Skip to main content
Log in

Calcium handling proteins: structure, function, and modulation by exercise

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation–contraction process in the heart among those are sarcoplasmic reticulum Ca2+-ATPase, phospholamban, calsequestrin, sodium–calcium exchanger, L-type calcium’s channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunt SA, Abraham WT, Chin MS et al (2009) Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. J Am CollCardiol 53(15):e1–e90

    Google Scholar 

  2. Weber KT, Sun Y, Guarda E (1994) Structural remodelling in hypertensive heart disease and the roles of hormones. Hypertension 23(6 Pt 2):869–877

    CAS  PubMed  Google Scholar 

  3. Conrad CH, Brooks WW, Robinson KG, Bing OHL (1991) Impaired myocardial function in spontaneously hypertensive rats with heart failure. Am J Physiol 260:H136–H145

    CAS  PubMed  Google Scholar 

  4. Gwathmey JK, Warren SE, Briggs GM, Coelas L, Feldman MD, Phillips PJ, Callahan M Jr, Schoen FJ, Grossman W, Morgan JP (1991) Diastolic dysfunction in hypertrophic cardiomyopathy: effect on active force generation during systole. J Clin Invest 87:1023–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Brooksby P, Levi AJ, Jones JV (1992) Contractile properties of ventricular myocytes isolated from spontaneously hypertensive rat. J Hypertens 10:521–527

    CAS  PubMed  Google Scholar 

  6. Gwathmey JK, Morgan JP (1993) Sarcoplasmic reticulum calcium mobilization in right ventricular pressure-overloaded hypertrophy in the ferret: relation to diastolic dysfunction and a negative treppe. Pflügers Arch 422:599–608

    CAS  PubMed  Google Scholar 

  7. Hajjar RJ, Liao R, Young JB, Fuliehan F, Glass MG, Gwathmey JK (1993) Pathophysiological and biochemical characterization of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27:2212–2221

    CAS  PubMed  Google Scholar 

  8. Cerbai E, Barbieri M, Li Q, Mugelli A (1994) Ionic basis of action potential prolongation of hypertrophied myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 28:1180–1187

    CAS  PubMed  Google Scholar 

  9. Moore RL, Yelamarty RV, Misawa H, Scaduto RC, Pawlush DG, Elensky M, Cheung JY (1991) Altered Ca2 + dynamics in single cardiac myocytes from renovascular hypertensive rats. Am J Physiol 260:C327–C337

    CAS  PubMed  Google Scholar 

  10. Bailey BA, Houser SA (1992) Calcium transients in feline left ventricular myocytes with hypertrophy induced by slow progressive pressure overload. J Mol Cell Cardiol 24:365–373

    CAS  PubMed  Google Scholar 

  11. Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    CAS  PubMed  Google Scholar 

  12. van Deel ED, de Boer M, Kuster DW, Boontje NM, Holemans P, Sipido KR, van der Velden J, Duncker DJ (2011) Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol 50(6):1017–1025

    PubMed  Google Scholar 

  13. Dupont S, Maizel J, Mentaverri R, Chillon JM, Six I, Giummelly P, Brazier M, Choukroun G, Tribouilloy C, Massy ZA, Slama M (2012) The onset of left ventricular diastolic dysfunction in SHR rats is not related to hypertrophy or hypertension. Am J Physiol Heart Circ Physiol 1; 302(7):H1524–H1532

    Google Scholar 

  14. Arai M et al (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469

    CAS  PubMed  Google Scholar 

  15. Go LO et al (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95:888–894

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33(7):1345–1353

    CAS  PubMed  Google Scholar 

  17. Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11

    CAS  PubMed  Google Scholar 

  18. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  PubMed  Google Scholar 

  19. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    CAS  PubMed  Google Scholar 

  20. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290–299

    CAS  PubMed  Google Scholar 

  22. LaPointe MC, Deschepper CF, Wu JP, Gardner DG (1990) Extracellular calcium regulates expression of the gene for atrial natriuretic factor. Hypertension 15:20–28

    CAS  PubMed  Google Scholar 

  23. Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J (1998) Ca2 + currents in compensated hypertrophy and heart failure. Cardiovasc Res 37:300–311

    CAS  PubMed  Google Scholar 

  24. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

    CAS  PubMed  Google Scholar 

  25. Beuckelmann DJ, Nabauer M, Kruger C, Erdmann E (1995) Altered diastolic [Ca2+]i handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 129(4):684–689

    CAS  PubMed  Google Scholar 

  26. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4(7):566–577

    CAS  PubMed  Google Scholar 

  27. Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114(Pt 17):3167–3176

    CAS  PubMed  Google Scholar 

  28. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94(6):e61–e70

    CAS  PubMed  Google Scholar 

  29. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB et al (1997) Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806

    CAS  PubMed  Google Scholar 

  30. Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947

    CAS  PubMed  Google Scholar 

  31. Ebashi S, Lippman F (1962) Adenosine triphosphate linked concentration of calcium ions in a particular fraction of rabbit muscle. J Cell Biol 14:389–400

    CAS  PubMed  Google Scholar 

  32. Gelebart P, Martin V, Enouf J, Papp B (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303(2):676–684

    CAS  PubMed  Google Scholar 

  33. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    CAS  PubMed  Google Scholar 

  34. Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U et al (1996) Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med (Berl) 74(6):321–332

    CAS  Google Scholar 

  35. Martonosi AN, Pikula S (2003) The structure of the Ca2+-ATPase of sarcoplasmic reticulum. Acta Biochim Pol 50(2):337–365

    CAS  PubMed  Google Scholar 

  36. Martin V, Bredoux R, Corvazier E, Van Gorp R, Kovacs T, Gelebart P et al (2002) Three novel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms. Expression, regulation, and function of the membranes of the SERCA3 family. J Biol Chem 277(27):24442–24452

    CAS  PubMed  Google Scholar 

  37. Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740

    CAS  PubMed  Google Scholar 

  38. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF (2003) Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol 284:H1043–H1047

    CAS  PubMed  Google Scholar 

  39. Kotlo K, Johnson KR, Grillon JM, Geenen DL, Detombe P, Danziger RS (2012) Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 21(77):1–13

    Google Scholar 

  40. Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192

    CAS  PubMed  Google Scholar 

  41. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    CAS  PubMed  Google Scholar 

  42. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    CAS  PubMed  Google Scholar 

  43. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277(25):22896–22901

    CAS  PubMed  Google Scholar 

  44. Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641

    CAS  PubMed  Google Scholar 

  45. Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34(8):951–969

    CAS  PubMed  Google Scholar 

  46. Frantz S, Behr T, Hu K, Fraccarollo D, Strotmann J, Goldberg E et al (2007) Role of p38 mitogen-activated protein kinase in cardiac remodelling. Br J Pharmacol 150(2):130–135

    CAS  PubMed  Google Scholar 

  47. Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 43(6):754–766

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN (2003) Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing 607 hearts. Am J Physiol Heart Circ Physiol 285(6):H2373–H2381

    CAS  PubMed  Google Scholar 

  49. van Oort RJ, van RE, Bourajjaj M, Schimmel J, Jansen MA, van der NR, et al (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in 621 calcineurin-induced heart failure. Circulation 114(4):298–308

  50. Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316

    CAS  PubMed  Google Scholar 

  51. Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M et al (1997) AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95(5):1201–1206

    CAS  PubMed  Google Scholar 

  52. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J et al (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103(5):670–677

    CAS  PubMed  Google Scholar 

  53. AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med Sep 7(9):1003–1009

    CAS  Google Scholar 

  54. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    CAS  PubMed  Google Scholar 

  55. Valente AJ, Clark RA, Siddesha JM, Siebenlist U, Chandrasekar B (2012) CIKS (Act1 or TRAF3IP2) mediates angiotensin-II-induced interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy. J Mol Cell Cardiol 53(1):113–124

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhang ZY, Liu XH, Hu WC, Rong F, Wu XD (2010) The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1499–H1509

    CAS  PubMed  Google Scholar 

  57. Dode L, Wuytack F, Kools PF, Baba-Aissa F, Raeymaekers L, Brike F et al (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Biochem J 318(Pt 2):689–699

    CAS  PubMed  Google Scholar 

  58. Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB (1992) Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem 267(18):12545–12551

    CAS  PubMed  Google Scholar 

  59. Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93(6):487–490

    CAS  PubMed  Google Scholar 

  60. Zheng M, Dilly K, Dos Santos Cruz J, Li M, Gu Y, Ursitti JA et al (2004) Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol 286(1):H424–433

    CAS  PubMed  Google Scholar 

  61. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92(4):778–784

    CAS  PubMed  Google Scholar 

  62. Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H (1997) Calcium handling proteins in the failing human heart. Basic Res Cardiol 92(Suppl 1):87–93

    CAS  PubMed  Google Scholar 

  63. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS et al (1999) Relationship between Na+–Ca2+ exchanger protein levels and diastolic function of failing human myocardium. Circulation 99(5):641–648

    CAS  PubMed  Google Scholar 

  64. Houser SR, Piacentino V, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32(9):1595–1607

    CAS  PubMed  Google Scholar 

  65. Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90(2):653–657

    CAS  PubMed  Google Scholar 

  66. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30(10):1929–1937

    CAS  PubMed  Google Scholar 

  67. Schwinger RHG, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M et al (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92(11):3220–3228

    CAS  PubMed  Google Scholar 

  68. Dhalla NS, Golfman L, Liu X, Sasaki H, Elimban V, Rupp H (1999) Subcellular remodeling and heart dysfunction in cardiac hypertrophy due to pressure overload. Ann N Y Acad Sci 874(1):100–110

    CAS  PubMed  Google Scholar 

  69. Bassani JW, Qi M, Samarel AM, Bers DM (1994) Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells. Circ Res 74(5):991–997

    CAS  PubMed  Google Scholar 

  70. Ait Mou Y, Reboul C, Andre L, Lacampagne A, Cazorla O (2009) Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovasc Res 81(3):555–564

    PubMed  Google Scholar 

  71. Buttrick PM, Kaplan M, Leinwand LA, Scheuer J (1994) Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol 26(1):61–67

    CAS  PubMed  Google Scholar 

  72. Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 249(19):6174–6180

    CAS  PubMed  Google Scholar 

  73. Napolitano R, Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazzi A (1992) Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca2+-calmodulin-dependent protein kinase system. J Mol Cell Cardiol 24(4):387–396

    CAS  PubMed  Google Scholar 

  74. Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S (1999) Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 276(5 Pt 2):H1625–H1633

    CAS  PubMed  Google Scholar 

  75. Collins HL, Loka AM, DiCarlo SE (2005) Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. Am J Physiol Heart Circ Physiol 288(2):H532–H540

    CAS  PubMed  Google Scholar 

  76. Sugizaki MM, Leopoldo AP, Conde SJ, Campos DS, Damato R, Leopoldo AS et al (2011) Upregulation of mRNA myocardium calcium handling in rats submitted to exercise and food restriction. Arq Bras Cardiol 97(1):46–52

    CAS  PubMed  Google Scholar 

  77. Yin CC, Lai FA (2000) Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2(9):669–671

    CAS  PubMed  Google Scholar 

  78. Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE et al (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–109

    CAS  PubMed  Google Scholar 

  79. Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77:265–273

    CAS  PubMed  Google Scholar 

  81. Teucher N, Prestle J, Seidler T, Currie S, Elliott EB, Reynolds DF et al (2004) Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110:3553–3559

    CAS  PubMed  Google Scholar 

  82. Vangheluwe P, Tjwa M, Van Den Bergh A, Louch WE, Beullens M, Dode L et al (2006) SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317

    CAS  PubMed  Google Scholar 

  83. Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F (2006) New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763:1216–1228

    CAS  PubMed  Google Scholar 

  84. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA et al (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299(5611):1410–1413

    CAS  PubMed  Google Scholar 

  86. Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA et al (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103(5):1388–1393

    CAS  PubMed  Google Scholar 

  87. Asahi M, Otsu K, Nakayama H, Hikoso S, Takeda T, Gramolini AO et al (2004) Cardiac-specific overexpression of sarcolipin inhibits sarco(endo) plasmic reticulum Ca2+ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc Natl Acad Sci USA 101(25):9199–9204

    CAS  PubMed  Google Scholar 

  88. Babu GJ, Bhupathy P, Timofeyev V, Petrashevskaya NN, Reiser PJ, Chiamvimonvat N et al (2007) Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci USA 104:17867–17872

    CAS  PubMed  Google Scholar 

  89. Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 5:554–565

    CAS  PubMed  Google Scholar 

  90. Gramolini AO, Trivieri MG, Oudit GY, Kislinger T, Li W, Patel MM et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci USA 103(7):2446–2451

    CAS  PubMed  Google Scholar 

  91. Shanmugam M, Gao S, Hong C, Fefelova N, Nowycky MC, Xie L-H, Periasamy M, Babu GJ (2011) Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovasc Res 89:353–361

    CAS  PubMed  Google Scholar 

  92. MacLennan DH, Wong PT (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68(6):1231–1235

    CAS  PubMed  Google Scholar 

  93. Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA 100(20):11759–11764

    CAS  PubMed  Google Scholar 

  94. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. J Biol Chem 272(37):23389–23397

    CAS  PubMed  Google Scholar 

  95. Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG et al (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131(4):325–334

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77(2):245–255

    CAS  PubMed  Google Scholar 

  97. Kucerova D, Baba HA, Boknik P, Fabritz L, Heinick A, Matus M, Muller FU, Neumann J, Schmitz W, Kirchhefer U (2012) Modulation of SR Ca2+ release by the triadin-calsequestrin ratio in ventricular myocytes. Am J Physiol Heart Circ Physiol 15;302(10):H2008–H2017

    Google Scholar 

  98. Kubalova Z, Gyorke I, Terentyeva R, Viatchenko-Karpinski S, Terentyev D, Williams SC et al (2004) Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. J Physiol 561(Pt 2):515–524

    CAS  PubMed  Google Scholar 

  99. Hu ST, Liu GS, Shen YF, Wang YL, Tang Y, Yang YJ (2011) Defective Ca2+ handling proteins regulation during heart failure. Physiol Res 60(1):27–37

    CAS  PubMed  Google Scholar 

  100. Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99:283–291

    CAS  PubMed  Google Scholar 

  101. McFarland TP, Milstein ML, Cala SE (2010) Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J Mol Cell Cardiol 49:556–564

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Kiarash A, Kelly CE, Phinney BS, Valdivia HH, Abrams J, Cala SE (2004) Cardiovasc Res 63:264–272

    CAS  PubMed  Google Scholar 

  103. Guo A, Cala SE, Song LS (2012) Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 287(20):16670–16680

    CAS  PubMed  Google Scholar 

  104. Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA (1985) Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci USA 82(21):7256–7259

    CAS  PubMed  Google Scholar 

  105. Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262(4):1740–1747

    CAS  PubMed  Google Scholar 

  106. Inui M, Saito A, Fleischer S (1987) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262(32):15637–15642

    CAS  PubMed  Google Scholar 

  107. Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508

    CAS  PubMed  Google Scholar 

  108. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339(6224):439–445

    CAS  PubMed  Google Scholar 

  109. Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD et al (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318(Pt 2):477–487

    CAS  PubMed  Google Scholar 

  110. Xiao B, Sutherland C, Walsh MP, Chen SR (2004) Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res 94(4):487–495

    CAS  PubMed  Google Scholar 

  111. Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278(40):38593–38600

    CAS  PubMed  Google Scholar 

  112. Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol 279:C724–C733

    CAS  Google Scholar 

  113. Yamaguchi N, Xu L, Pasek DA, Evans KE, Meissner G (2003) Molecular basis of calmodulin binding to cardiac Ca2+ release channel (ryanodine receptor). J Biol Chem 278:23480–23486

    CAS  PubMed  Google Scholar 

  114. Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, et al (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107(3):477–484

    Google Scholar 

  115. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    CAS  PubMed  Google Scholar 

  117. Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160(6):919–928

    CAS  PubMed  Google Scholar 

  118. Zou Y, Liang Y, Gong H, Zhou N, Ma H, Guan A, Sun A, Wang P, Niu Y, Jiang H, Takano H, Toko H, Yao A, Takeshima H, Akazawa H, Shiojima I, Wang Y, Komuro I, Ge J (2011) Ryanodine receptor type 2 is required for the development of pressure overload induced cardiac hypertrophy. Hypertension 58(6):1099–1110

    CAS  PubMed  Google Scholar 

  119. Gangopadhyay JP, Ikemoto N (2011) Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte. Biochem J 1; 438(2):379–387

    Google Scholar 

  120. Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2 + , adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    CAS  PubMed  Google Scholar 

  121. Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279(3):C724–C733

    CAS  PubMed  Google Scholar 

  122. Yamaguchi N, Takahashi N, Xu L, Smithies O, Meissner G (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca2+ release channel. J Clin Invest 117:1344–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibres. J Physiol 120(1–2):171–204

    CAS  PubMed  Google Scholar 

  124. Hagiwara S, Ozawa S, Sand O (1975) Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65(5):617–644

    CAS  PubMed  Google Scholar 

  125. Leszek P, Szperl M, Klisiewicz A, Janas J, Rózański J, Rywik T, Piotrowski W, Kopacz M, Korewicki J (2008) Alterations in calcium regulatory protein expression in patients with preserved left ventricle systolic function and mitral valve stenosis. J Card Fail 14(10):873–880

    CAS  PubMed  Google Scholar 

  126. Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gõmez AM et al (2006) Ca2+-induced Ca2+ entry or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 90:118–135

    CAS  PubMed  Google Scholar 

  127. Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100(5):315–322

    CAS  PubMed  Google Scholar 

  128. Hussain M, Orchard CH (1997) Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J Physiol 505(Pt 2):385–402

    CAS  PubMed  Google Scholar 

  129. DelPrincipe F, Egger M, Pignier C, Niggli E (2001) Enhanced E–C coupling efficiency after beta-stimulation of cardiac myocytes. Biophys J 80:64a

    Google Scholar 

  130. Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 3;122(1):280–290

    Google Scholar 

  131. Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93(1):120–128

    CAS  PubMed  Google Scholar 

  132. Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca² + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Philipson KD, Longoni S, Ward R (1988) Purification of the cardiac Na+/Ca2+ exchange protein. Biochimica et Biophysica Acta (BBA) Biomembranes 945(2):298–306

    CAS  Google Scholar 

  134. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+–Ca2+ exchanger. Science 250(4980):562–565

    CAS  PubMed  Google Scholar 

  135. Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP et al (1994) Cloning of the NCX2 isoform of the plasma membrane Na+–Ca2+ exchanger. J Biol Chem 269(26):17434–17439

    CAS  PubMed  Google Scholar 

  136. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+–Ca2+ exchanger, NCX3. J Biol Chem 271(40):24914–24921

    CAS  PubMed  Google Scholar 

  137. Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+–Ca2+ exchanger. J Biol Chem 274(2):910–917

    CAS  PubMed  Google Scholar 

  138. Kent RL, Rozich JD, McCollam PL et al (1993) Rapid expression of the Na+–Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265:H1024–H1029

    CAS  PubMed  Google Scholar 

  139. Menick DR, Barnes KV, Thacker UF et al (1996) The exchanger and cardiac hypertrophy. Ann N Y Acad Sci 779:489–501

    CAS  PubMed  Google Scholar 

  140. Menick DR, Renaud L, Buchholz A, Muller JG, Zhou H, Kappler CS et al (2007) Regulation of Ncx1 gene expression in the normal and hypertrophic heart. Ann N Y Acad Sci 1099:195–203

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Xu L, Renaud L, Muller JG, Baicu CF, Bonnema DD, Zhou H et al (2006) Regulation of Ncx1 expression. Identification of regulatory elements mediating cardiac-specific expression and up-regulation. J Biol Chem 281(45):34430–34440

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A et al (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101(47):16683–16688

    CAS  PubMed  Google Scholar 

  143. Kent RL, Rozich JD, McCollam PL, McDermott DE, Thacker UF, Menick DR et al (1993) Rapid expression of the Na+-Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265(3 Pt 2):H1024–H1029

    CAS  PubMed  Google Scholar 

  144. Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR (1999) The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+–Ca2+ exchanger gene. J Biol Chem 274(18):12819–12826

    CAS  PubMed  Google Scholar 

  145. Muller JG, Isomatsu Y, Koushik SV, O’Quinn M, Xu L, Kappler CS et al (2002) Cardiac-specific expression and hypertrophic upregulation of the feline Na+-Ca2+ exchanger gene H1-promoter in a transgenic mouse model. Circ Res 90(2):158–164

    CAS  PubMed  Google Scholar 

  146. Lu YM, Huang J, Shioda N, Fukunaga K, Shirasaki Y, Li XM et al (2011) CaMKIIdeltaB mediates aberrant NCX1 expression and the imbalance of NCX1/SERCA in transverse aortic constriction-induced failing heart. PLoS ONE 6(9):e24724

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Xu L, Chen J, Li XY, Ren S, Huang CX, Wu G, Li XY, Jiang XJ (2012) Analysis of Na+/Ca2+ exchanger (NCX) function and current in murine cardiac myocytes during heart failure. Mol Biol Rep 39(4):3847–3852

    Google Scholar 

  148. Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE et al (2002) Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol 92(4):1524–1530

    CAS  PubMed  Google Scholar 

  149. Cheung JY, Song J, Rothblum LI, Zhang XQ (2004) Exercise training improves cardiac function postinfarction: special emphasis on recent controversies on Na+/Ca2+ exchanger. Exerc Sport Sci Rev 32(3):83–89

    PubMed  Google Scholar 

  150. Litwin S, Bridge JH (1997) Enhanced Na+/Ca2+ exchange in the infracted heart. Implications for excitation–contraction coupling. Circ Res 81:1083–1093

    CAS  PubMed  Google Scholar 

  151. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na_/Ca2_ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019

    CAS  PubMed  Google Scholar 

  152. Hasenfuss G (1998) Alteration of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289

    CAS  PubMed  Google Scholar 

  153. de Tombe PP (1998) Altered contractile function in heart failure. Cardiovasc Res 37:367–380

    PubMed  Google Scholar 

  154. Dipla K, Mattiello J, Margulies K, Jeevanandam V, Houser S (1999) Sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 84:435–444

    CAS  PubMed  Google Scholar 

  155. Gaughan J, Furukawa S, Jeevanadam V, Hefner C, Kubo H, Margulies K, McGowan B, Mattiello J, Dipla K, Piacentino V III, Li S, Houser S (1999) Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. Am J Physiol Heart Circ Physiol 277:H714–H724

    CAS  Google Scholar 

  156. Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A et al (2009) Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J Physiol 587(Pt 15):3899–3910

    CAS  PubMed  Google Scholar 

  157. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL et al (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214(2):316–321

    CAS  PubMed  Google Scholar 

  158. Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL (2005) Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 289(5):H2030–H2038

    CAS  PubMed  Google Scholar 

  159. Davey Smith G, Shipley MJ, Batty GD, et al (2000) Physical activity and cause-specific mortality in the Whitehall study. Public Health 114:308–315

    Google Scholar 

  160. Manson JE, Hu FB, Rich-Edwards JW et al (1999) A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 341:650–658

    CAS  PubMed  Google Scholar 

  161. Lee IM, Sesso HD, Oguma Y et al (2003) Relative intensity of physical activity and risk of coronary heart disease. Circulation 107:1110–1116

    PubMed  Google Scholar 

  162. Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288:1994–2000

    PubMed  Google Scholar 

  163. Leon AS, Myers MJ, Connett J (1997) Leisure time physical activity and the 16-year risks of mortality from coronary heart disease and all-causes in the Multiple Risk Factor Intervention Trial (MRFIT). Int J Sports Med 18:S208–S215

    PubMed  Google Scholar 

  164. Hamer M, Chida Y (2012) Walking and primary prevention. A metaanalysis of prospective cohort studies. Br J Sports Med

  165. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1423–1434

    PubMed  Google Scholar 

  166. Hamer M, Stamatakis E (2008) Physical activity and cardiovascular disease: directions for future research. Open Sports Sci J 1, 1–2 1 1875-399X/08 2008

  167. Wannamethee SG, Shaper AG, Walker M (2000) Physical activity and mortality in older men with diagnosed coronary heart disease. Circulation 102:1358–1363

    CAS  PubMed  Google Scholar 

  168. Wisløff U, Støylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094

    PubMed  Google Scholar 

  169. Peschel T, Sixt S, Beitz F et al (2007) High, but not moderate frequency and duration of exercise training induces downregulation of the expression of inflammatory and atherogenic adhesion molecules. Eur J Cardiovasc Prev Rehabil 14:476–482

    PubMed  Google Scholar 

  170. Ferreira JC, Moreira JB, Campos JC, Pereira MG, Mattos KC, Coelho MA, Brum PC (2011) Angiotensin receptor blockade improves the net balance of cardiac Ca2+ handling-related proteins in sympathetic hyperactivity-induced heart failure. Life Sci 88(13–14):578–585

    CAS  PubMed  Google Scholar 

  171. Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kääb S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1(2):93–102

    CAS  PubMed  Google Scholar 

  172. Winslow RL, Rice J, Jafri S, Marbán E, O’Rourke B (1999) Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84(5):571–586

    CAS  PubMed  Google Scholar 

  173. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’rourke B, Kass DA, Marbán E, Shorofsky SR, Tomaselli GF, William Balke C (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41(1):135–146

    CAS  PubMed  Google Scholar 

  175. Roos KP, Jordan MC, Fishbein MC, Ritter MR, Friedlander M, Chang HC, Rahgozar P, Han T, Garcia AJ, Maclellan WR, Ross RS, Philipson KD (2007) Hypertrophy and heart failure in mice overexpressing the cardiac sodium-calcium exchanger. J Card Fail 13(4):318–329

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Schotten U, Koenigs B, Rueppel M, Schoendube F, Boknik P, Schmitz W, Hanrath P (1999) Reduced myocardial sarcoplasmic reticulum Ca2+-ATPase protein expression in compensated primary and secondary human cardiac hypertrophy. J Mol Cell Cardiol 31(8):1483–1494

    CAS  PubMed  Google Scholar 

  177. Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101(7):1385–1393

    CAS  PubMed Central  PubMed  Google Scholar 

  178. da Costa Rebelo RM, Schreckenberg R, Schlüter KD (2012) Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol 590(Pt 21):5389–5400

  179. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

    CAS  PubMed  Google Scholar 

  180. Lygren B, Taskén K (2006) Compartmentalized cAMP signalling is important in the regulation of Ca2+ cycling in the heart. Biochem Soc Trans 34(Pt 4):489–491

    CAS  PubMed  Google Scholar 

  181. Györke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255

    PubMed  Google Scholar 

  182. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102

    CAS  PubMed  Google Scholar 

  183. Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406(3):365–382

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by FAPEMIG-RedeToxifar, CNPq, INCT-FAPEMIG-CNPq, Pronex Project Grant (FAPEMIG/CNPq), and CAPES. Agradecimento ao Prof. Dr. Paulo Bastista de Carvalho, membro do corpo docente da Notre Dame Catholic University of Baltimore, pela colaboração ao longo desse trabalho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro C. Isoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, J., de Assis, L.V.M. & Isoldi, M.C. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 19, 207–225 (2014). https://doi.org/10.1007/s10741-013-9373-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9373-z

Keywords

Navigation