Skip to main content
Log in

Intracellular devastation in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

End-stage heart failure is characterized by a number of abnormalities at the cellular level, which include changes in excitation–contraction coupling, alterations in contractile proteins and activation/deactivation of signaling pathways. Even though many of these changes are adaptive to the high workload and stress in heart failure, a significant number of these alterations are deeply deleterious to the cardiac cell. In this article, we will review the changes in calcium cycling that occur in myopathic hearts and how they can be effectively targeted. We will also focus on protein misfolding in the setting of cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gwathmey JK, Copelas L, MacKinnon R et al (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76

    PubMed  CAS  Google Scholar 

  2. Gwathmey JK, Hajjar RJ (1990) Relation between steady-state force and intracellular [Ca2+] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82:1266–1278

    PubMed  CAS  Google Scholar 

  3. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  4. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 85:1599–1613

    Article  PubMed  CAS  Google Scholar 

  5. Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  PubMed  CAS  Google Scholar 

  6. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281

    PubMed  CAS  Google Scholar 

  7. Bers DM (2002) Sarcoplasmic reticulum Ca release in intact ventricular myocytes. Front Biosci 7:d1697–d1711

    Article  PubMed  CAS  Google Scholar 

  8. Gwathmey JK, Hajjar RJ (1990) Intracellular calcium related to force development in twitch contraction of mammalian myocardium. Cell Calcium 11:531–538

    Article  PubMed  CAS  Google Scholar 

  9. Piacentino V III, Weber CR, Chen X et al (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658

    Article  PubMed  CAS  Google Scholar 

  10. Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ (2004) Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 94:194–200

    Article  PubMed  CAS  Google Scholar 

  11. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256

    Article  PubMed  CAS  Google Scholar 

  12. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed  CAS  Google Scholar 

  13. Brittsan AG, Ginsburg KS, Chu G et al (2003) Chronic SR Ca2+-ATPase inhibition causes adaptive changes in cellular Ca2+ transport. Circ Res 92:769–776

    Article  PubMed  CAS  Google Scholar 

  14. Beuckelmann DJ, Erdmann E (1992) Ca(2+)-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Res Cardiol 87(Suppl 1):235–243

    PubMed  Google Scholar 

  15. Meyer M, Schillinger W, Pieske B et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

    PubMed  CAS  Google Scholar 

  16. Hasenfuss G, Reinecke H, Studer R et al (1996) Calcium cycling proteins and force–frequency relationship in heart failure. Basic Res Cardiol 91(Suppl 2):17–22

    Article  PubMed  CAS  Google Scholar 

  17. Schillinger W, Janssen PM, Emami S et al (2000) Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na(+)–Ca(2+) exchanger. Circ Res 87:581–587

    PubMed  CAS  Google Scholar 

  18. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30:1929–1937

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK (1999) Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277:H474–H480

    PubMed  CAS  Google Scholar 

  20. Schillinger W, Lehnart SE, Prestle J et al (1998) Influence of SR Ca(2+)-ATPase and Na(+)-Ca(2+)-exchanger on the force–frequency relation. Basic Res Cardiol 93(Suppl 1):38–45

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30:1929–1937

    Article  PubMed  CAS  Google Scholar 

  22. Brixius K, Savvidou-Zaroti P, Mehlhorn U, Bloch W, Kranias EG, Schwinger RH (2002) Increased Ca2+-sensitivity of myofibrillar tension in heart failure and its functional implication. Basic Res Cardiol 97(Suppl 1):I111–I117

    PubMed  Google Scholar 

  23. Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 85:38–46

    PubMed  CAS  Google Scholar 

  24. Pieske B, Schlotthauer K, Schattmann J et al (1997) Ca(2+)-dependent and Ca(2+)-independent regulation of contractility in isolated human myocardium. Basic Res Cardiol 92(Suppl 1):75–86

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK (1999) Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277:H474–H480

    PubMed  CAS  Google Scholar 

  26. Winslow RL, Rice J, Jafri S (1998) Modeling the cellular basis of altered excitation–contraction coupling in heart failure. Progr Biophys Mol Biol 69:497–514

    Article  CAS  Google Scholar 

  27. Lehnart SE, Schillinger W, Pieske B, Prestle J, Just H, Hasenfuss G (1998) Sarcoplasmic reticulum proteins in heart failure. Ann NY Acad Sci 853:220–230

    Article  PubMed  CAS  Google Scholar 

  28. Hajjar RJ, Schmidt U, Matsui T et al (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 95:5251–5256

    Article  PubMed  CAS  Google Scholar 

  29. Frank KF, Bolck B, Brixius K, Kranias EG, Schwinger RH (2002) Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol 97(Suppl 1):I72–I78

    PubMed  Google Scholar 

  30. Haghighi K, Kolokathis F, Pater L et al (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111:869–876

    PubMed  CAS  Google Scholar 

  31. Schmitt JP, Kamisago M, Asahi M et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1410

    Article  PubMed  CAS  Google Scholar 

  32. Ahmad Z, Green FJ, Subuhi HS, Watanabe AM (1989) Autonomic regulation of type 1 protein phosphatase in cardiac muscle. J Biol Chem 264:3859–3863

    PubMed  CAS  Google Scholar 

  33. Gupta RC, Neumann J, Watanabe AM, Lesch M, Sabbah HN (1996) Evidence for presence and hormonal regulation of protein phosphatase inhibitor-1 in ventricular cardiomyocyte. Am J Physiol 270:H1159–H1164

    PubMed  CAS  Google Scholar 

  34. Neumann J, Eschenhagen T, Jones LR et al (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29:265–272

    Article  PubMed  CAS  Google Scholar 

  35. Carr AN, Schmidt AG, Suzuki Y et al (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135

    Article  PubMed  CAS  Google Scholar 

  36. Yue TL, Gu JL, Wang C et al (2000) Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem 275:37895–37901

    Article  PubMed  CAS  Google Scholar 

  37. Hasenfuss G, Schillinger W, Lehnart SE et al (1999) Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648

    PubMed  CAS  Google Scholar 

  38. Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14:61–66

    Article  PubMed  CAS  Google Scholar 

  39. Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594

    Article  PubMed  CAS  Google Scholar 

  40. van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. Embo J 18:6927–6933

    Article  PubMed  Google Scholar 

  41. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    PubMed  CAS  Google Scholar 

  42. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  PubMed  CAS  Google Scholar 

  43. James P, Pfund C, Craig EA (1997) Functional specificity among Hsp70 molecular chaperones. Science 275:387–389

    Article  PubMed  CAS  Google Scholar 

  44. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  45. Nishizawa J, Nakai A, Higashi T et al (1996) Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart. Circulation 94:2185–2192

    PubMed  CAS  Google Scholar 

  46. Glass MG, Fuleihan F, Liao R et al (1993) Differences in cardioprotective efficacy of adrenergic receptor antagonists and Ca2+ channel antagonists in an animal model of dilated cardiomyopathy. Effects on gross morphology, global cardiac function, and twitch force. Circ Res 73:1077–1089

    PubMed  CAS  Google Scholar 

  47. Gorza L, F dM (2005) Protein unfolding in cardiomyopathies. Heart Failure Clinic 1:237–250

  48. Chevet E, Cameron PH, Pelletier MF, Thomas DY, Bergeron JJ (2001) The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 11:120–124

    Article  PubMed  CAS  Google Scholar 

  49. Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342

    Article  PubMed  CAS  Google Scholar 

  50. Ellis RJ, Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. Faseb J 10:20–26

    PubMed  CAS  Google Scholar 

  51. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  52. Pezzati R, Bossi M, Podini P, Meldolesi J, Grohovaz F (1997) High-resolution calcium mapping of the endoplasmic reticulum-Golgi-exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells. Mol Biol Cell 8:1501–1512

    PubMed  CAS  Google Scholar 

  53. Papp S, Dziak E, Michalak M, Opas M (2003) Is all of the endoplasmic reticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling proteins. J Cell Biol 160:475–479

    Article  PubMed  CAS  Google Scholar 

  54. Belan PV, Gerasimenko OV, Berry D, Saftenku E, Petersen OH, Tepikin AV (1996) A new technique for assessing the microscopic distribution of cellular calcium exit sites. Pflugers Arch 433:200–208

    Article  PubMed  CAS  Google Scholar 

  55. Petersen OH, Burdakov D, Tepikin AV (1999) Polarity in intracellular calcium signaling. Bioessays 21:851–860

    Article  PubMed  CAS  Google Scholar 

  56. Petersen OH, Burdakov D, Tepikin AV (1999) Regulation of store-operated calcium entry: lessons from a polarized cell. Eur J Cell Biol 78:221–223

    PubMed  CAS  Google Scholar 

  57. Johnson JD, Chang JP (2000) Function- and agonist-specific Ca2+ signalling: the requirement for and mechanism of spatial and temporal complexity in Ca2+ signals. Biochem Cell Biol 78:217–240

    Article  PubMed  CAS  Google Scholar 

  58. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  PubMed  CAS  Google Scholar 

  59. Verkhratsky A, Toescu EC (2003) Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J Cell Mol Med 7:351–361

    Article  PubMed  CAS  Google Scholar 

  60. Liu H, Bowes RC III, van de Water B, Sillence C, Nagelkerke JF, Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272:21751–21759

    Article  PubMed  CAS  Google Scholar 

  61. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  62. Ciechanover A, Elias S, Heller H, Ferber S, Hershko A (1980) Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J Biol Chem 255:7525–7528

    PubMed  CAS  Google Scholar 

  63. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  PubMed  CAS  Google Scholar 

  64. Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61:1025–1041

    Article  PubMed  CAS  Google Scholar 

  65. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28

    Article  PubMed  CAS  Google Scholar 

  66. Yoneda T, Imaizumi K, Oono K et al (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940

    PubMed  CAS  Google Scholar 

  67. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  68. Ashby MC, Tepikin AV (2001) ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 12:11–17

    Article  PubMed  CAS  Google Scholar 

  69. Verkhratsky A, Petersen OH (2002) The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 447:141–154

    Article  PubMed  CAS  Google Scholar 

  70. del Monte F, Hajjar RJ (2003) Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol 546:49–61

    Article  PubMed  Google Scholar 

  71. Kostin S, Pool L, Elsasser A et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica del Monte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Monte, F., Hajjar, R.J. Intracellular devastation in heart failure. Heart Fail Rev 13, 151–162 (2008). https://doi.org/10.1007/s10741-007-9071-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9071-9

Keywords

Navigation