Skip to main content
Log in

HDL and its sphingosine-1-phosphate content in cardioprotection

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that High-density lipoproteins (HDL) are a direct cardioprotective agent in the setting of acute myocardial ischemia/reperfusion injury, and that this cardioprotection occurs independently of their atheroprotective effect. Studies on the involved mechanisms have revealed that the biologically active HDL-compound sphingosine-1-phosphate (S1P) is responsible for the beneficial effect of HDL on the myocardium. There appears to be an intricate interplay between known preconditioning agents and components of the S1P synthesis machinery in the heart, which makes S1P signalling an attractive downstream convergence point of preconditioning and cardioprotection at the level of its G protein-coupled receptors. While local S1P production has been known to protect the heart against ischemia/reperfusion injury and to mediate preconditioning, systemic S1P supply via HDL adds a novel aspect to the regulation of cardioprotection. Thus the S1P-content of HDL may serve both as a potential cardiovascular risk marker and a novel therapeutic target. Strategies for short-term “acute” HDL elevation as well as S1P analogues may prove beneficial not only in the high-risk patient but also in any patient at risk of myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 

Similar content being viewed by others

References

  1. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  2. Gordon DJ, Rifkind BM (1989) High-density lipoprotein–the clinical implications of recent studies. N Engl J Med 321:1311–1316

    Article  PubMed  CAS  Google Scholar 

  3. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schaefer EJ, Schectman G, Wilt TJ, Wittes J (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group. N Engl J Med 341:410–418

    Article  PubMed  CAS  Google Scholar 

  4. Linsel-Nitschke P, Tall AR (2005) HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 4:193–205

    Article  PubMed  CAS  Google Scholar 

  5. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  PubMed  CAS  Google Scholar 

  6. Mineo C, Deguchi H, Griffin JH, Shaul PW (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98:1352–1364

    Article  PubMed  CAS  Google Scholar 

  7. Calabresi L, Rossoni G, Gomaraschi M, Sisto F, Berti F, Franceschini G (2003) High-density lipoproteins protect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-alpha content and enhancing prostaglandin release. Circ Res 92:330–337

    Article  PubMed  CAS  Google Scholar 

  8. Simpson PJ, Mitsos SE, Ventura A, Gallagher KP, Fantone JC, Abrams GD, Schork MA, Lucchesi BR (1987) Prostacyclin protects ischemic reperfused myocardium in the dog by inhibition of neutrophil activation. Am Heart J 113:129–137

    Article  PubMed  CAS  Google Scholar 

  9. Smalling RW, Feld S, Ramanna N, Amirian J, Felli P, Vaughn WK, Swenson C, Janoff A (1995) Infarct salvage with liposomal prostaglandin E1 administered by intravenous bolus immediately before reperfusion in a canine infarction-reperfusion model. Circulation 92:935–943

    PubMed  CAS  Google Scholar 

  10. Mochizuki S, Okumura M, Tanaka F, Sato T, Kagami A, Tada N, Nagano M (1991) Ischemia-reperfusion arrhythmias and lipids: effect of human high- and low-density lipoproteins on reperfusion arrhythmias. Cardiovasc Drugs Ther 5 (Suppl 2):269–276

    Article  PubMed  Google Scholar 

  11. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409

    Article  PubMed  CAS  Google Scholar 

  12. Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M (2004) High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110:3355–3359

    Article  PubMed  CAS  Google Scholar 

  13. Jin ZQ Zhang J, Huang Y, Vessey DA, Karliner JS (2005) A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury and abrogates ischemic preconditioning. Circ Res 97:1204 Abstract

    Article  CAS  Google Scholar 

  14. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    Article  PubMed  CAS  Google Scholar 

  15. Birgbauer E, Chun J (2006) New developments in the biological functions of lysophospholipids. Cell Mol Life Sci 63:2695–2701

    Article  PubMed  CAS  Google Scholar 

  16. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    Article  PubMed  CAS  Google Scholar 

  17. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026

    Article  PubMed  CAS  Google Scholar 

  18. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  19. Karliner JS (2006) Toward solving the riddle: the enigma becomes less mysterious. Circ Res 99:465–467

    Article  PubMed  CAS  Google Scholar 

  20. Vessey DA, Kelley M, Li L, Huang Y, Zhou HZ, Zhu BQ, Karliner JS (2006) Role of sphingosine kinase activity in protection of heart against ischemia reperfusion injury. Med Sci Monit 12:BR318–BR324

    PubMed  CAS  Google Scholar 

  21. Jin ZQ, Goetzl EJ, Karliner JS (2004) Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110:1980–1989

    Article  PubMed  CAS  Google Scholar 

  22. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518

    Article  PubMed  CAS  Google Scholar 

  23. Jin ZQ, Zhou HZ, Zhu P, Honbo N, Mochly-Rosen D, Messing RO, Goetzl EJ, Karliner JS, Gray MO (2002) Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am J Physiol Heart Circ Physiol 282:H1970–H1977

    PubMed  CAS  Google Scholar 

  24. Coroneos E, Martinez M, McKenna S, Kester M (1995) Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem 270:23305–23309

    Article  PubMed  CAS  Google Scholar 

  25. Dettbarn CA, Betto R, Salviati G, Palade P, Jenkins GM, Sabbadini RA (1994) Modulation of cardiac sarcoplasmic reticulum ryanodine receptor by sphingosine. J Mol Cell Cardiol 26:229–242

    Article  PubMed  CAS  Google Scholar 

  26. Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507

    Article  PubMed  CAS  Google Scholar 

  27. Oral H, Dorn GW 2nd, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842

    Article  PubMed  CAS  Google Scholar 

  28. Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90:807–813

    Article  PubMed  CAS  Google Scholar 

  29. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  PubMed  CAS  Google Scholar 

  30. Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2004) Protein kinase C translocation and Src protein tyrosine kinase activation mediate isofluraneinduced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 100(3):532–539

    Article  PubMed  CAS  Google Scholar 

  31. Mazurais D, Robert P, Gout B, Berrebi-Bertrand I, Laville MP, Calmels T (2002) Cell type-specific localization of human cardiac S1P receptors. J Histochem Cytochem 50:661–670

    PubMed  CAS  Google Scholar 

  32. Karliner JS, Honbo N, Summers K, Gray MO, Goetzl EJ (2001) The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J Mol Cell Cardiol 33:1713–1717

    Article  PubMed  CAS  Google Scholar 

  33. Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S, Noda K, Okajima F, Saku K (2005) Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis 178:199–205

    Article  PubMed  CAS  Google Scholar 

  34. Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F (2000) Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352Pt 3:809–815

    Article  PubMed  CAS  Google Scholar 

  35. Olsson AG, Schwartz GG, Szarek M, Sasiela WJ, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A (2005) High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial. Eur Heart J 26:890–896

    Article  PubMed  CAS  Google Scholar 

  36. Wolfram RM, Brewer HB, Xue Z, Satler LF, Pichard AD, Kent KM, Waksman R (2006) Impact of low high-density lipoproteins on in-hospital events and one-year clinical outcomes in patients with non-ST-elevation myocardial infarction acute coronary syndrome treated with drug-eluting stent implantation. Am J Cardiol 98:711–717

    Article  PubMed  CAS  Google Scholar 

  37. Herrmann J (2005) Peri-procedural myocardial injury: 2005 update. Eur Heart J 26:2493–2519

    Article  PubMed  Google Scholar 

  38. Navab M, Anantharamaiah GM, Reddy ST, Fogelman AM (2006) Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat Clin Pract Cardiovasc Med 3:540–547

    Article  PubMed  CAS  Google Scholar 

  39. Marchesi M, Booth EA, Davis T, Bisgaier CL, Lucchesi BR (2004) Apolipoprotein A-IMilano and 1-palmitoyl-2-oleoyl phosphatidylcholine complex (ETC-216) protects the in vivo rabbit heart from regional ischemia-reperfusion injury. J Pharmacol Exp Ther 311:1023–1031

    Article  PubMed  CAS  Google Scholar 

  40. Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Sasayama S (1999) FTY720, a new immunosuppressant, promotes long-term graft survival and inhibits the progression of graft coronary artery disease in a murine model of cardiac transplantation. Circulation 100:1322–1329

    PubMed  CAS  Google Scholar 

  41. Keul P, Tolle M, Lucke S, von Wnuck Lipinski K, Heusch G, Schuchardt M, van der Giet M, Levkau B (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:607–613

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dr H.-H. Deichmann Foundation for Atherosclerosis Research and the DFG (LE940/3-1, SFB656, projects A1 and C3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Levkau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keul, P., Sattler, K. & Levkau, B. HDL and its sphingosine-1-phosphate content in cardioprotection. Heart Fail Rev 12, 301–306 (2007). https://doi.org/10.1007/s10741-007-9038-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9038-x

Keywords

Navigation