Chin-Dusting JP, Kaye DM, Lefkovits J et al (1996) Dietary supplementation with L-arginine fails to restore endothelial function in forearm resistance arteries of patients with severe heart failure. J Am Coll Cardiol 27:1207–1213

    Article  CAS  PubMed  Google Scholar 

  90. Rector TS, Bank AJ, Mullen KA et al (1996) Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 93:2135–2141

    Article  CAS  PubMed  Google Scholar 

  91. Hambrecht R, Hilbrich L, Erbs S et al (2000) Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol 35:706–713

    Article  CAS  PubMed  Google Scholar 

  92. Bednarz B, Jaxa-Chamiec T, Gebalska J et al (2004) L-arginine supplementation prolongs exercise capacity in congestive heart failure. Kardiol Pol 60:348–353

    PubMed  Google Scholar 

  93. Fontanive P, Saponati G, Iurato A et al (2009) Effects of L-arginine on the Minnesota Living with Heart Failure Questionnaire quality-of-life score in patients with chronic systolic heart failure. Med Sci Monit 15:CR606–CR611

    CAS  PubMed  Google Scholar 

  94. Gordon A, Hultman E, Kaijser L et al (1995) Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res 30:413–418

    Article  CAS  PubMed  Google Scholar 

  95. Andrews R, Greenhaff P, Curtis S et al (1998) The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur Heart J 19:617–622

    Article  CAS  PubMed  Google Scholar 

  96. Kuethe F, Krack A, Richartz BM et al (2006) Creatine supplementation improves muscle strength in patients with congestive heart failure. Pharmazie 61:218–222

    CAS  PubMed  Google Scholar 

  97. Cornelissen VA, Defoor JG, Stevens A et al (2010) Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clin Rehabil 24:988–999

    Article  CAS  PubMed  Google Scholar 

  98. Fumagalli S, Fattirolli F, Guarducci L et al (2011) Coenzyme Q10 terclatrate and creatine in chronic heart failure: a randomized, placebo-controlled, double-blind study. Clin Cardiol 34:211–217

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Metra.

Additional information

Marco Metra has received honoraria from Abbott Vascular, Amgen, Bayer, Novartis, Servier for participation at advisory board meetings and Committees for ongoing trials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carubelli, V., Castrini, A.I., Lazzarini, V. et al. Amino acids and derivatives, a new treatment of chronic heart failure?. Heart Fail Rev 20, 39–51 (2015). https://doi.org/10.1007/s10741-014-9436-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9436-9

Keywords

Navigation