Skip to main content

Advertisement

Log in

Lead positioning strategies to enhance response to cardiac resynchronization therapy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Left ventricular lead position is one of the main determinants of CRT response. There are several approaches in LV lead positioning that include favoring an optimal anatomical position or targeting either the segment with maximal mechanical dyssynchrony or a region with maximal electrical delay. The conventional LV lead implantation faces several technical difficulties that may prevent the obtaining of a stable position and good performance of the LV lead without phrenic nerve stimulation. In addition, implant of the LV pacing lead in areas with myocardial scar may result in less than optimal cardiac resynchronization. Several strategies have been proposed to overcome all these obstacles including multimodality cardiac imaging to help in preprocedural or intraprocedural identification of the latest activated areas of the LV and the potential anatomical constraints. In selected patients, the surgical implant may be a solution to overcome these constraints. In the future, LV endocardial or epicardial multisite pacing may deliver an enhanced response to CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150

    Article  PubMed  CAS  Google Scholar 

  2. Cleland JG, Daubert JC, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    Article  PubMed  CAS  Google Scholar 

  3. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  PubMed  Google Scholar 

  4. Ypenburg C, Van De Veire N, Westenberg JJ et al (2008) Noninvasive imaging in cardiac resynchronization therapy–part 2: follow-up and optimization of settings. Pacing Clin Electrophysiol 31:1628–1639

    Article  PubMed  Google Scholar 

  5. Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2002) Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39:489–499

    Article  PubMed  Google Scholar 

  6. Bleeker GB, Schalij MJ, Van Der Wall EE, Bax JJ (2006) Postero-lateral scar tissue resulting in non-response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 17:899–901

    Article  PubMed  Google Scholar 

  7. Wilton SB, Shibata MA, Sondergaard R, Cowan K, Semeniuk L, Exner DV (2008) Relationship between left ventricular lead position using a simple radiographic classification scheme and long-term outcome with resynchronization therapy. J Interv Card Electrophysiol 23:219–227

    Article  PubMed  Google Scholar 

  8. Merchant FM, Heist EK, McCarty D et al (2010) Impact of segmental left ventricle lead position on cardiac resynchronization therapy outcomes. Heart Rhythm 7:639–644

    Article  PubMed  Google Scholar 

  9. Singh JP, Fan D, Heist EK et al (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3:1285–1292

    Article  PubMed  Google Scholar 

  10. Shamim W, Francis DP, Yousufuddin M et al (1999) Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int J Cardiol 70:171–178

    Article  PubMed  CAS  Google Scholar 

  11. Baldasseroni S, Opasich C, Gorini M et al (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J 143:398–405

    Article  PubMed  Google Scholar 

  12. Rodriguez LM, Timmermans C, Nabar A, Beatty G, Wellens HJ (2003) Variable patterns of septal activation in patients with left bundle branch block and heart failure. J Cardiovasc Electrophysiol 14:135–141

    Article  PubMed  Google Scholar 

  13. Auricchio A, Fantoni C, Regoli F et al (2004) Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation 109:1133–1139

    Article  PubMed  Google Scholar 

  14. Fung JW, Yu CM, Yip G et al (2004) Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart 90:17–19

    Article  PubMed  Google Scholar 

  15. Leclercq C, Faris O, Tunin R et al (2002) Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 106:1760–1763

    Article  PubMed  Google Scholar 

  16. Kass DA, Chen CH, Curry C et al (1999) Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 99:1567–1573

    PubMed  CAS  Google Scholar 

  17. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33:1735–1742

    Article  PubMed  CAS  Google Scholar 

  18. Varma N, Jia P, Rudy Y (2007) Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. J Electrocardiol 40:S174–S178

    Article  PubMed  Google Scholar 

  19. Singh JP, Heist EK, Ruskin JN, Harthorne JW (2006) “Dialing-in” cardiac resynchronization therapy: overcoming constraints of the coronary venous anatomy. J Interv Card Electrophysiol 17:51–58

    Article  PubMed  Google Scholar 

  20. Verbeek XA, Vernooy K, Peschar M, Cornelussen RN, Prinzen FW (2003) Intra-ventricular resynchronization for optimal left ventricular function during pacing in experimental left bundle branch block. J Am Coll Cardiol 42:558–567

    Article  PubMed  Google Scholar 

  21. Jia P, Ramanathan C, Ghanem RN, Ryu K, Varma N, Rudy Y (2006) Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm 3:296–310

    Article  PubMed  Google Scholar 

  22. Lambiase PD, Rinaldi A, Hauck J et al (2004) Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy. Heart 90:44–51

    Article  PubMed  CAS  Google Scholar 

  23. Prinzen FW, Spinelli JC, Auricchio A (2007) Basic physiology and hemodynamics of cardiac pacing. In: Ellenbogen KA, Kay GN, Lau CP, Wilkoff BL (eds) Clinical cardiac pacing, defibrillation, and resynchronization therapy. Saunders, Philadeiphia, pp 291–335

    Google Scholar 

  24. Blendea D, Shah RV, Auricchio A et al (2007) Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: a high-speed rotational venography study. Heart Rhythm 4:1155–1162

    Article  PubMed  Google Scholar 

  25. Murphy RT, Sigurdsson G, Mulamalla S et al (2006) Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol 97:1615–1621

    Article  PubMed  Google Scholar 

  26. Heist EK, Fan D, Mela T et al (2005) Radiographic left ventricular-right ventricular interlead distance predicts the acute hemodynamic response to cardiac resynchronization therapy. Am J Cardiol 96:685–690

    Article  PubMed  Google Scholar 

  27. Singh JP, Houser S, Heist EK, Ruskin JN (2005) The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol 46:68–74

    Article  PubMed  Google Scholar 

  28. Singh JP (2010) A sub-study of MADIT-CRT on left ventricular lead position. In: Heart Rhythm Society Scientific Sessions

  29. Becker M, Franke A, Breithardt OA et al (2007) Impact of left ventricular lead position on the efficacy of cardiac resynchronisation therapy: a two-dimensional strain echocardiography study. Heart 93:1197–1203

    Article  PubMed  Google Scholar 

  30. Becker M, Hoffmann R, Schmitz F et al (2007) Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization. Am J Cardiol 100:1671–1676

    Article  PubMed  Google Scholar 

  31. Helm RH, Leclercq C, Faris OP et al (2005) Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111:2760–2767

    Article  PubMed  Google Scholar 

  32. Lardo AC, Abraham TP, Kass DA (2005) Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol 46:2223–2228

    Article  PubMed  Google Scholar 

  33. Sassone B, Gabrieli L, Sacca S et al (2010) Value of right ventricular-left ventricular interlead electrical delay to predict reverse remodelling in cardiac resynchronization therapy: the INTER-V pilot study. Europace 12:78–83

    Article  PubMed  Google Scholar 

  34. Ypenburg C, van Bommel RJ, Delgado V et al (2008) Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol 52:1402–1409

    Article  PubMed  Google Scholar 

  35. Van de Veire NR, Schuijf JD, De Sutter J et al (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838

    Article  PubMed  Google Scholar 

  36. Mao S, Shinbane JS, Girsky MJ et al (2005) Coronary venous imaging with electron beam computed tomographic angiography: three-dimensional mapping and relationship with coronary arteries. Am Heart J 150:315–322

    Article  PubMed  Google Scholar 

  37. Gilard M, Mansourati J, Etienne Y et al (1998) Angiographic anatomy of the coronary sinus and its tributaries. Pacing Clin Electrophysiol 21:2280–2284

    Article  PubMed  CAS  Google Scholar 

  38. Meisel E, Pfeiffer D, Engelmann L et al (2001) Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104:442–447

    Article  PubMed  CAS  Google Scholar 

  39. Blendea D, Mansour M, Shah RV et al (2007) Usefulness of high-speed rotational coronary venous angiography during cardiac resynchronization therapy. Am J Cardiol 100:1561–1565

    Article  PubMed  Google Scholar 

  40. von Ludinghausen M (2003) The venous drainage of the human myocardium. Adv Anat Embryol Cell Biol 168:I–VIII, 1–104

    Google Scholar 

  41. Blendea D, Heist EK, Das S et al (2010) Impact of tricuspid regurgitation and prior coronary bypass surgery on the geometry of the coronary sinus: a rotational coronary angiography study. J Cardiovasc Electrophysiol 21:436–440

    Article  PubMed  Google Scholar 

  42. Morgan JM, Delgado V (2009) Lead positioning for cardiac resynchronization therapy: techniques and priorities. Europace 11(Suppl 5):v22–v28

    Article  PubMed  Google Scholar 

  43. Nagele H, Behrens S, Azizi M (2007) What can happen during coronary sinus lead implantation: dislocation, perforation and other catastrophes. Herzschrittmacherther Elektrophysiol 18:243–249

    Article  PubMed  CAS  Google Scholar 

  44. Heist EK, Singh JP, Mela T, Ruskin JN (2007) Coronary venospasm causing chest pain during implantation of cardiac resynchronization therapy. Heart Rhythm 4:1108–1109

    Article  PubMed  Google Scholar 

  45. Biffi M, Moschini C, Bertini M et al (2009) Phrenic stimulation: a challenge for cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 2:402–410

    Article  PubMed  Google Scholar 

  46. Rademakers LM, van Kerckhoven R, van Deursen CJ et al (2010) Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts. Circ Arrhythm Electrophysiol 3:361–368

    Article  PubMed  Google Scholar 

  47. Abben RP, Chaisson G, Nair V (2010) Traversing and dilating venous collaterals: a useful adjunct in left ventricular electrode placement. J Invasive Cardiol 22:E93–E96

    PubMed  Google Scholar 

  48. Hummel JP, Lindner JR, Belcik JT et al (2005) Extent of myocardial viability predicts response to biventricular pacing in ischemic cardiomyopathy. Heart Rhythm 2:1211–1217

    Article  PubMed  Google Scholar 

  49. Ypenburg C, Schalij MJ, Bleeker GB et al (2007) Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J 28:33–41

    Article  PubMed  Google Scholar 

  50. Ypenburg C, Roes SD, Bleeker GB et al (2007) Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am J Cardiol 99:657–660

    Article  PubMed  Google Scholar 

  51. Knight BP, Desai A, Coman J, Faddis M, Yong P (2004) Long-term retention of cardiac resynchronization therapy. J Am Coll Cardiol 44:72–77

    Article  PubMed  Google Scholar 

  52. Ellery S, Paul V, Prenner G et al (2005) A new endocardial “over-the-wire” or stylet-driven left ventricular lead: first clinical experience. Pacing Clin Electrophysiol 28(Suppl 1):S31–S35

    Article  PubMed  Google Scholar 

  53. Gurevitz O, Nof E, Carasso S et al (2005) Programmable multiple pacing configurations help to overcome high left ventricular pacing thresholds and avoid phrenic nerve stimulation. Pacing Clin Electrophysiol 28:1255–1259

    Article  PubMed  Google Scholar 

  54. Tournoux F, Chan RC, Manzke R, et al (2010) Integrating functional and anatomical information to guide cardiac resynchronization therapy. Eur J Heart Fail 12:52–57

    Article  PubMed  Google Scholar 

  55. Auricchio A, Sorgente A, Soubelet E et al (2009) Accuracy and usefulness of fusion imaging between three-dimensional coronary sinus and coronary veins computed tomographic images with projection images obtained using fluoroscopy. Europace 11:1483–1490

    Article  PubMed  Google Scholar 

  56. Gras D, Bocker D, Lunati M et al (2007) Implantation of cardiac resynchronization therapy systems in the CARE-HF trial: procedural success rate and safety. Europace 9:516–522

    Article  PubMed  CAS  Google Scholar 

  57. DeRose JJ, Ashton RC, Belsley S et al (2003) Robotically assisted left ventricular epicardial lead implantation for biventricular pacing. J Am Coll Cardiol 41:1414–1419

    Article  PubMed  Google Scholar 

  58. Fernandez AL, Garcia-Bengochea JB, Ledo R et al (2004) Minimally invasive surgical implantation of left ventricular epicardial leads for ventricular resynchronization using video-assisted thoracoscopy. Rev Esp Cardiol 57:313–319

    Article  PubMed  Google Scholar 

  59. Derose JJ Jr, Belsley S, Swistel DG, Shaw R, Ashton RC Jr (2004) Robotically assisted left ventricular epicardial lead implantation for biventricular pacing: the posterior approach. Ann Thorac Surg 77:1472–1474

    Article  PubMed  Google Scholar 

  60. Maessen JG, Phelps B, Dekker AL, Dijkman B (2004) Minimal invasive epicardial lead implantation: optimizing cardiac resynchronization with a new mapping device for epicardial lead placement. Eur J Cardiothorac Surg 25:894–896

    Article  PubMed  CAS  Google Scholar 

  61. Mair H, Sachweh J, Meuris B et al (2005) Surgical epicardial left ventricular lead versus coronary sinus lead placement in biventricular pacing. Eur J Cardiothorac Surg 27:235–242

    Article  PubMed  Google Scholar 

  62. Rivero-Ayerza M, Jessurun E, Ramcharitar S, van Belle Y, Serruys PW, Jordaens L (2008) Magnetically guided left ventricular lead implantation based on a virtual three-dimensional reconstructed image of the coronary sinus. Europace 10:1042–1047

    Article  PubMed  Google Scholar 

  63. Garrigue S, Jais P, Espil G et al (2001) Comparison of chronic biventricular pacing between epicardial and endocardial left ventricular stimulation using Doppler tissue imaging in patients with heart failure. Am J Cardiol 88:858–862

    Article  PubMed  CAS  Google Scholar 

  64. van Gelder BM, Scheffer MG, Meijer A, Bracke FA (2007) Transseptal endocardial left ventricular pacing: an alternative technique for coronary sinus lead placement in cardiac resynchronization therapy. Heart Rhythm 4:454–460

    Article  PubMed  Google Scholar 

  65. Jais P, Takahashi A, Garrigue S et al (2000) Mid-term follow-up of endocardial biventricular pacing. Pacing Clin Electrophysiol 23:1744–1747

    PubMed  CAS  Google Scholar 

  66. Mair H, Jansens JL, Lattouf OM, Reichart B, Dabritz S (2003) Epicardial lead implantation techniques for biventricular pacing via left lateral mini-thoracotomy, video-assisted thoracoscopy, and robotic approach. Heart Surg Forum 6:412–417

    PubMed  Google Scholar 

  67. Doll N, Opfermann UT, Rastan AJ et al (2005) Facilitated minimally invasive left ventricular epicardial lead placement. Ann Thorac Surg 79:1023–1025 discussion 5

    Article  PubMed  Google Scholar 

  68. Reinig M, White M, Levine M et al (2007) Left ventricular endocardial pacing: a transarterial approach. Pacing Clin Electrophysiol 30:1464–1468

    Article  PubMed  Google Scholar 

  69. Garrigue S, Reuter S, Labeque JN et al (2001) Usefulness of biventricular pacing in patients with congestive heart failure and right bundle branch block. Am J Cardiol 88:1436–1441 A8

    Article  PubMed  CAS  Google Scholar 

  70. van Deursen C, van Geldorp IE, Rademakers LM et al (2009) Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol 2:580–587

    Article  PubMed  Google Scholar 

  71. Spragg DD, Dong J, Fetics BJ, et al (2010) Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Am Coll Cardiol 56:774–781

    Google Scholar 

  72. Bordachar P, Derval N, Ploux S, et al (2010) Left ventricular endocardial stimulation for severe heart failure. J Am Coll Cardiol 56:747–753

    Article  Google Scholar 

  73. Derval N, Steendijk P, Gula LJ, et al (2010) Optimizing hemodynamics in heart failure patients by systematic screening of left ventricular pacing sites: the lateral left ventricular wall and the coronary sinus are rarely the best sites. J Am Coll Cardiol 55:566–575

    Article  PubMed  Google Scholar 

  74. Leclercq C, Gadler F, Kranig W et al (2008) A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J Am Coll Cardiol 51:1455–1462

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed during Dr. Dan Blendea’s tenure as the Michel Mirowski Fellow in Cardiac Pacing and Electrophysiology of the Heart Rhythm Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagmeet P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blendea, D., Singh, J.P. Lead positioning strategies to enhance response to cardiac resynchronization therapy. Heart Fail Rev 16, 291–303 (2011). https://doi.org/10.1007/s10741-010-9212-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9212-4

Keywords

Navigation