Skip to main content
Log in

Physiologic and hematologic concerns of rotary blood pumps: what needs to be improved?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Over the past few decades, advances in ventricular assist device (VAD) technology have provided a promising therapeutic strategy to treat heart failure patients. Despite the improved performance and encouraging clinical outcomes of the new generation of VADs based on rotary blood pumps (RBPs), their physiologic and hematologic effects are controversial. Currently, clinically available RBPs run at constant speed, which results in limited control over cardiac workload and introduces blood flow with reduced pulsatility into the circulation. In this review, we first provide an update on the new challenges of mechanical circulatory support using rotary pumps including blood trauma, increased non-surgical bleeding rate, limited cardiac unloading, vascular malformations, end-organ function, and aortic valve insufficiency. Since the non-physiologic flow characteristic of these devices is one of the main subjects of scientific debate in the literature, we next emphasize the latest research regarding the development of a pulsatile RBP. Finally, we offer an outlook for future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeBakey ME (2000) The Odyssey of the artificial heart. Artif Organs 24:405–411

    Article  CAS  PubMed  Google Scholar 

  2. Aggarwal S, Pagani FD (2010) Bridge to transplantation: current outcomes. J Card Surg 25:455–461

    Article  PubMed  Google Scholar 

  3. Caccamo M, Eckman P, John R (2011) Current state of ventricular assist devices. Curr Heart Fail Rep 8:91–98

    Article  PubMed  Google Scholar 

  4. Sheriff J, Bluestein D, Girdhar G, Jesty J (2010) High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann Biomed Eng 38:1442–1450

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hellums J (1994) 1993 Whitaker lecture: biorheology in thrombosis research. Ann Biomed Eng 22:445–455

    Article  CAS  PubMed  Google Scholar 

  6. Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34:1361–1364

    Article  CAS  PubMed  Google Scholar 

  7. Wurzinger LJ, Opitz R, Blasberg P, Schmid-Schonbein H (1985) Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb Haemostat 54:381–386

    CAS  Google Scholar 

  8. Hathcock JJ (2006) Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 26:1729–1737

    Article  CAS  PubMed  Google Scholar 

  9. Sinning J-M, Losch J, Walenta K, Böhm M, Nickenig G, Werner N (2011) Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 32:2034–2041

    Article  CAS  PubMed  Google Scholar 

  10. Diehl P, Aleker M, Helbing T, Sossong V, Beyersdorf F, Olschewski M et al (2010) Enhanced microparticles in ventricular assist device patients predict platelet, leukocyte and endothelial cell activation. Interact Cardiovasc Thorac Surg 11:133–137

    Article  PubMed  Google Scholar 

  11. Eckman PM, John R (2012) Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation 125:3038–3047

    Article  PubMed  Google Scholar 

  12. Slaughter M (2010) Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res 3:618–624

    Article  PubMed  Google Scholar 

  13. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54:312–321

    Article  PubMed  Google Scholar 

  14. Letsou GV, Shah N, Gregoric ID, Myers TJ, Delgado R, Frazier OH (2005) Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. J Heart Lung Transplant 24:105–109

    Article  PubMed  Google Scholar 

  15. Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M et al (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 137:208–215

    Article  CAS  PubMed  Google Scholar 

  16. Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B et al (2011) Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 30:849–853

    Article  PubMed  Google Scholar 

  17. Morgan JA, Paone G, Nemeh HW, Henry SE, Patel R, Vavra J et al (2012) Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transplant 31:715–718 The official publication of the International Society for Heart Transplantation

    Article  PubMed  Google Scholar 

  18. Uriel N, Pak S-W, Jorde UP, Jude B, Susen S, Vincentelli A et al (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56:1207–1213

    Article  PubMed  Google Scholar 

  19. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V III et al (2010) Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg 90:1263–1269

    Article  PubMed  Google Scholar 

  20. Meyer AL, Malehsa D, Bara C, Budde U, Slaughter MS, Haverich A et al (2010) Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device/clinical perspective. Circ Heart Fail 3:675–681

    Article  PubMed  Google Scholar 

  21. Vincentelli A, Susen S, Le Tourneau T, Six I, Fabre O, Juthier F et al (2003) Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med 349:343–349

    Article  PubMed  Google Scholar 

  22. Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E et al (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J 32:1148–1160

    Article  PubMed  Google Scholar 

  23. Levin HR, Oz MC, Catanese KA, Rose EA, Burkhoff D (1996) Transient normalization of systolic and diastolic function after support with a left ventricular assist device in a patient with dilated cardiomyopathy. J Heart Lung Transplant 15:840–842

    Google Scholar 

  24. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355:1873–1884

    Article  CAS  PubMed  Google Scholar 

  25. Li YY, Feng Y, McTiernan CF, Pei W, Moravec CS, Wang P et al (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    Article  CAS  PubMed  Google Scholar 

  26. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91:2717–2720

    Article  CAS  PubMed  Google Scholar 

  27. Altemose GT, Gritsus V, Jeevanandam V, Goldman B, Margulies KB (1997) Altered myocardial phenotype after mechanical support in human beings with advanced cardiomyopathy. J Heart Lung Transplant 16:765–773 The official publication of the International Society for Heart Transplantation

    CAS  PubMed  Google Scholar 

  28. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB (1998) Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98:656–662

    Article  CAS  PubMed  Google Scholar 

  29. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB (1998) Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97:2316–2322

    Article  CAS  PubMed  Google Scholar 

  30. Drews T, Jurmann M, Michael D, Miralem P, Weng Y, Hetzer R (2008) Differences in pulsatile and non-pulsatile mechanical circulatory support in long-term use. J Heart Lung Transplant 27:1096–1101

    Article  PubMed  Google Scholar 

  31. Hayes HM, Dembo LG, Larbalestier R, O’Driscoll G (2010) Management options to treat gastrointestinal bleeding in patients supported on rotary left ventricular assist devices: a single-center experience. Artif Organs 34:703–706

    Article  PubMed  Google Scholar 

  32. Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG, Kaiser L et al (2010) Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. J Thorac Cardiovasc Surg 140:1181–1188

    Article  PubMed  Google Scholar 

  33. Vane JR, Änggård EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  CAS  PubMed  Google Scholar 

  34. Amir O, Radovancevic B, Delgado RM III, Kar B, Radovancevic R, Henderson M et al (2006) Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. J Heart Lung Transplant 25:391–394

    Article  PubMed  Google Scholar 

  35. Westaby S, Bertoni GB, Clelland C, Nishinaka T, Frazier OH (2007) Circulatory support with attenuated pulse pressure alters human aortic wall morphology. J Thorac Cardiovasc Surg 133:575–576

    Article  PubMed  Google Scholar 

  36. Nishimura T, Tatsumi E, Nishinaka T, Taenaka Y, Masuzawa T, Nakata M et al (1999) Diminished vasoconstrictive function caused by long-term nonpulsatile left heart bypass. Artif Organs 23:722–726

    Article  CAS  PubMed  Google Scholar 

  37. Mandelbaum I, Burns WH (1965) Pulsatile and nonpulsatile blood flow. JAMA, J Am Med Assoc 191:657–660

    Article  CAS  Google Scholar 

  38. Wesolowski SA, Sauvage LR, Pinc RD (1955) Extracorporeal circulation: the role of the pulse in maintenance of the systemic circulation during heart-lung by-pass. Surgery 37:663–682

    CAS  PubMed  Google Scholar 

  39. Saito S, Westaby S, Piggot D, Dudnikov S, Robson D, Catarino PA et al (2002) End-organ function during chronic nonpulsatile circulation. Ann Thorac Surg 74:1080–1085

    Article  PubMed  Google Scholar 

  40. Litwak KN, Kihara SI, Kameneva MV, Litwak P, Uryash A, Wu Z et al (2003) Effects of continuous flow left ventricular assist device support on skin tissue microcirculation and aortic hemodynamics. ASAIO J 49:103–107

    Article  PubMed  Google Scholar 

  41. Sezai A, Shiono M, Orime Y, Nakata K-I, Hata M, Nemoto M et al (1996) Comparison studies of major organ microcirculations under pulsatile- and nonpulsatile-assisted circulations. Artif Organs 20:139–142

    Article  CAS  PubMed  Google Scholar 

  42. Slaughter MS (2010) Long-term continuous flow left ventricular assist device support and end-organ function: prospects for destination therapy. J Card Surg 25:490–494

    Article  PubMed  Google Scholar 

  43. Pirbodaghi T (2013) We always need a pulse, or do we? J Cardiovasc Transl Res 9:294

    Google Scholar 

  44. Radovancevic B, Vrtovec B, de Kort E, Radovancevic R, Gregoric ID, Frazier OH (2007) End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transplant 26:815–818

    Article  PubMed  Google Scholar 

  45. Wieselthaler GM, Riedl M, Schima H, Wagner O, Waldhäusl W, Wolner E et al (2007) Endocrine function is not impaired in patients with a continuous MicroMed–DeBakey axial flow pump. J Thorac Cardiovasc Surg 133:2–6

    Article  PubMed  Google Scholar 

  46. Polska E, Schima H, Wieselthaler G, Schmetterer L (2007) Choroidal microcirculation in patients with rotary cardiac assist device. J Heart Lung Transplant 26:572–578 The official publication of the International Society for Heart Transplantation

    Article  PubMed  Google Scholar 

  47. Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R (2009) Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant 28:352–359

    Article  PubMed  Google Scholar 

  48. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM et al (2009) Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 120:2352–2357

    Article  PubMed  Google Scholar 

  49. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S et al (2012) Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure/clinical perspective. Circulation 125:2844–2853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. John R, Mantz K, Eckman P, Rose A, May-Newman K (2010) Aortic valve pathophysiology during left ventricular assist device support. J Heart Lung Transplant 29:1321–1329

    Article  PubMed  Google Scholar 

  51. Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ (2010) The development of aortic insufficiency in left ventricular assist device-supported patients/clinical perspective. Circ Heart Fail 3:668–674

    Article  PubMed Central  PubMed  Google Scholar 

  52. Rose AG, Park SJ, Bank AJ, Miller LW (2000) Partial aortic valve fusion induced by left ventricular assist device. Ann Thorac Surg 70:1270–1274

    Article  CAS  PubMed  Google Scholar 

  53. Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte JV, Russell SD (2008) Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant 27:1269–1274 The official publication of the International Society for Heart Transplantation

    Article  PubMed  Google Scholar 

  54. Pak S-W, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC et al (2010) Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant 29:1172–1176 The official publication of the International Society for Heart Transplantation

    Article  PubMed  Google Scholar 

  55. Tuzun E, Gregoric ID, Conger JL, Golden K, Jarvik R, Frazier OH et al (2005) The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial flow device. ASAIO J 51:139–143

    Article  PubMed  Google Scholar 

  56. Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J Thorac Cardiovasc Surg 144:970–977

  57. Pirbodaghi T, Weber A, Axiak S, Carrel T, Vandenberghe S (2012) Asymmetric speed modulation of a rotary blood pump affects ventricular unloading. Eur J Cardio-Thorac Surg 43:383–388

    Google Scholar 

  58. Bearnson GB, Olsen DB, Khanwilkar PS, Long JW, Allaire PE, Maslen EH (1996) Pulsatile operation of a centrifugal ventricular assist device with magnetic bearings. ASAIO J 42:M620–M623

    Article  CAS  PubMed  Google Scholar 

  59. Pirbodaghi T, Weber A, Carrel T, Vandenberghe S (2011) Effect of pulsatility on the mathematical modeling of rotary blood pumps. Artif Organs 35:825–832

    Article  PubMed  Google Scholar 

  60. Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LAR, Fukamachi K (2010) Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO J 56:403–409. doi:10.1097/MAT.0b013e3181e650f8

    Google Scholar 

  61. Bourque K, Dague C, Farrar D, Harms K, Tamez D, Cohn W et al (2006) In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta. Artif Organs 30:638–642

    Article  PubMed  Google Scholar 

  62. Ando M, Takewa Y, Nishimura T, Yamazaki K, Kyo S, Ono M et al (2011) A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J Artif Organs 14:185–191

    Article  PubMed  Google Scholar 

  63. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  64. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

    Article  CAS  PubMed  Google Scholar 

  65. Slaughter MS, Myers TJ (2010) Transcutaneous energy transmission for mechanical circulatory support systems: history, current status, and future prospects. J Card Surg 25:484–489

    Article  PubMed  Google Scholar 

  66. Westaby S, Siegenthaler M, Beyersdorf F, Massetti M, Pepper J, Khayat A et al (2010) Destination therapy with a rotary blood pump and novel power delivery. Eur J Cardiothorac Surg 37:350–356

    PubMed  Google Scholar 

  67. Waters BH, Sample AP, Bonde P, Smith JR (2012) Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc IEEE 100:138–149

    Article  Google Scholar 

  68. Sample AP, Meyer DA, Smith JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. Ind Electron IEEE Trans 58:544–554

    Article  Google Scholar 

  69. Jesty J, Yin W, Perrotta P, Bluestein D (2003) Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14:143–149

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Tohid Pirbodaghi, Chris Cotter, and Kevin Bourque are R&D researchers at Thoratec Corporation in Burlington, MA, USA. The authors have no financial or personal relationships that could inappropriately influence or bias this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohid Pirbodaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirbodaghi, T., Asgari, S., Cotter, C. et al. Physiologic and hematologic concerns of rotary blood pumps: what needs to be improved?. Heart Fail Rev 19, 259–266 (2014). https://doi.org/10.1007/s10741-013-9389-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9389-4

Keywords

Navigation