Skip to main content

Advertisement

Log in

Protection of the abnormal heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial ischemia and reperfusion injury have been extensively investigated in the laboratory mainly in healthy tissues. However, in clinical settings, ischemic heart disease coexists with certain illnesses, which could potentially influence the response of the myocardium to ischemia and reperfusion. Recent research has revealed that the abnormal heart may not be always vulnerable to ischemic injury. Furthermore, the effect of powerful means of protection, such as ischemic preconditioning, may not be in operation under certain pathological conditions. With this evidence in mind, the present review will focus on the response of the abnormal heart to ischemia and reperfusion, the possible underlying mechanisms, and potential cardioprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Friehs I, del Nido PJ (2003) Increased susceptibility of hypertrophied hearts to ischemic injury. Ann Thorac Surg 75:S678–S684

    PubMed  Google Scholar 

  2. Wambolt RB, Lopaschuk GD, Brownsey RW, Allard MF (2000) Dichloroacetate improves postischemic function of hypertrophied rat hearts. J Am Coll Cardiol 36:1378–1385

    CAS  PubMed  Google Scholar 

  3. Allard MF (2004) Energy substrate metabolism in cardiac hypertrophy. Curr Hypertens Rep 6:430–435

    PubMed  Google Scholar 

  4. Kevelaitis E, Qureshi AA, Mouas C, Marotte F, Kevelaitiene S, Avkiran M, Menasche P (2005) Na+/H+ exchange inhibition in hypertrophied myocardium subjected to cardioplegic arrest: an effective cardioprotective approach. Eur J Cardiothorac Surg 27:111–116

    PubMed  Google Scholar 

  5. Lauerma K, Saeed M, Wendland MF, Derugin N, Yu KK, Higgins CB (1996) Verapamil reduces the size of reperfused ischemically injured myocardium in hypertrophied rat hearts as assessed by magnetic resonance imaging. Am Heart J 131:14–23

    CAS  PubMed  Google Scholar 

  6. Zhang Y, Xu S (1995) Increased vulnerability of hypertrophied myocardium to ischemia and reperfusion injury. Relation to cardiac renin-angiotensin system. Chin Med J (Engl) 108:28–32

    CAS  Google Scholar 

  7. Zhang YH, Xu SC (1994) Captopril cardioplegia on myocardial protection in the hypertrophied rat hearts. Int J Cardiol 47:131–137

    CAS  PubMed  Google Scholar 

  8. Stamm C, Friehs I, Cowan DB, Moran AM, Cao-Danh H, Duebener LF, del Nido PJ, McGowan FX Jr (2001) Inhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts. Circulation 104:I350–I355

    CAS  PubMed  Google Scholar 

  9. Friehs I, Moran AM, Stamm C, Choi YH, Cowan DB, McGowan FX, del Nido PJ (2004) Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury. Ann Thorac Surg 77:2004–2010; discussion 2011

    PubMed  Google Scholar 

  10. Snoeckx LH, van der Vusse GJ, Coumans WA, Willemsen PH, van der Nagel T, Reneman RS (1986) Myocardial function in normal and spontaneously hypertensive rats during reperfusion after a period of global ischaemia. Cardiovasc Res 20:67–75

    CAS  PubMed  Google Scholar 

  11. Okamoto K, Abe M, Haneda T (1993) Effect of regression of cardiac hypertrophy on ischemic myocardial damage in spontaneously hypertensive rats. Jpn Circ J 57:147–160

    CAS  PubMed  Google Scholar 

  12. Haneda T, Ogawa Y, Kato J, Matsuhashi H, Morimoto H, Honda H, Takenaka T, Tanazawa S, Kataoka R, Kikuchi K (2000) Effect of celiprolol on cardiac hypertrophy in hypertension. Hypertens Res 23:467–474

    CAS  PubMed  Google Scholar 

  13. Obata H, Tanaka H, Haneda T (1990) Response of isolated perfused heart to ischemia after long-term treatment of spontaneously hypertensive rats with diltiazem. Jpn Circ J 54:89–99

    CAS  PubMed  Google Scholar 

  14. Tanaka H, Obata H, Haneda T (1991) Effects of regression of left ventricular hypertrophy following atenolol or bunazosin therapy on ischemic cardiac function and myocardial metabolism in spontaneously hypertensive rats. Jpn Circ J 55:1233–1245

    CAS  PubMed  Google Scholar 

  15. Snoeckx LH, van der Vusse GJ, Coumans WA, Willemsen PH, Reneman RS (1993) Differences in ischaemia tolerance between hypertrophied hearts of adult and aged spontaneously hypertensive rats. Cardiovasc Res 27:874–881

    CAS  PubMed  Google Scholar 

  16. Itoh T, Abe K, Tokumura M, Hirono S, Haruna M, Ibii N (2004) Cardiac mechanical dysfunction induced by ischemia–reperfusion in perfused heart isolated from stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 26:485–498

    PubMed  Google Scholar 

  17. Chen H, Higashino H, Maeda K, Zhang Z, Ohta Y, Wang Z, Su DF, Yuan WJ (2001) Reduction of cardiac norepinephrine improves postischemic heart function in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 38:821–832

    CAS  PubMed  Google Scholar 

  18. Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120

    CAS  PubMed  Google Scholar 

  19. Buser PT, Wikman-Coffelt J, Wu ST, Derugin N, Parmley WW, Higgins CB (1990) Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study. Circ Res 66:735–746

    CAS  PubMed  Google Scholar 

  20. Pantos CI, Mourouzis IS, Tzeis SM, Malliopoulou V, Cokkinos DD, Asimacopoulos P, Carageorgiou HC, Varonos DD, Cokkinos DV (2000) Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts. J Cardiovasc Pharmacol 36:384–389

    CAS  PubMed  Google Scholar 

  21. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329

    CAS  PubMed  Google Scholar 

  22. Pantos C, Mourouzis I, Tzeis S, Moraitis P, Malliopoulou V, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos D (2003) Dobutamine administration exacerbates postischaemic myocardial dysfunction in isolated rat hearts: an effect reversed by thyroxine pretreatment. Eur J Pharmacol 460:155–161

    CAS  PubMed  Google Scholar 

  23. Pantos CI, Cokkinos DD, Tzeis SM, Malliopoulou V, Mourouzis IS, Carageorgiou HC, Limas C, Varonos DV, Cokkinos DV (1999) Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischaemic contracture in rat heart. Basic Res Cardiol 94:254–260

    CAS  PubMed  Google Scholar 

  24. Pantos C, Paizis I, Mourouzis I, Moraitis P, Tzeis S, Karamanoli E, Mourouzis C, Karageorgiou H, Cokkinos DV (2005) Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res 37:500–504

    CAS  PubMed  Google Scholar 

  25. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q (2005) Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:841–844

    CAS  PubMed  Google Scholar 

  26. Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207:220–231

    CAS  PubMed  Google Scholar 

  27. Novitzky D, Cooper DK, Swanepoel A (1989) Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg 3:140–145

    CAS  PubMed  Google Scholar 

  28. Dyke CM, Yeh T Jr, Lehman JD, Abd-Elfattah A, Ding M, Wechsler AS, Salter DR (1991) Triiodothyronine-enhanced left ventricular function after ischemic injury. Ann Thorac Surg 52:14–19

    Article  CAS  PubMed  Google Scholar 

  29. Novitzky D, Matthews N, Shawley D, Cooper DK, Zuhdi N (1991) Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg 51:10–16; discussion 16–17

    Article  CAS  PubMed  Google Scholar 

  30. Holland FW 2nd, Brown PS Jr, Clark RE (1992) Acute severe postischemic myocardial depression reversed by triiodothyronine. Ann Thorac Surg 54:301–305

    Article  PubMed  Google Scholar 

  31. Dyke CM, Ding M, Abd-Elfattah AS, Loesser K, Dignan RJ, Wechsler AS, Salter DR (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222

    Article  CAS  PubMed  Google Scholar 

  32. Kadletz M, Mullen PG, Ding M, Wolfe LG, Wechsler AS (1994) Effect of triiodothyronine on postischemic myocardial function in the isolated heart. Ann Thorac Surg 57:657–662

    Article  CAS  PubMed  Google Scholar 

  33. Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, Townend JN, Wilson IC, Bonser RS (2006) Glucose–insulin–potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation 114:I245–I250

    PubMed  Google Scholar 

  34. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV (2007) Thyroid hormone changes cardiomyocyte shape, geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297(1–2):65–72

    CAS  PubMed  Google Scholar 

  35. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Tzeis SM, Carageorgiou HC, Varonos DD, Cokkinos DV (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170:207–215

    CAS  PubMed  Google Scholar 

  36. Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV (2003) Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242:173–180

    CAS  PubMed  Google Scholar 

  37. Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Moraitis P, Tzeis S, Paizis I, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60

    CAS  PubMed  Google Scholar 

  38. Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, Saranteas T, Xinaris C, Cokkinos DV (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313

    CAS  PubMed  Google Scholar 

  39. Goldenthal MJ, Weiss HR, Marin-Garcia J (2004) Bioenergetic remodeling of heart mitochondria by thyroid hormone. Mol Cell Biochem 265:97–106

    CAS  PubMed  Google Scholar 

  40. Pantos CI, Davos CH, Carageorgiou HC, Varonos DV, Cokkinos DV (1996) Ischaemic preconditioning protects against myocardial dysfunction caused by ischaemia in isolated hypertrophied rat hearts. Basic Res Cardiol 91:444–449

    CAS  PubMed  Google Scholar 

  41. Rajesh KG, Sasaguri S, Suzuki R, Xing Y, Maeda H (2004) Ischemic preconditioning prevents reperfusion heart injury in cardiac hypertrophy by activation of mitochondrial KATP channels. Int J Cardiol 96:41–49

    PubMed  Google Scholar 

  42. Butler KL, Huffman LC, Koch SE, Hahn HS, Gwathmey JK (2006) STAT-3 activation is necessary for ischemic preconditioning in hypertrophied myocardium. Am J Physiol Heart Circ Physiol 291:H797–H803

    CAS  PubMed  Google Scholar 

  43. Speechly-Dick ME, Baxter GF, Yellon DM (1994) Ischaemic preconditioning protects hypertrophied myocardium. Cardiovasc Res 28:1025–1029

    Article  CAS  PubMed  Google Scholar 

  44. Butler KL, Huang AH, Gwathmey JK (1999) AT1-receptor blockade enhances ischemic preconditioning in hypertrophied rat myocardium. Am J Physiol 277:H2482–H2487

    CAS  PubMed  Google Scholar 

  45. Lu HR, Yu F, Dai DZ, Remeysen P, De Clerck F (1999) Reduction in QT dispersion and ventricular arrhythmias by ischaemic preconditioning in anaesthetized, normotensive and spontaneously hypertensive rats. Fundam Clin Pharmacol 13:445–454

    Article  CAS  PubMed  Google Scholar 

  46. Fantinelli JC, Mosca SM (2007) Comparative effects of ischemic pre, postconditioning on ischemia–reperfusion injury in spontaneously hypertensive rats (SHR). Mol Cell Biochem 296(1–2):45–51

    CAS  PubMed  Google Scholar 

  47. Randall MD, Gardiner SM, Bennett T (1997) Enhanced cardiac preconditioning in the isolated heart of the transgenic ((mREN-2) 27) hypertensive rat. Cardiovasc Res 33:400–409

    CAS  PubMed  Google Scholar 

  48. Joyeux M, Lagneux C, Bricca G, Yellon DM, Demenge P, Ribuot C (1998) Heat stress-induced resistance to myocardial infarction in the isolated heart from transgenic [(mREN-2)27] hypertensive rats. Cardiovasc Res 40:124–130

    CAS  PubMed  Google Scholar 

  49. Moolman JA, Genade S, Tromp E, Opie LH, Lochner A (1997) Ischaemic preconditioning does not protect hypertrophied myocardium against ischaemia. S Afr Med J 87(Suppl 3):C151–C156

    PubMed  Google Scholar 

  50. Podesser BK, Schirnhofer J, Bernecker OY, Kroner A, Franz M, Semsroth S, Fellner B, Neumuller J, Hallstrom S, Wolner E (2002) Optimizing ischemia/reperfusion in the failing rat heart—improved myocardial protection with acute ACE inhibition. Circulation 106:I277–I283

    PubMed  Google Scholar 

  51. Ghosh S, Standen NB, Galinianes M (2001) Failure to precondition pathological human myocardium. J Am Coll Cardiol 37:711–718

    CAS  PubMed  Google Scholar 

  52. Hoskins DE, Ignasiak DP, Saganek LJ, Gallagher KP, Peterson JT (1996) Myocardial infarct size is smaller in dogs with pacing-induced heart failure. Cardiovasc Res 32:238–247

    CAS  PubMed  Google Scholar 

  53. Dekker LR, Rademaker H, Vermeulen JT, Opthof T, Coronel R, Spaan JA, Janse MJ (1998) Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning. Circulation 97:1724–1730

    CAS  PubMed  Google Scholar 

  54. Murray AJ, Lygate CA, Cole MA, Carr CA, Radda GK, Neubauer S, Clarke K (2006) Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovasc Res 71:149–157

    CAS  PubMed  Google Scholar 

  55. Miki T, Miura T, Tsuchida A, Nakano A, Hasegawa T, Fukuma T, Shimamoto K (2000) Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation. Circulation 102:458–463

    CAS  PubMed  Google Scholar 

  56. Mieno S, Horimoto H, Watanabe F, Nakai Y, Furuya E, Sasaki S (2002) Potent adenylate cyclase agonist forskolin restores myoprotective effects of ischemic preconditioning in rat hearts after myocardial infarction. Ann Thorac Surg 74:1213–1218

    PubMed  Google Scholar 

  57. Miki T, Miura T, Yano T, Takahashi A, Sakamoto J, Tanno M, Kobayashi H, Ikeda Y, Nishihara M, Naitoh K, Ohori K, Shimamoto K (2006) Alteration in erythropoietin-induced cardioprotective signaling by postinfarct ventricular remodeling. J Pharmacol Exp Ther 317:68–75

    CAS  PubMed  Google Scholar 

  58. Pantos CMI, Dimopoulos A, Markakis K, Panagiotou M, Xinaris C, Tzeis S, Kokkinos AD, Cokkinos DV (2007) Enhanced tolerance of the rat myocardium to ischemia, reperfusion injury early after acute myocardial infarction. Basic Res Cardiol (in press)

  59. Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, Cokkinos DV (2005) Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia–reperfusion. Basic Res Cardiol 100:422–432

    CAS  PubMed  Google Scholar 

  60. Watanabe K, Yaoita H, Ogawa K, Oikawa M, Maehara K, Maruyama Y (2006) Attenuated cardioprotection by ischemic preconditioning in coronary stenosed heart and its restoration by carvedilol. Cardiovasc Res 71:537–547

    CAS  PubMed  Google Scholar 

  61. Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z (2004) Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway. Exp Mol Pathol 76:57–65

    CAS  PubMed  Google Scholar 

  62. Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441

    CAS  PubMed  Google Scholar 

  63. Wang P, Chatham JC (2004) Onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function after ischemia in the isolated perfused heart. Am J Physiol Endocrinol Metab 286:E725–E736

    CAS  PubMed  Google Scholar 

  64. Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47:1716–1721

    CAS  PubMed  Google Scholar 

  65. Hadour G, Ferrera R, Sebbag L, Forrat R, Delaye J, de Lorgeril M (1998) Improved myocardial tolerance to ischaemia in the diabetic rabbit. J Mol Cell Cardiol 30:1869–1875

    CAS  PubMed  Google Scholar 

  66. Broderick TL, Poirier P (2005) Cardiac function and ischaemic tolerance during acute loss of metabolic control in the diabetic BB Wor rat. Acta Diabetol 42:171–178

    CAS  PubMed  Google Scholar 

  67. Ravingerova T, Neckar J, Kolar F (2003) Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem 249:167–174

    CAS  PubMed  Google Scholar 

  68. Paulson DJ (1997) The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 34:104–112

    CAS  PubMed  Google Scholar 

  69. Adameova A, Kuzelova M, Andelova E, Faberova V, Pancza D, Svec P, Ziegelhoffer A, Ravingerova T (2007) Hypercholesterolemia abrogates an increased resistance of diabetic rat hearts to ischemia–reperfusion injury. Mol Cell Biochem 295(1–2):129–136

    CAS  PubMed  Google Scholar 

  70. Desrois M, Sidell RJ, Gauguier D, Davey CL, Radda GK, Clarke K (2004) Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. J Mol Cell Cardiol 37:547–555

    CAS  PubMed  Google Scholar 

  71. Feuvray D, Lopaschuk GD (1997) Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovasc Res 34:113–120

    CAS  PubMed  Google Scholar 

  72. Moon CH, Jung YS, Lee SH, Baik EJ (1999) Protein kinase C inhibitors abolish the increased resistance of diabetic rat heart to ischemia–reperfusion injury. Jpn J Physiol 49:409–415

    CAS  PubMed  Google Scholar 

  73. Ooie T, Takahashi N, Nawata T, Arikawa M, Yamanaka K, Kajimoto M, Shinohara T, Shigematsu S, Hara M, Yoshimatsu H, Saikawa T (2003) Ischemia-induced translocation of protein kinase C-epsilon mediates cardioprotection in the streptozotocin-induced diabetic rat. Circ J 67:955–961

    CAS  PubMed  Google Scholar 

  74. Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, Caldwell RB, Caldwell RW (2006) Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch Pharmacol 373:415–427

    CAS  PubMed  Google Scholar 

  75. Chen H, Wu XJ, Lu XY, Zhu L, Wang LP, Yang HT, Chen HZ, Yuan WJ (2005) Phosphorylated heat shock protein 27 is involved in enhanced heart tolerance to ischemia in short-term type 1 diabetic rats. Acta Pharmacol Sin 26:806–812

    CAS  PubMed  Google Scholar 

  76. Zhang L, Parratt JR, Beastall GH, Pyne NJ, Furman BL (2002) Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism. Eur J Pharmacol 435:269–276

    CAS  PubMed  Google Scholar 

  77. Liu X, Wei J, Peng DH, Layne MD, Yet SF (2005) Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes 54:778–784

    CAS  PubMed  Google Scholar 

  78. Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, Rossi F, D’Amico M (2005) Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes 54:803–810

    CAS  PubMed  Google Scholar 

  79. Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D’Amico M (2004) Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 53:454–462

    CAS  PubMed  Google Scholar 

  80. Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31:526–536

    CAS  PubMed  Google Scholar 

  81. Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhoffer A, Styk J (2000) Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 210:143–151

    CAS  PubMed  Google Scholar 

  82. Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–H1224

    CAS  PubMed  Google Scholar 

  83. del Valle HF, Lascano EC, Negroni JA (2002) Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc Res 55:642–659

    PubMed  Google Scholar 

  84. Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69:450–458

    CAS  PubMed  Google Scholar 

  85. Qi JS, Kam KW, Chen M, Wu S, Wong TM (2004) Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a kappa-opioid receptor agonist during ischaemia and reperfusion in streptozotocin-induced diabetic rats. Diabetologia 47:214–220

    CAS  PubMed  Google Scholar 

  86. Shinohara T, Takahashi N, Ooie T, Hara M, Shigematsu S, Nakagawa M, Yonemochi H, Saikawa T, Yoshimatsu H (2006) Phosphatidylinositol 3-kinase-dependent activation of akt, an essential signal for hyperthermia-induced heat-shock protein 72, is attenuated in streptozotocin-induced diabetic heart. Diabetes 55:1307–1315

    CAS  PubMed  Google Scholar 

  87. Ravingerova T, Stetka R, Pancza D, Ulicna O, Ziegelhoffer A, Styk J (2000) Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol Res 49:607–616

    CAS  PubMed  Google Scholar 

  88. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364

    CAS  PubMed  Google Scholar 

  89. Carter LS, Mueller RA, Norfleet EA, Payne FB, Saltzman LS (1987) Hypothyroidism delays ischemia-induced contracture and adenine nucleotide depletion in rat myocardium. Circ Res 60:649–652

    CAS  PubMed  Google Scholar 

  90. Abe M, Obata H, Tanaka H (1992) Functional and metabolic responses to ischemia in the isolated perfused hypothyroid rat heart. Jpn Circ J 56:671–680

    CAS  PubMed  Google Scholar 

  91. Eynan M, Knubuvetz T, Meiri U, Navon G, Gerstenblith G, Bromberg Z, Hasin Y, Horowitz M (2002) Heat acclimation-induced elevated glycogen, glycolysis, and low thyroxine improve heart ischemic tolerance. J Appl Physiol 93:2095–2104

    CAS  PubMed  Google Scholar 

  92. Pantos C, Malliopoulou V, Mourouzis I, Sfakianoudis K, Tzeis S, Doumba P, Xinaris C, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia–reperfusion. J Endocrinol 178:427–435

    CAS  PubMed  Google Scholar 

  93. Friberg L, Werner S, Eggertsen G, Ahnve S (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394

    CAS  PubMed  Google Scholar 

  94. Golino P, Maroko PR, Carew TE (1987) The effect of acute hypercholesterolemia on myocardial infarct size and the no-reflow phenomenon during coronary occlusion-reperfusion. Circulation 75:292–298

    CAS  PubMed  Google Scholar 

  95. Sakamoto S, Kashiki M, Imai N, Liang CS, Hood WB Jr (1991) Effects of short-term, diet-induced hypercholesterolemia on systemic hemodynamics, myocardial blood flow, and infarct size in awake dogs with acute myocardial infarction. Circulation 84:378–386

    CAS  PubMed  Google Scholar 

  96. Girod WG, Jones SP, Sieber N, Aw TY, Lefer DJ (1999) Effects of hypercholesterolemia on myocardial ischemia–reperfusion injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 19:2776–2781

    CAS  PubMed  Google Scholar 

  97. Jung O, Jung W, Malinski T, Wiemer G, Schoelkens BA, Linz W (2000) Ischemic preconditioning and infarct mass: the effect of hypercholesterolemia and endothelial dysfunction. Clin Exp Hypertens 22:165–179

    CAS  PubMed  Google Scholar 

  98. Wang TD, Chen WJ, Mau TJ, Lin JW, Lin WW, Lee YT (2003) Attenuation of increased myocardial ischaemia–reperfusion injury conferred by hypercholesterolaemia through pharmacological inhibition of the caspase-1 cascade. Br J Pharmacol 138:291–300

    CAS  PubMed  Google Scholar 

  99. Le Grand B, Vie B, Faure P, Degryse AD, Mouillard P, John GW (1995) Increased resistance to ischaemic injury in the isolated perfused atherosclerotic heart of the cholesterol-fed rabbit. Cardiovasc Res 30:689–696

    CAS  PubMed  Google Scholar 

  100. Dworschak M, d’Uscio LV, Breukelmann D, Hannon JD (2005) Increased tolerance to hypoxic metabolic inhibition and reoxygenation of cardiomyocytes from apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 289:H160–H167

    CAS  PubMed  Google Scholar 

  101. Tang XL, Stein AB, Shirk G, Bolli R (2004) Hypercholesterolemia blunts NO donor-induced late preconditioning against myocardial infarction in conscious rabbits. Basic Res Cardiol 99:395–403

    PubMed  Google Scholar 

  102. Jung O, Albus U, Lang HJ, Busch AE, Linz W (2004) Effects of acute and chronic treatment with the sodium hydrogen exchanger 1 (NHE-1) inhibitor cariporide on myocardial infarct mass in rabbits with hypercholesterolaemia. Basic Clin Pharmacol Toxicol 95:24–30

    CAS  PubMed  Google Scholar 

  103. Iliodromitis EK, Zoga A, Vrettou A, Andreadou I, Paraskevaidis IA, Kaklamanis L, Kremastinos DT (2006) The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 188:356–362

    CAS  PubMed  Google Scholar 

  104. Juhasz B, Der P, Turoczi T, Bacskay I, Varga E, Tosaki A (2004) Preconditioning in intact and previously diseased myocardium: laboratory or clinical dilemma? Antioxid Redox Signal 6:325–333

    CAS  PubMed  Google Scholar 

  105. Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, Kuzuya T, Takeda H, Hori M (1999) Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol 34:2120–2125

    CAS  PubMed  Google Scholar 

  106. du Toit EF, Nabben M, Lochner A (2005) A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury. Basic Res Cardiol 100:346–354

    CAS  PubMed  Google Scholar 

  107. Ooie T, Kajimoto M, Takahashi N, Shinohara T, Taniguchi Y, Kouno H, Wakisaka O, Yoshimatsu H, Saikawa T (2005) Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci 77:869–881

    CAS  PubMed  Google Scholar 

  108. Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Andersen HL, Wassermann K, Falk E (2006) Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci (Lond) 110:665–671

    Article  Google Scholar 

  109. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemia–reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103

    CAS  PubMed  Google Scholar 

  110. Smith CC, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM (2006) Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 149:5–13

    CAS  PubMed  Google Scholar 

  111. Heusch G (2006) Obesity—a risk factor or a RISK factor for myocardial infarction? Br J Pharmacol 149:1–3

    CAS  PubMed  Google Scholar 

  112. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD (1994) Aging increases ischemia–reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 124:843–851

    CAS  PubMed  Google Scholar 

  113. Misare BD, Krukenkamp IB, Levitsky S (1992) Age-dependent sensitivity to unprotected cardiac ischemia: the senescent myocardium. J Thorac Cardiovasc Surg 103:60–64; discussion 64–65

    CAS  PubMed  Google Scholar 

  114. Ataka K, Chen D, Levitsky S, Jimenez E, Feinberg H (1992) Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation 86:II371–II376

    CAS  PubMed  Google Scholar 

  115. Besse S, Tanguy S, Boucher F, Le Page C, Rozenberg S, Riou B, Leiris J, Swynghedauw B (2004) Cardioprotection with cariporide, a sodium–proton exchanger inhibitor, after prolonged ischemia and reperfusion in senescent rats. Exp Gerontol 39:1307–1314

    CAS  PubMed  Google Scholar 

  116. Starnes JW, Bowles DK, Seiler KS (1997) Myocardial injury after hypoxia in immature, adult and aged rats. Aging (Milano) 9:268–276

    CAS  Google Scholar 

  117. Boucher F, Tanguy S, Besse S, Tresallet N, Favier A, de Leiris J (1998) Age-dependent changes in myocardial susceptibility to zero flow ischemia and reperfusion in isolated perfused rat hearts: relation to antioxidant status. Mech Ageing Dev 103:301–316

    CAS  PubMed  Google Scholar 

  118. Liu P, Xu B, Cavalieri TA, Hock CE (2004) Attenuation of antioxidative capacity enhances reperfusion injury in aged rat myocardium after MI/R. Am J Physiol Heart Circ Physiol 287:H2719–H2727

    CAS  PubMed  Google Scholar 

  119. Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Cacciatore F, Longobardi G, Rengo F (1996) Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol 27:1777–1786

    CAS  PubMed  Google Scholar 

  120. Schulman D, Latchman DS, Yellon DM (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 281:H1630–H1636

    CAS  PubMed  Google Scholar 

  121. Abete P, Testa G, Ferrara N, De Santis D, Capaccio P, Viati L, Calabrese C, Cacciatore F, Longobardi G, Condorelli M, Napoli C, Rengo F (2002) Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am J Physiol Heart Circ Physiol 282:H1978–H1987

    CAS  PubMed  Google Scholar 

  122. Honma Y, Tani M, Takayama M, Yamamura K, Hasegawa H (2002) Aging abolishes the cardioprotective effect of combination heat shock and hypoxic preconditioning in reperfused rat hearts. Basic Res Cardiol 97:489–495

    CAS  PubMed  Google Scholar 

  123. Fenton RA, Dickson EW, Dobson JG Jr (2005) Inhibition of phosphatase activity enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. Life Sci 77:3375–3388

    CAS  PubMed  Google Scholar 

  124. Boengler K, Heusch G, Schulz R (2006) Connexin 43 and ischemic preconditioning: effects of age and disease. Exp Gerontol 41:485–488

    CAS  PubMed  Google Scholar 

  125. Burns PG, Krunkenkamp IB, Calderone CA, Kirvaitis RJ, Gaudette GR, Levitsky S (1996) Is the preconditioning response conserved in senescent myocardium? Ann Thorac Surg 61:925–929

    CAS  PubMed  Google Scholar 

  126. Przyklenk K, Li G, Whittaker P (2001) No loss in the in vivo efficacy of ischemic preconditioning in middle-aged and old rabbits. J Am Coll Cardiol 38:1741–1747

    CAS  PubMed  Google Scholar 

  127. Przyklenk K, Li G, Simkhovich BZ, Kloner RA (2003) Mechanisms of myocardial ischemic preconditioning are age related: PKC-epsilon does not play a requisite role in old rabbits. J Appl Physiol 95:2563–2569

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantos, C., Mourouzis, I. & Cokkinos, D.V. Protection of the abnormal heart. Heart Fail Rev 12, 319–330 (2007). https://doi.org/10.1007/s10741-007-9036-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9036-z

Keywords

Navigation