Skip to main content

Advertisement

Log in

Structural changes in the myocardium during diabetes-induced cardiomyopathy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a major metabolic disorder currently affecting over 250 million people globally. It costs the worldwide health services almost £800 billion annually to diagnose, treat and care for patients with diabetes. DM is predicted to rise to 350 million by 2030. If left unmanaged, DM can lead to numerous long-term complications including micro- and macro-angiopathy and heart failure (HF). Most diabetics usually die as a result of HF resulting from diabetes-induced coronary artery disease and cardiomyopathy. Coronary artery disease and cardiomyopathy are normally preceded by hyperglycaemia (HG). This review examines the structural changes, which occur within the myocardium and cardiomyocytes during exposure of the heart to diabetes-induced HG and HG-induced oxidative stress. HG and the resulting oxidative stress are associated with marked myocardial hypertrophy and fibrosis compared to control heart. At the ultrastructural level, cardiomyocytes subjected to chronic HG and subsequent oxidative stress display swollen mitochondria, reduced mitochondrial number and defective myofibrils and intercalated discs. Evidence from many studies shows that both type 1 and type 2 diabetes-induced HG can cause myocardial fibrosis, mitochondriopathy, myocyte hypertrophy and deranged myofibrils. All of these structural changes may eventually result in HF if left untreated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strömberg A (2005) The crucial role of patient education in heart failure. Eur J Heart Fail 7:363–369

    Article  PubMed  Google Scholar 

  2. Braunstein JBAG, Gerstenblith G, Weller W, Niefeld M, Herbert R, Wu AW (2003) Non-cardiac comorbidity increases preventable hospitalizations and mortality among Medicare beneficiaries with chronic heart failure. J Am Coll Cardiol 42:1226–1233

    Article  PubMed  Google Scholar 

  3. Kumar P, Clark M (2002) Diabetes mellitus and other disorders of metabolism. In: Kumar P, Clark M (eds) Clinical medicine, 5th edn. WB Saunders, London, pp 1069–1012

  4. Cowie MR, Mosterd A, Wood DA, Deckers JW, Poole-Wilson PA, Sutton GC et al (1997) The epidemiology of heart failure. Eur Heart J 18:208–225

    Article  CAS  PubMed  Google Scholar 

  5. Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  6. Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure: from molecules to man (Part II). Cardiovasc Pathol 14:49–60

    Article  CAS  PubMed  Google Scholar 

  7. D’Souza A, Wood NM, Boyett M, Adeghate E, Howarth CF, Bidasee KA, Singh J (2011) Left ventricle structural remodelling in the prediabetic goto-kakizaki rat—potential role of transforming growth factor β1. Exp Physiol 96:875–888

    PubMed  Google Scholar 

  8. Maytin M, Colucci WS (2002) Molecular and cellular mechanisms of myocardial remodelling. J Nucl Cardiol 9:319–327

    Article  PubMed  Google Scholar 

  9. Swynghedauw B, Delcayre C, Samuel JL et al (2010) Molecular mechanisms in evolutionary cardiology failure. Ann NY Acad Sci 1188:58–67

    Article  CAS  PubMed  Google Scholar 

  10. Martin JH, Connelly KA, Boyle A, Kompa A, Zhang Y, Kelly D, Gilbert RE, Krum H (2010) Effect of atorvastatin on cardiac remodelling and mortality in rats following hyperglycemia and myocardial infarction. Int J Cardiol 143:353–360

    Article  PubMed  Google Scholar 

  11. D’Souza A, Hussain M, Howarth CF, Woods NM, Bidasee KA, Singh J (2009) Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Mol Cell Biochem 331:89–116

    Article  PubMed  Google Scholar 

  12. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    Article  PubMed  Google Scholar 

  13. Pantos C, Mourouzis I, Cokkinos DV (2011) New insights into the role of thyroid hormone in cardiac remodeling: time to reconsider? Heart Fail Rev 16:79–96

    Article  CAS  PubMed  Google Scholar 

  14. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  15. Verny C (2007) Congestive heart failure in the elderly diabetic. Diabetes Metab 33:S32–S39

    Article  PubMed  Google Scholar 

  16. Sanchex-Bariga JJ, Rangel A, Castaneda R, Flores D, Frati AC, Ramos MA, Amato D (2001) LV diastolic dysfunction secondary to hyperglycemia in patients with type 2 diabetes. Archives Med Res 32:44–47

    Article  Google Scholar 

  17. Doron A (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of ageing and diabetes. J Hyperten 21:3–12

    Article  Google Scholar 

  18. Bracken NK, Singh J, Winlow W, Howarth FC (2003) Mechanism underlying contractile dysfunction in streptozotocin-induced type 1 and type 2 diabetic cardiomyopathy. In: Pierce GN, Nagano M, Zahradka P, Dhalla NS (eds) Atherosclerosis, hypertension and diabetes. Kluwer Academic Publishers, Boston, pp 387–408

  19. Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261:235–243

    Article  CAS  PubMed  Google Scholar 

  20. Bracken N, Howarth FC, Singh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann NY Acad Sci 1084:208–222

    Article  CAS  PubMed  Google Scholar 

  21. Stahrenberg R, Edelmann F, Mende M et al (2010) Association of glucose metabolism with diastolic function along the diabetic continuum. Diabetologia 53:1331–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Adeghate E, Schattner P, Dunn E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann NY Acad Sci 1084:1–29

    Article  PubMed  Google Scholar 

  23. Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad Sci 51:80–85

    Google Scholar 

  24. Portha B, Serradas P, Bailbe D et al (1991) Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes 40:486–491

    Article  CAS  PubMed  Google Scholar 

  25. El-Omar MM, Yang ZK, Phillips AO, Shah AM (2004) Cardiac dysfunction in the Goto-Kakizaki rat. A model of type II diabetes mellitus. Basic Res Cardiol 99:133–141

    Article  PubMed  Google Scholar 

  26. Hughes SJ, Faehling M, Thorneley CW, Proks P, Ashcroft FM, Smith PA (1998) Electrophysiological and metabolic characterization of single beta-cells and islets from diabetic GK rats. Diabetes 47:73–81

    Article  CAS  PubMed  Google Scholar 

  27. Howarth FC, Shafiullah M, Qureshi MA (2007) Chronic effects of type 2 diabetes mellitus on cardiac muscle contraction in the Goto-Kakizaki rat. Exp Physiol 92:1029–1036

    Article  CAS  PubMed  Google Scholar 

  28. Li B, Zheng Z, Wei Y, Wang M, Peng J, Kang T, Huang X, Xiao J, Li Y, Li Z (2011) Therapeutic effects of neuregulin-1 in diabetic cardiomyopathy rats. Cardiovasc Diabetol 10:69

    Article  PubMed Central  PubMed  Google Scholar 

  29. Li CJ, Lv L, Li H, Yu DM (2012) Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 11:73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Regan TJ, Wu CF, Yeh CK, Oldewurtel HA, Haider B (1981) Myocardial composition and function in diabetes. The effects of chronic insulin use. Circ Res 49:1268–1277

    Article  CAS  PubMed  Google Scholar 

  31. Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenblick EH (1980) Altered myocardial mechanics in diabetic rats. Circ Res 47:922–933

    Article  CAS  PubMed  Google Scholar 

  32. Modrak J (1980) Collagen metabolism in the myocardium from streptozotocin-diabetic rats. Diabetes 29:547–550

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu M, Umeda K, Sugihara N, Yoshio H, Ino H, Takeda R, Okada Y, Nakanishi I (1993) Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 46:32–36

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi M, Techigawara M, Ishihata T, Asakura T, Saito F, Maehara K, Maruyama Y (1997) A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels 12:267–274

    Article  CAS  PubMed  Google Scholar 

  35. Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR (2007) Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Horm Metab Res 39:672–676

    Article  CAS  PubMed  Google Scholar 

  36. Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, Newcomb AE, Schalkwijk CG, Black MJ, Kelly DJ (2011) Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol 10:80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Thompson EW (1988) Structural manifestations of diabetic cardiomyopathy in the rat and its reversal by insulin treatment. Am J Anat 182:270–282

    Article  CAS  PubMed  Google Scholar 

  38. Kita Y, Shimizu M, Sugihara N, Shimizu K et al (1991) Correlation between histopathological changes and mechanical dysfunction in diabetic rat hearts. Diabetes Res Clin Pract 11:177–188

    Article  CAS  PubMed  Google Scholar 

  39. Riva E, Andreoni G, Bianchi R, Latini R et al (1998) Changes in diastolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes. Pharmacol Res 37:233–240

    Article  CAS  PubMed  Google Scholar 

  40. Ban CR, Twigg SM (2008) Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 4:575–596

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  42. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  43. Tschope C, Walther T, Koniger J et al (2004) Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J 18:828–835

    Article  CAS  PubMed  Google Scholar 

  44. Wilson D, Massaeli H, Russell JC, Pierce GN, Zahradka P (2003) Low matrix metalloproteinase levels precede vascular lesion formation in the JCR: LA-cp rat. Mol Cell Biochem 249:151–155

    Article  CAS  PubMed  Google Scholar 

  45. De Tombe PP (1998) Altered contractile function in heart failure. Cardiovasc Res 37:367–380

    Article  PubMed  Google Scholar 

  46. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26:1589–1596

    Article  CAS  PubMed  Google Scholar 

  47. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948

    Article  CAS  PubMed  Google Scholar 

  48. van Campenhout A, van Campenhout CM, Lagrou AR, Manuel-y-Keenoy B (2003) Transferrin modifications and lipid peroxidation: implications in diabetes mellitus. Free Radic Res 37:1069–1077

    Article  PubMed  Google Scholar 

  49. Feng Z, Hu W, Tang MS (2004) Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc Natl Acad Sci USA 101:8598–8602

    Article  CAS  PubMed  Google Scholar 

  50. Seager MJ, Singal PK, Orchard R, Pierce GN, Dhalla NS (1984) Cardiac cell damage: a primary myocardial disease in streptozotocin-induced chronic diabetes. Br J Exp Pathol 65:613–623

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hsiao YC, Suzuki K, Abe H, Toyota T (1987) Ultrastructural alterations in cardiac muscle of diabetic BB Wistar rats. Virchows Arch A Pathol Anat Histopathol 411:45–52

    Article  CAS  PubMed  Google Scholar 

  52. Pierce GN, Dhalla NS (1985) Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54

    CAS  PubMed  Google Scholar 

  53. Raza H, Prabu SK, Robin MA, Avadhani NG (2004) Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4–4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 53:185–194

    Article  CAS  PubMed  Google Scholar 

  54. Santos DL, Palmeira CM, Seiça R, Dias J, Mesquita J, Moreno AJ, Santos MS (2003) Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem 246:163–170

    Article  CAS  PubMed  Google Scholar 

  55. Valensi PE, Johnson NB, Maison-Blanche P, Extramania F, Motte G, Coumel P (2002) Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care 25:918–923

    Article  PubMed  Google Scholar 

  56. Pfister R, Cairns R, Erdmann E, Schneider CA, PROactive investigators (2011) Prognostic impact of electrocardiographic signs in patients with Type 2 diabetes and cardiovascular disease: results from the PROactive study. Diabet Med 28:1206–1212

    Article  CAS  PubMed  Google Scholar 

  57. Pierce GN, Dhalla NS (1981) Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 12:1063–1069

    Article  Google Scholar 

  58. Pierce GN, Dhalla NS (1985) Mechanisms of the defect in cardiac myofibrillar function during diabetes. Am J Physiol 248:E170–E175

    CAS  PubMed  Google Scholar 

  59. Melchior TM, Seibaek MB, Sajadieh A (1998) Coronary atherosclerosis or diabetic cardiomyopathy? Pathoanatomic changes of blood vessels, nerves and myocardium in patients with diabetes mellitus. Ugeskr Laeger 160:1307–1311

    CAS  PubMed  Google Scholar 

  60. Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88:1322–1335

    Article  PubMed  Google Scholar 

  61. Kirpichnikov D, Sowers JR (2001) Diabetes mellitus and diabetes-associated vascular disease. Trends Endocrinol Metab 12:225–230

    Article  CAS  PubMed  Google Scholar 

  62. Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102:1014–1019

    Article  CAS  PubMed  Google Scholar 

  63. Manson JE (2013) The kronos early estrogen prevention study. Womens Health (Lond Engl) 9:9–11

    Article  CAS  Google Scholar 

  64. Brown RA, Filipovich P, Walsh MF, Sowers JR (1996) Influence of sex, diabetes and ethanol on intrinsic contractile performance of isolated rat myocardium. Basic Res Cardiol 91:353–360

    CAS  PubMed  Google Scholar 

  65. Hu FB, Stampfer MJ, Solomon CG, Liu S, Willett WC, Speizer FE, Nathan DM, Manson JE (2001) The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med 161:1717–1723

    Article  CAS  PubMed  Google Scholar 

  66. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581

    Article  CAS  PubMed  Google Scholar 

  67. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, Freyssinet JM, Oliver C, Sampol J, Dignat-George F (2002) Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51:2840–2845

    Article  CAS  PubMed  Google Scholar 

  68. Djaberi R, Schuijf JD, Boersma E, Kroft LJ, Pereira AM, Romijn JA, Scholte AJ, Jukema JW, Bax JJ (2009) Differences in atherosclerotic plaque burden and morphology between type 1 and 2 diabetes as assessed by multislice computed tomography. Diabetes Care 32:1507–1512

    Article  CAS  PubMed  Google Scholar 

  69. Pierce GN, Russell JC (1997) Regulation of intracellular Ca2q in the heart during diabetes. Cardiovasc Res 34:41–47

    Article  CAS  PubMed  Google Scholar 

  70. Adeghate E (2004) Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261:187–191

    Article  CAS  PubMed  Google Scholar 

  71. Wang CC, Reusch JE (2012) Diabetes and cardiovascular disease: changing the focus from glycemic control to improving long-term survival. Am J Cardiol 110(9 Suppl):58B–68B

    Article  PubMed Central  PubMed  Google Scholar 

  72. Wang B, Tedder ME, Perez CE, Wang G, de Jongh Curry AL, To F, Elder SH, Williams LN, Simionescu DT, Liao J (2012) Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J Mater Sci Mater Med 23:1835–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Adeghate E (1998) Host-graft circulation and vascular morphology in pancreatic tissue transplants in rats. Anat Rec 251:448–459

    Article  CAS  PubMed  Google Scholar 

  74. Adeghate E, Kalasz H, Veress G, Tekes K (2010) Medicinal chemistry of drugs used in diabetic cardiomyopathy. Curr Med Chem 17:517–551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Rashed Hameed and Mr. Saeed Tariq for technical assistance and Dr. Alicia D’Souza for help on cardiac fibrosis.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Adeghate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeghate, E., Singh, J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 19, 15–23 (2014). https://doi.org/10.1007/s10741-013-9388-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9388-5

Keywords

Navigation