Skip to main content
Log in

Aerobic exercise effect on prognostic markers for systolic heart failure patients: a systematic review and meta-analysis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

From previous systematic reviews and meta-analyses, there is consensus about the positive effect of exercise training on exercise capacity for systolic heart failure (HF); however, the effect on actual prognostic markers such as NTproBNP and minute ventilation/carbon dioxide production (VE/VCO2) slope has not been evaluated. The primary aim of the proposed study is to determine the effect of aerobic exercise training (AEX) on the VE/VCO2 slope and NTproBNP. The following databases (up to February 30, 2013) were searched with no language limitations: CENTRAL (The Cochrane Library 2013, issue 2), MEDLINE (from January 1966), EMBASE (from January 1980), and Physiotherapy Evidence Database (PEDro) (from January 1929). We screened reference lists of articles and also conducted an extensive hand search of the literature. Randomized controlled trials of exercise-based interventions with 2-month follow-up or longer compared to usual medical care or placebo were included. The study population comprised adults aged between 18 and 65 years, with evidence of chronic systolic heart failure (LVEF < 45 % and baseline NTproBNP > 300 pg/ml). Two review authors independently extracted data on study design, participants, interventions, and outcomes. We assessed the risk of bias using PEDro scale. We calculated mean differences (MD) or standardized mean differences between intervention and control groups for outcomes with sufficient data; for other outcomes, we described findings from individual studies. Eight studies involving a total of 408 participants met the inclusion criteria across the NTproBNP (5 studies with 191 patients) and VE/VCO2 slope (4 studies with 217 patients). Aerobic exercise significantly improved NTproBNP by a MD of −817.75 [95 % confidence interval (CI) −929.31 to −706.19]. Mean differences across VE/VCO2 slope were −6.55 (95 % CI −7.24 to −5.87). Those patients’ characteristics and exercise were similar (frequency = 3–5 times/week; duration = 20–50 min/day; intensity = 60–80 % of VO2 peak) on the included studies. Moreover, the risk of bias across all studies was homogeneous (PEDro scale = 7–8 points). However, based on the statistical analysis, the heterogeneity among the studies was still high, which is related to the variable characteristics of the studies. Aerobic exercise may be effective at improving NTproBNP and the VE/VCO2 slope in systolic HF patients, but these effects are limited to a specific HF population meeting specific inclusion criterion in a limited number of studies. Future randomized controlled studies including diastolic and HF overleap with pulmonary diseases are needed to better understand the exact influence of AEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Jacobs AK, Hiratzka LF, Russell RO, Smith SC, Jr., American College of Cardiology/American Heart Association Task Force on Practice G, International Society for H, Lung T, Heart Failure Society of A (2001) ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): developed in Collaboration With the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America. Circulation 104(24):2996–3007

    Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. doi:10.1161/CIR.0b013e31829e8776

    PubMed Central  Google Scholar 

  3. Bocchi EA, Braga FG, Ferreira SM, Rohde LE, Oliveira WA, Almeida DR, Moreira Mda C, Bestetti RB, Bordignon S, Azevedo C, Tinoco EM, Rocha RM, Issa VS, Ferraz A, Cruz F, Guimaraes GV, Montera Vdos S, Albuquerque DC, Bacal F, Souza GE, Rossi Neto JM, Clausell NO, Martins SM, Siciliano A, Souza Neto JD, Moreira LF, Teixeira RA, Moura LZ, Beck-da-Silva L, Rassi S, Azeka E, Horowitz E, Ramires F, Simoes MV, Castro RB, Salemi VM, Villacorta Junior H, Vila JH, Simoes R, Albanesi F, Montera MW, de Sociedasde Brasileira C (2009) III Brazilian Guidelines on Chronic Heart Failure. Arq Bras Cardiol 93(1 Suppl 1):3–70

    PubMed  Google Scholar 

  4. Chagas AC, Zilli EC, Ferreira JF, Moretti MA, Ramos RF (2009) Cardiovascular health of the Brazilian male: the view of the Brazilian Society of Cardiology. Arq Bras Cardiol 93(6):541–544, 584–547

    Google Scholar 

  5. Rees K, Taylor RS, Singh S, Coats AJ, Ebrahim S (2004) Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev (3):CD003331. doi:10.1002/14651858.CD003331.pub2

  6. Davies EJ, Moxham T, Rees K, Singh S, Coats AJ, Ebrahim S, Lough F, Taylor RS (2010) Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev (4):CD003331. doi:10.1002/14651858.CD003331.pub3

  7. O’Connor CM, Whellan DJ, Wojdyla D, Leifer E, Clare RM, Ellis SJ, Fine LJ, Fleg JL, Zannad F, Keteyian SJ, Kitzman DW, Kraus WE, Rendall D, Pina IL, Cooper LS, Fiuzat M, Lee KL (2012) Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: the HF-ACTION predictive risk score model. Circ Heart Fail 5(1):63–71. doi:10.1161/circheartfailure.111.963462

    Article  PubMed Central  PubMed  Google Scholar 

  8. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, Wolfel G, Handberg EM, Bensimhon D, Illiou MC, Vest M, Ewald G, Blackburn G, Leifer E, Cooper L, Kraus WE (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5(5):579–585. doi:10.1161/circheartfailure.111.965186

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lang CC, Agostoni P, Mancini DM (2007) Prognostic significance and measurement of exercise-derived hemodynamic variables in patients with heart failure. J Cardiac Fail 13(8):672–679. doi:10.1016/j.cardfail.2007.05.004

    Article  Google Scholar 

  10. Arena R, Myers J, Guazzi M (2008) The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev 13(2):245–269. doi:10.1007/s10741-007-9067-5

    Article  PubMed  Google Scholar 

  11. Lund LH, Mancini DM (2008) Peak VO2 in elderly patients with heart failure. Int J Cardiol 125(2):166–171. doi:10.1016/j.ijcard.2007.10.004

    Article  PubMed  Google Scholar 

  12. Sarullo FM, Fazio G, Brusca I, Fasullo S, Paterna S, Licata P, Novo G, Novo S, Di Pasquale P (2010) Cardiopulmonary exercise testing in patients with chronic heart failure: prognostic comparison from peak VO2 and VE/VCO2 slope. Open Cardiovasc Med J 4:127–134. doi:10.2174/1874192401004010127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Verberne HJ, van der Spank A, Bresser P, Somsen GA (2012) The prognostic value of estimated glomerular filtration rate, amino-terminal portion of the pro-hormone B-type natriuretic peptide and parameters of cardiopulmonary exercise testing in patients with chronic heart failure. Heart Int 7(2):e13. doi:10.4081/hi.2012.e13

    Article  PubMed Central  PubMed  Google Scholar 

  14. Corra U, Mezzani A, Giordano A, Pistono M, Gnemmi M, Caruso R, Giannuzzi P (2013) Peak oxygen consumption and prognosis in heart failure: 14 mL/kg/min is not a “gender-neutral” reference. Int J Cardiol 167(1):157–161. doi:10.1016/j.ijcard.2011.12.055

    Article  PubMed  Google Scholar 

  15. Kato TS, Collado E, Khawaja T, Kawano Y, Kim M, Farr M, Mancini DM, Schulze PC (2013) Value of peak exercise oxygen consumption combined with B-type natriuretic peptide levels for optimal timing of cardiac transplantation. Circ Heart Fail 6(1):6–14. doi:10.1161/circheartfailure.112.968123

    Article  CAS  PubMed  Google Scholar 

  16. Myers J, Oliveira R, Dewey F, Arena R, Guazzi M, Chase P, Bensimhon D, Peberdy MA, Ashley E, West E, Cahalin LP, Forman DE (2013) Validation of a cardiopulmonary exercise test score in heart failure. Circ Heart Fail 6(2):211–218. doi:10.1161/circheartfailure.112.000073

    Article  PubMed  Google Scholar 

  17. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, Arena R, Fletcher GF, Forman DE, Kitzman DW, Lavie CJ, Myers J, Eacpr, Aha (2012) EACPR/AHA joint scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J 33(23):2917–2927. doi:10.1093/eurheartj/ehs221

  18. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA, Ashley E, West E, Forman DE, Pinkstaff S, Lavie CJ, Guazzi M (2013) A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev 18(1):79–94. doi:10.1007/s10741-012-9332-0

    Article  PubMed  Google Scholar 

  19. Savarese G, Trimarco B, Dellegrottaglie S, Prastaro M, Gambardella F, Rengo G, Leosco D, Perrone-Filardi P (2013) Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One 8(3):e58287. doi:10.1371/journal.pone.0058287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li P, Luo Y, Chen YM (2013) B-type natriuretic peptide-guided chronic heart failure therapy: a meta-analysis of 11 randomised controlled trials. Heart Lung Circ. doi:10.1016/j.hlc.2013.03.077

    Google Scholar 

  21. Steg PG, Joubin L, McCord J, Abraham WT, Hollander JE, Omland T, Mentre F, McCullough PA, Maisel AS (2005) B-type natriuretic peptide and echocardiographic determination of ejection fraction in the diagnosis of congestive heart failure in patients with acute dyspnea. Chest 128(1):21–29. doi:10.1378/chest.128.1.21

    Article  CAS  PubMed  Google Scholar 

  22. Dokainish H, Zoghbi WA, Lakkis NM, Ambriz E, Patel R, Quinones MA, Nagueh SF (2005) Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol 45(8):1223–1226. doi:10.1016/j.jacc.2005.01.025

    Article  CAS  PubMed  Google Scholar 

  23. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, Aupetit JF, Aumont MC, Galinier M, Eicher JC, Cohen-Solal A, Juilliere Y (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49(16):1733–1739. doi:10.1016/j.jacc.2006.10.081

    Article  CAS  PubMed  Google Scholar 

  24. Mueller C, Scholer A, Laule-Kilian K, Martina B, Schindler C, Buser P, Pfisterer M, Perruchoud AP (2004) Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. New Engl J Med 350(7):647–654. doi:10.1056/NEJMoa031681

    Article  CAS  PubMed  Google Scholar 

  25. Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, Otuji Y, Minagoe S, Toyama Y, Tei C (2002) Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol 39(5):754–759

    Article  PubMed  Google Scholar 

  26. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122(12):1221–1238. doi:10.1161/CIRCULATIONAHA.110.939959

    Article  PubMed  Google Scholar 

  27. Luk TH, Dai YL, Siu CW, Yiu KH, Chan HT, Lee SW, Li SW, Fong B, Wong WK, Tam S, Lau CP, Tse HF (2012) Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol 19(4):830–839. doi:10.1177/1741826711415679

    Article  PubMed  Google Scholar 

  28. Smart NA, Meyer T, Butterfield JA, Faddy SC, Passino C, Malfatto G, Jonsdottir S, Sarullo F, Wisloff U, Vigorito C, Giallauria F (2012) Individual patient meta-analysis of exercise training effects on systemic brain natriuretic peptide expression in heart failure. Eur J Prev Cardiol 19(3):428–435. doi:10.1177/1741826711409171

    Article  CAS  PubMed  Google Scholar 

  29. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83(3):778–786

    Article  CAS  PubMed  Google Scholar 

  30. van Tol BA, Huijsmans RJ, Kroon DW, Schothorst M, Kwakkel G (2006) Effects of exercise training on cardiac performance, exercise capacity and quality of life in patients with heart failure: a meta-analysis. Eur J Heart Fail 8(8):841–850. doi:10.1016/j.ejheart.2006.02.013

    Article  PubMed  Google Scholar 

  31. Valkeinen H, Aaltonen S, Kujala UM (2010) Effects of exercise training on oxygen uptake in coronary heart disease: a systematic review and meta-analysis. Scand J Med Sci Sports 20(4):545–555. doi:10.1111/j.1600-0838.2010.01133.x

    Article  CAS  PubMed  Google Scholar 

  32. Hwang CL, Wu YT, Chou CH (2011) Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev 31(6):378–385. doi:10.1097/HCR.0b013e31822f16cb

    Article  PubMed  Google Scholar 

  33. Marzolini S, Oh PI, Brooks D (2012) Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: a meta-analysis. Eur J Prev Cardiol 19(1):81–94. doi:10.1177/1741826710393197

    Article  PubMed  Google Scholar 

  34. van der Meer S, Zwerink M, van Brussel M, van der Valk P, Wajon E, van der Palen J (2012) Effect of outpatient exercise training programmes in patients with chronic heart failure: a systematic review. Eur J Prev Cardiol 19(4):795–803

    Article  PubMed  Google Scholar 

  35. Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM (2013) Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol 111(10):1466–1469. doi:10.1016/j.amjcard.2013.01.303

    Article  PubMed  Google Scholar 

  36. Tabet JY, Meurin P, Benzidi Y, Beauvais F, Ben Driss A, Weber H, Renaud N, Dumaine R, Grosdemouge A, Cohen Solal A (2013) Greater prognostic value of peak VO after exercise training program completion in heart failure patients. Int J Cardiol. doi:10.1016/j.ijcard.2013.07.076

    PubMed  Google Scholar 

  37. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, Wolfel G, Handberg EM, Bensimhon D, Illiou MC, Vest M, Ewald G, Blackburn G, Leifer E, Cooper L, Kraus WE, Investigators H-A (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5(5):579–585. doi:10.1161/CIRCHEARTFAILURE.111.965186

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ingle L (2007) Theoretical rationale and practical recommendations for cardiopulmonary exercise testing in patients with chronic heart failure. Heart Fail Rev 12(1):12–22. doi:10.1007/s10741-007-9000-y

    Article  PubMed  Google Scholar 

  39. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, Arena R, Fletcher GF, Forman DE, Kitzman DW, Lavie CJ, Myers J, European Association for Cardiovascular P, Rehabilitation, American Heart A (2012) EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126(18):2261–2274. doi:10.1161/CIR.0b013e31826fb946

    Google Scholar 

  40. Arena R, Myers J, Aslam SS, Varughese EB, Peberdy MA (2004) Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J 147(2):354–360. doi:10.1016/j.ahj.2003.07.014

    Article  PubMed  Google Scholar 

  41. Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJ, Piepoli MF (2001) Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 104(19):2324–2330

    Article  CAS  PubMed  Google Scholar 

  42. Myers J, Dziekan G, Goebbels U, Dubach P (1999) Influence of high-intensity exercise training on the ventilatory response to exercise in patients with reduced ventricular function. Med Sci Sports Exerc 31(7):929–937

    Article  CAS  PubMed  Google Scholar 

  43. Panagopoulou V, Deftereos S, Kossyvakis C, Raisakis K, Giannopoulos G, Bouras G, Pyrgakis V, Cleman MW (2013) NTproBNP: an Important Biomarker in Cardiac Diseases. Curr Top Med Chem 13(2):82–94

    Article  CAS  PubMed  Google Scholar 

  44. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG (1998) The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 51(12):1235–1241

    Article  CAS  PubMed  Google Scholar 

  45. Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315(7121):1533–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lundh A, Gotzsche PC (2008) Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies. BMC Med Res Methodol 8:22. doi:10.1186/1471-2288-8-22

    Article  PubMed Central  PubMed  Google Scholar 

  47. Conraads VM, Beckers P, Vaes J, Martin M, Van Hoof V, De Maeyer C, Possemiers N, Wuyts FL, Vrints CJ (2004) Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J 25(20):1797–1805. doi:10.1016/j.ehj.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  48. Giallauria F, De Lorenzo A, Pilerci F, Manakos A, Lucci R, Psaroudaki M, D’Agostino M, Del Forno D, Vigorito C (2006) Reduction of N terminal-pro-brain (B-type) natriuretic peptide levels with exercise-based cardiac rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Eur J Cardiovasc Prev Rehabil 13(4):625–632. doi:10.1097/01.hjr.0000209810.59831.f4

    Google Scholar 

  49. Giallauria F, Lucci R, De Lorenzo A, D’Agostino M, Del Forno D, Vigorito C (2006) Favourable effects of exercise training on N-terminal pro-brain natriuretic peptide plasma levels in elderly patients after acute myocardial infarction. Age Ageing 35(6):601–607. doi:10.1093/ageing/afl098

    Article  PubMed  Google Scholar 

  50. Maria Sarullo F, Gristina T, Brusca I, Milia S, Raimondi R, Sajeva M, Maria La Chiusa S, Serio G, Paterna S, Di Pasquale P, Castello A (2006) Effect of physical training on exercise capacity, gas exchange and N-terminal pro-brain natriuretic peptide levels in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 13(5):812–817. doi:10.1097/01.hjr.0000238396.42718.61

    Article  PubMed  Google Scholar 

  51. Sandri M, Kozarez I, Adams V, Mangner N, Hollriegel R, Erbs S, Linke A, Mobius-Winkler S, Thiery J, Kratzsch J, Teupser D, Mende M, Hambrecht R, Schuler G, Gielen S (2012) Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction Study. Eur Heart J 33(14):1758–1768. doi:10.1093/eurheartj/ehr469

    Article  PubMed  Google Scholar 

  52. Belardinelli R, Georgiou D, Cianci G, Purcaro A (2012) 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol 60(16):1521–1528. doi:10.1016/j.jacc.2012.06.036

    Article  PubMed  Google Scholar 

  53. Laoutaris ID, Dritsas A, Adamopoulos S, Manginas A, Gouziouta A, Kallistratos MS, Koulopoulou M, Voudris V, Cokkinos DV, Sfirakis P (2011) Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long-term postimplantation. Eur J Cardiovasc Prev Rehabil 18(1):33–40. doi:10.1097/HJR.0b013e32833c0320

    PubMed  Google Scholar 

  54. Myers J, Gademan M, Brunner K, Kottman W, Boesch C, Dubach P (2012) Effects of high-intensity training on indices of ventilatory efficiency in chronic heart failure. J Cardiopulm Rehabil Prev 32(1):9–16. doi:10.1097/HCR.0b013e3182343bdf

    Article  PubMed  Google Scholar 

  55. Servantes DM, Pelcerman A, Salvetti XM, Salles AF, de Albuquerque PF, de Salles FC, Lopes C, de Mello MT, Almeida DR, Filho JA (2012) Effects of home-based exercise training for patients with chronic heart failure and sleep apnoea: a randomized comparison of two different programmes. Clin Rehabil 26(1):45–57. doi:10.1177/0269215511403941

    Article  PubMed  Google Scholar 

  56. Jiang AF, Zhang FC, Gao W, Li ZP, Zhao W, Li XW, Wang XH, Zhang BH (2006) The impact of exercise rehabilitation on left ventricular remodeling and systolic function in acute myocardial infarction patients. Zhonghua nei ke za zhi [Chinese J Intern Med] 45(11):904–906

    Google Scholar 

  57. Shen YQ, Jiang JF, Wang LM, Che L, Qi XQ, Xu WJ, Deng B, Song HM, Ma WL, Yan WW, Zhang XY, Zhang QP, Li GH (2011) Effects of aerobic exercise on exercise tolerance in patients with chronic heart failure. Zhonghua yi xue za zhi 91(38):2678–2682

    PubMed  Google Scholar 

  58. Conraads VM, Vanderheyden M, Paelinck B, Verstreken S, Blankoff I, Miljoen H, De Sutter J, Beckers P (2007) The effect of endurance training on exercise capacity following cardiac resynchronization therapy in chronic heart failure patients: a pilot trial. Eur J Cardiovasc Prev Rehabil 14(1):99–106. doi:10.1097/HJR.0b013e32801164b3

    Article  PubMed  Google Scholar 

  59. Osbak PS, Mourier M, Kjaer A, Henriksen JH, Kofoed KF, Jensen GB (2011) A randomized study of the effects of exercise training on patients with atrial fibrillation. Am Heart J 162(6):1080–1087. doi:10.1016/j.ahj.2011.09.013

    Article  PubMed  Google Scholar 

  60. Passino C, Severino S, Poletti R, Piepoli MF, Mammini C, Clerico A, Gabutti A, Nassi G, Emdin M (2006) Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. J Am Coll Cardiol 47(9):1835–1839. doi:10.1016/j.jacc.2005.12.050

    Article  CAS  PubMed  Google Scholar 

  61. Brehm M, Picard F, Ebner P, Turan G, Bolke E, Kostering M, Schuller P, Fleissner T, Ilousis D, Augusta K, Peiper M, Schannwell C, Strauer BE (2009) Effects of exercise training on mobilization and functional activity of blood-derived progenitor cells in patients with acute myocardial infarction. Eur J Med Res 14(9):393–405

    PubMed Central  PubMed  Google Scholar 

  62. Conraads VM, Beckers P, Vaes J, Martin M, Van Hoof V, De Maeyer C, Possemiers N, Wuyts FL, Vrints CJ (2004) Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J 25(20):1797–1805. doi:10.1016/j.ehj.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  63. Gary RA, Cress ME, Higgins MK, Smith AL, Dunbar SB (2011) Combined aerobic and resistance exercise program improves task performance in patients with heart failure. Arch Phys Med Rehab 92(9):1371–1381. doi:10.1016/j.apmr.2011.02.022

    Article  Google Scholar 

  64. Jonsdóttir S, Andersen KK, Sigurosson AF, Sigurosson SB (2006) The effect of physical training in chronic heart failure. Eur J Heart Fail 8(1):97–101. doi:10.1016/j.ejheart.2005.05.002

    Article  PubMed  Google Scholar 

  65. Kiilavuori K, Naveri H, Leinonen H, Harkonen M (1999) The effect of physical training on hormonal status and exertional hormonal response in patients with chronic congestive heart failure. Eur Heart J 20(6):456–464

    Article  CAS  PubMed  Google Scholar 

  66. Leetmaa TH, Villadsen H, Mikkelsen KV, Davidsen F, Haghfelt T, Videbaek L (2009) Are there long-term benefits in following stable heart failure patients in a heart failure clinic? Scand Cardiovas J 43(3):158–162. doi:10.1080/14017430802593443

    Article  CAS  Google Scholar 

  67. Lima MM, Rocha MO, Nunes MC, Sousa L, Costa HS, Alencar MC, Britto RR, Ribeiro AL (2010) A randomized trial of the effects of exercise training in Chagas cardiomyopathy. Eur J Heart Fail 12(8):866–873. doi:10.1093/eurjhf/hfq123

    Article  CAS  PubMed  Google Scholar 

  68. Nilsson BB, Westheim A, Risberg MA, Arnesen H, Seljeflot I (2010) No effect of group-based aerobic interval training on N-terminal pro-B-type natriuretic peptide levels in patients with chronic heart failure. Scand Cardiovasc J 44(4):223–229. doi:10.3109/14017431.2010.496869

    Article  CAS  PubMed  Google Scholar 

  69. Nishi I, Noguchi T, Iwanaga Y, Furuichi S, Aihara N, Takaki H, Goto Y (2011) Effects of exercise training in patients with chronic heart failure and advanced left ventricular systolic dysfunction receiving beta-blockers. Circ J 75(7):1649–1655

    Article  PubMed  Google Scholar 

  70. Whellan DJ, O'Connor CM, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Houston-Miller N, Fleg JL, Schulman KA, Pina IL (2007) Heart failure and a controlled trial investigating outcomes of exercise training (HF-ACTION): design and rationale. Am Heart J 153(2):201–211. doi:10.1016/j.ahj.2006.11.007

    Article  PubMed  Google Scholar 

  71. Winter MM, van der Bom T, de Vries LC, Balducci A, Bouma BJ, Pieper PG, van Dijk AP, van der Plas MN, Picchio FM, Mulder BJ (2012) Exercise training improves exercise capacity in adult patients with a systemic right ventricle: a randomized clinical trial. Eur Heart J 33(11):1378–1385. doi:10.1093/eurheartj/ehr396

    Article  CAS  PubMed  Google Scholar 

  72. Yamamoto A, Tanabe K, Yokoyama Y, Itoh H, Murayama M (1998) Influence of aerobic exercise training on brain natriuretic peptide secretion in patients in the chronic phase of myocardial infarction. Jpn Circ J 62(9):658–664

    Article  CAS  PubMed  Google Scholar 

  73. Zuazagoitia A, Grandes G, Torcal J, Lekuona I, Echevarria P, Gomez MA, Domingo M, de la Torre MM, Ramirez JI, Montoya I, Oyanguren J, Pinilla RO (2010) Rationale and design of a randomised controlled trial evaluating the effectiveness of an exercise program to improve the quality of life of patients with heart failure in primary care: The EFICAR study protocol. BMC Public Health 10:33. doi:10.1186/1471-2458-10-33

    Article  PubMed Central  PubMed  Google Scholar 

  74. Beckers PJ, Denollet J, Possemiers NM, Wuyts K, Vrints CJ, Conraads VM (2010) Maintaining physical fitness of patients with chronic heart failure: a randomized controlled trial. Eur J Cardiovasc Prev Rehabil 17(6):660–667. doi:10.1097/HJR.0b013e328339ccac

    Article  PubMed  Google Scholar 

  75. Smart NA, Steele M (2012) A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients. Congest Heart Fail 18(4):205–211. doi:10.1111/j.1751-7133.2011.00274.x

    Article  PubMed  Google Scholar 

  76. Dimopoulos S, Anastasiou-Nana M, Sakellariou D, Drakos S, Kapsimalakou S, Maroulidis G, Roditis P, Papazachou O, Vogiatzis I, Roussos C, Nanas S (2006) Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 13(1):67–73

    PubMed  Google Scholar 

  77. Gademan MG, Swenne CA, Verwey HF, van de Vooren H, Haest JC, van Exel HJ, Lucas CM, Cleuren GV, Schalij MJ, van der Wall EE (2008) Exercise training increases oxygen uptake efficiency slope in chronic heart failure. Eur J Cardiovasc Prev Rehabil 15(2):140–144. doi:10.1097/HJR.0b013e3282ef19986

    Article  PubMed  Google Scholar 

  78. Smart NA, Steele M (2010) Systematic review of the effect of aerobic and resistance exercise training on systemic brain natriuretic peptide (BNP) and N-terminal BNP expression in heart failure patients. Int J Cardiol 140(3):260–265. doi:10.1016/j.ijcard.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  79. Bensimhon DR, Leifer ES, Ellis SJ, Fleg JL, Keteyian SJ, Pina IL, Kitzman DW, McKelvie RS, Kraus WE, Forman DE, Kao AJ, Whellan DJ, O’Connor CM, Russell SD, Investigators H-AT (2008) Reproducibility of peak oxygen uptake and other cardiopulmonary exercise testing parameters in patients with heart failure (from the Heart Failure and A Controlled Trial Investigating Outcomes of exercise traiNing). Am J Cardiol 102(6):712–717. doi:10.1016/j.amjcard.2008.04.047

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerson Cipriano Jr..

Appendix 1: Comprehensive search strategy

Appendix 1: Comprehensive search strategy

Search terms strategy for outcome 1: VE/VCO2 slope (Mesh and Entry Terms)

(Exercise [Mesh] OR Exercises OR “Exercise, Physical” OR “Exercises, Physical” OR “Physical Exercise” OR “Physical Exercises” OR “Exercise, Aerobic” OR “Aerobic Exercises” OR “Exercises, Aerobic” OR “Aerobic Exercise” OR “Exercise Therapy” [Mesh] OR “Therapy, Exercise” OR “Exercise Therapies” OR “Therapies, Exercise” OR “Physical Education and Training” [Mesh] OR “Physical Education, Training” OR “Physical Education” OR “Education, Physical” OR “Physical and Rehabilitation Medicine” [Mesh] OR “Medicine, Physical” OR “Physical Medicine” OR “Physiatry” OR “Physical Medicine and Rehabilitation” OR “Physiatrics”) AND (“Exercise Test” [Mesh] OR “Exercise Tests” OR “Test, Exercise” OR “Tests, Exercise” OR “Bicycle Ergometry Test” OR “Bicycle Ergometry Tests” OR “Ergometer Test, Bicycle” OR “Ergometry Tests, Bicycle” OR “Test, Bicycle Ergometry” OR “Tests, Bicycle Ergometry” OR “Treadmill Test” OR “Test, Treadmill” OR “Tests, Treadmill” OR “Treadmill Tests” OR “Step Test” OR “Step Tests” OR “Test, Step” OR “Tests, Step” OR “Stress Test” OR “Arm Ergometry Test” OR “Arm Ergometry Tests” OR “Ergometry Test, Arm” OR “Ergometry Tests, Arm” OR “Test, Arm Ergometry” OR “Tests, Arm Ergometry” OR “Cardiopulmonary Exercise Test” OR “Cardiopulmonary Exercise Tests” OR “Exercise Test, Cardiopulmonary” OR “Exercise Tests, Cardiopulmonary” OR “Test, Cardiopulmonary Exercise” OR “Tests, Cardiopulmonary Exercise” OR “Oxygen Consumption” [Mesh] OR “Consumption, Oxygen” OR “Consumptions, Oxygen” OR “Oxygen Consumptions” OR “Exercise Tolerance” [Mesh] OR “Tolerance, Exercise” OR “Physical Fitness” [Mesh] OR “Fitness, Physical” OR “Physical Conditioning, Human” OR “Conditioning, Human Physical” OR “Conditionings, Human Physical” OR “Human Physical Conditioning” OR “Human Physical Conditionings” OR “Physical Conditionings, Human” OR “Physical Exertion” [Mesh] OR “Exertion, Physical” OR “Exertions, Physical” OR “Physical Exertions” OR “Physical Effort” OR “Effort, Physical” OR “Efforts, Physical” OR “Physical Efforts” OR “Physical Endurance” [Mesh] OR “Endurance, Physical” OR “Endurances, Physical” OR “Physical Endurances” OR “Blood Gas Monitoring, Transcutaneous” [Mesh] OR “Transcutaneous Blood Gas Monitoring” OR “Cutaneous Oximetry” OR “Cutaneous Oximetries” OR “Oximetries, Cutaneous” OR “Oximetry, Cutaneous” OR “Oximetry, Transcutaneous” OR “Oximetries, Transcutaneous” OR “Transcutaneous Oximetries” OR “Transcutaneous Oximetry” OR “Oxygen Partial Pressure Determination, Transcutaneous” OR “Transcutaneous Capnometry” OR “Capnometries, Transcutaneous” OR “Capnometry, Transcutaneous” OR “Transcutaneous Capnometries” OR “Carbon Dioxide Partial Pressure Determination, Transcutaneous” OR PtcO2 OR TcPCO2 OR “Carbon Dioxide” [Mesh] OR “Dioxide, Carbon” OR “Carbonic Anhydride” OR “Anhydride, Carbonic” OR Capnography [Mesh] OR Capnographies OR “Respiratory Insufficiency” [Mesh] OR “Respiratory Failure” OR “Respiratory Depression” OR “Ventilatory Depression” OR “Depressions, Ventilatory”).

Search terms strategy for outcome 2: NTproBNP (Mesh and Entry Terms)

(Exercise [Mesh] OR Exercises OR “Exercise, Physical” OR “Exercises, Physical” OR “Physical Exercise” OR “Physical Exercises” OR “Exercise, Aerobic” OR “Aerobic Exercises” OR “Exercises, Aerobic” OR “Aerobic Exercise” OR “Exercise Therapy” [Mesh] OR “Therapy, Exercise” OR “Exercise Therapies” OR “Therapies, Exercise” OR “Physical Education and Training” [Mesh] OR “Physical Education, Training” OR “Physical Education” OR “Education, Physical” OR “Physical and Rehabilitation Medicine” [Mesh] OR “Medicine, Physical” OR “Physical Medicine” OR “Physiatry” OR “Physical Medicine and Rehabilitation” OR “Physiatrics”) AND (“Natriuretic Peptide, Brain” [Mesh] OR “Peptide, Brain Natriuretic” OR “Brain Natriuretic Peptide” OR “BNP-32” OR “BNP 32” OR Nesiritide OR “B-Type Natriuretic Peptide” OR “Natriuretic Peptide, B-Type” OR “BNP Gene Product” OR “Type-B Natriuretic Peptide” OR “Natriuretic Peptide, Type-B” OR “Type B Natriuretic Peptide” OR “Natriuretic Peptide Type-B” OR “Natriuretic Peptide Type B” OR “Natriuretic Factor-32” OR “Natriuretic Factor 32” OR “Brain Natriuretic Peptide-32” OR “Brain Natriuretic Peptide 32” OR “Natriuretic Peptide-32, Brain” OR “Peptide-32, Brain Natriuretic” OR “Ventricular Natriuretic Peptide, B-type” OR “Ventricular Natriuretic Peptide, B type” OR Natrecor OR “Atrial Natriuretic Factor” [Mesh] OR Auriculin OR ANP OR “Natriuretic Peptides, Atrial” OR ANF OR Atriopeptins OR “Atrial Natriuretic Peptides” OR “Peptides, Atrial Natriuretic” OR “beta-Atrial Natriuretic Peptide” OR “beta Atrial Natriuretic Peptide” OR “beta-ANP” OR “beta ANP” OR “alpha-ANP Dimer” OR “alpha ANP Dimer” OR “alpha-Atrial Natriuretic Peptide” OR “alpha Atrial Natriuretic Peptide” OR “ANP-(99–126)” OR “Atriopeptin (99–126)” OR “Cardionatrin I” OR “Atrial Natriuretic Factor (99–126)” OR “ANF (1–28)” OR “Atriopeptin (1–28)” OR “Atrial Natriuretic Factor (1–28)” OR “gamma ANP (99–126)” OR “alpha ANP” OR “Cardiodilatin (99–126)” OR “ANP Prohormone (99–126)” OR “ANF (99–126)” OR “ANP (1–28)” OR “Atrial Natriuretic Factor Precursors” OR “Prepro-Cardiodilatin-Atrial Natriuretic Factor” OR “Prepro Cardiodilatin Atrial Natriuretic Factor” OR “Prepro-ANP” OR “Prepro ANP” OR “ANF Precursors” OR “Cardiodilatin Precursor” OR “Prepro-CDD-ANF” OR “Prepro CDD ANF” OR “gamma-Atrial Natriuretic Peptide” OR “gamma Atrial Natriuretic Peptide” OR “Atriopeptin Prohormone (1–126)” OR “Proatrial Natriuretic Factor” OR Pronatriodilatin OR “Atriopeptin 126” OR “Cardionatrin IV” OR “Atrial Natriuretic Factor Prohormone” OR “Atrial Natriuretic Factor (1–126)” OR “Atrial Natriuretic Peptide (1–126)” OR Atriopeptigen OR “ANF (1–126)” OR “ANP (1–126)” OR “Atrial Pronatriodilatin” OR “Pro-ANF” OR “Pro ANF” OR ProANF OR “Natriuretic Peptides” [Mesh] OR “Peptides, Natriuretic” OR “Natriuretic Peptide Hormones” OR “Peptide Hormones, Natriuretic” OR “pro-brain natriuretic peptide (1–76)” [Mesh] OR “N-terminal pro-BNP” OR “NTproBNP” OR “proBNP (1–76)” OR “proBNP(1–76)” OR “N-BNP peptide” OR “NT-BNP” OR “Amino-terminal pro-brain natriuretic peptide” OR “NT-proBNP”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipriano, G., Cipriano, V.T.F., da Silva, V.Z.M. et al. Aerobic exercise effect on prognostic markers for systolic heart failure patients: a systematic review and meta-analysis. Heart Fail Rev 19, 655–667 (2014). https://doi.org/10.1007/s10741-013-9407-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9407-6

Keywords

Navigation