Skip to main content
Log in

Cardioprotective actions of peptide hormones in myocardial ischemia

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The myocardium represents a major source of several families of peptide hormones under normal physiological conditions and the plasma concentrations of many of these “cardiac peptides” (or related pro-peptide fragments) are substantially augmented in many cardiac disease states. In addition to well-characterised endocrine functions of several of the cardiac peptides, pleiotropic functions within the myocardium and the coronary vasculature represent a significant aspect of their actions in health and disease. Here, we focus specifically on the cardioprotective roles of four major peptide families in myocardial ischemia and reperfusion: adrenomedullin, kinins, natriuretic peptides and the urocortins. The patterns of early release of all these peptides are consistent with roles as autacoid cardioprotective mediators. Clinical and experimental research indicates the early release and upregulation of many of these peptides by acute ischemia and there is a convincing body of evidence showing that exogenously administered adrenomedullin, bradykinin, ANP, BNP, CNP and urocortins are all markedly protective against experimental myocardial ischemia-reperfusion injury through a conserved series of cytoprotective signal transduction pathways. Intriguingly, all the peptides examined so far have the potential to salvage against infarction when administered specifically during early reperfusion. Thus, the myocardial secretion of peptide hormones likely represents an early protective response to ischemia. Further work is required to explore the potential therapeutic manipulation of these peptides in acute coronary syndromes and their promise as biomarkers of acute myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mann DL (2005) Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail Rev 10:95–100

    PubMed  Google Scholar 

  2. Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763

    PubMed  CAS  Google Scholar 

  3. Costello-Boerrigter LC, Burnett JC Jr (2005) The prognostic value of N-terminal proB-type natriuretic peptide. Nature Clin Pract Cardiovasc Med 2:194–201

    CAS  Google Scholar 

  4. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, et al (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    PubMed  CAS  Google Scholar 

  5. Beltowski J, Jamroz A (2004) Adrenomedullin—what do we know 10 years since its discovery? Pol J Pharmacol 56:5–27

    PubMed  CAS  Google Scholar 

  6. Hamid SA, Baxter GF (2005) Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacol Ther 105:95–112

    PubMed  CAS  Google Scholar 

  7. Charles CJ, Rademaker MT, Richards AM, Cooper GJ, Coy DH, Nicholls MG (1998) Hemodynamic, hormonal, and renal effects of intracerebroventricular adrenomedullin in conscious sheep. Endocrinology 139:1746–1751

    PubMed  CAS  Google Scholar 

  8. Poyner DR (1997) Molecular pharmacology of receptors for calcitonin-gene-related peptide, amylin and adrenomedullin. Biochem Soc Trans 25:1032–1036

    PubMed  CAS  Google Scholar 

  9. Sakata J, Shimokubo T, Kitamura K, Nakamura S, Kangawa K, Matsuo H et al (1993) Molecular cloning and biological activities of rat adrenomedullin, a hypotensive peptide. Biochem Biophys Res Commun 195:921–927

    PubMed  CAS  Google Scholar 

  10. Cao YN, Kitamura K, Kato J, Kuwasako K, Ito K, Onitsuka H et al (2003) Chronic salt loading upregulates expression of adrenomedullin and its receptors in adrenal glands and kidneys of the rat. Hypertension 42:369–372

    PubMed  CAS  Google Scholar 

  11. Nishikimi T, Matsuoka H, Shimada K, Matsuo H, Kangawa K (2000) Production and clearance sites of two molecular forms of adrenomedullin in human plasma. Am J Hypertens 13:1032–1034

    PubMed  CAS  Google Scholar 

  12. Ross GR, Yallampalli C (2006) Endothelium-independent relaxation by adrenomedullin in pregnant rat mesenteric artery: role of cAMP-dependent protein kinase A and calcium-activated potassium channels. J Pharmacol Exp Ther 317:1269–1275

    PubMed  CAS  Google Scholar 

  13. Wirth KJ, Linz W, Wiemer G, Scholkens BA (1997) Kinins and cardioprotection. Pharmacol Res 35:527–530

    PubMed  CAS  Google Scholar 

  14. Silva RE, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 156:267–273

    Google Scholar 

  15. Yoshida H, Zhang JJ, Chao L, Chao J (2000) Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 35:25–31

    PubMed  CAS  Google Scholar 

  16. Baxter GF, Ebrahim Z (2002) Role of bradykinin in preconditioning and protection of the ischaemic myocardium. Br J Pharmacol 135:843–854

    PubMed  CAS  Google Scholar 

  17. Kokkonen JO, Lindstedt KA, Kuoppala A, Kovanen PT (2000) Kinin-degrading pathways in the human heart. Trends Cardiovasc Med 10:42–45

    PubMed  CAS  Google Scholar 

  18. Wolfrum S, Richardt G, Dominiak P, Katus HA, Dendorfer A (2001) Apstatin, a selective inhibitor of aminopeptidase P, reduces myocardial infarct size by a kinin-dependent pathway. Br J Pharmacol 134:370–374

    PubMed  CAS  Google Scholar 

  19. Medeiros R, Cabrini DA, Ferreira J, Fernandes ES, Mori MA, Pesquero JB et al (2004) Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein: a critical role for mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. Circ Res 94:1375–1382

    PubMed  CAS  Google Scholar 

  20. Tanaka Y, Nagai M, Date T, Okada T, Abe Y, Seki S et al (2004) Effects of bradykinin on cardiovascular remodeling in renovascular hypertensive rats. Hypertens Res 27:865–875

    PubMed  CAS  Google Scholar 

  21. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  22. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    PubMed  CAS  Google Scholar 

  23. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–1088

    PubMed  CAS  Google Scholar 

  24. D’Souza SP, Davis M, Baxter GF (2004) Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther 101:113–129

    PubMed  CAS  Google Scholar 

  25. Baxter GF (2004) The natriuretic peptides: an introduction. Basic Res Cardiol 99:71–75

    PubMed  CAS  Google Scholar 

  26. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC et al (2002) Brain natriuretic Peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91:1127–1134

    PubMed  CAS  Google Scholar 

  27. Hino J, Tateyama H, Minamino N, Kangawa K, Matsuo H (1990) Isolation and identification of human brain natriuretic peptides in cardiac atrium. Biochem Biophys Res Commun 167:693–700

    PubMed  CAS  Google Scholar 

  28. Tawaragi Y, Fuchimura K, Nakazato H, Tanaka S, Minamino N, Kangawa K et al (1990) Gene and precursor structure of porcine C-type natriuretic peptide. Biochem Biophys Res Commun 172:627–632

    PubMed  CAS  Google Scholar 

  29. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263:H1318–H1321

    PubMed  CAS  Google Scholar 

  30. Minamino N, Makino Y, Tateyama H, Kangawa K, Matsuo H (1991) Characterization of immunoreactive human C-type natriuretic peptide in brain and heart. Biochem Biophys Res Commun 179:535–542

    PubMed  CAS  Google Scholar 

  31. Vollmar AM, Gerbes AL, Nemer M, Schulz R (1993) Detection of C-type natriuretic peptide (CNP) transcript in the rat heart and immune organs. Endocrinology 132:1872–1874

    PubMed  CAS  Google Scholar 

  32. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K et al (2005) C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45:608–616

    PubMed  CAS  Google Scholar 

  33. Schulz S (2005) C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 26:1024–1034

    PubMed  CAS  Google Scholar 

  34. Potter LR (2004) CNP, cardiac natriuretic peptide? Endocrinology 145:2129–2130

    PubMed  CAS  Google Scholar 

  35. Furuya M, Aisaka K, Miyazaki T, Honbou N, Kawashima K, Ohno T et al (1993) C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophys Res Commun 193:248–253

    PubMed  CAS  Google Scholar 

  36. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA 97:8525–8529

    PubMed  CAS  Google Scholar 

  37. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  38. Hussain MB, MacAllister RJ, Hobbs AJ (2001) Reciprocal regulation of cGMP-mediated vasorelaxation by soluble and particulate guanylate cyclases. Am J Physiol 280:H1151–H1159

    CAS  Google Scholar 

  39. Nunez DJ, Dickson MC, Brown MJ (1992) Natriuretic peptide receptor mRNAs in the rat and human heart. J Clin Invest 90:1966–1971

    PubMed  CAS  Google Scholar 

  40. Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A (2004) Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation 110:1231–1235

    PubMed  CAS  Google Scholar 

  41. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292

    PubMed  CAS  Google Scholar 

  42. Donaldson CJ, Sutton SW, Perrin MH, Corrigan AZ, Lewis KA, Rivier JE et al (1996) Cloning and characterization of human urocortin. Endocrinology 137:3896

    PubMed  CAS  Google Scholar 

  43. Takahashi K, Totsune K, Murakami O, Shibahara S (2004) Urocortins as cardiovascular peptides. Peptides 25:1723–1731

    PubMed  CAS  Google Scholar 

  44. Huang Y, Yao XQ, Lau CW, Chan YC, Tsang SY, Chan FL (2004) Urocortin and cardiovascular protection. Acta Pharmacol Sin 25:257–265

    PubMed  CAS  Google Scholar 

  45. Oki Y, Sasano H (2004) Localization and physiological roles of urocortin. Peptides 25:1745–1749

    PubMed  CAS  Google Scholar 

  46. Kimura Y, Takahashi K, Totsune K, Muramatsu Y, Kaneko C, Darnel AD et al (2002) Expression of urocortin and corticotropin-releasing factor receptor subtypes in the human heart. J Clin Endocrinol Metab 87:340–346

    PubMed  CAS  Google Scholar 

  47. Okosi A, Brar BK, Chan M, D’Souza L, Smith E, Stephanou A et al (1998) Expression and protective effects of urocortin in cardiac myocytes. Neuropeptides 32:167–171

    PubMed  CAS  Google Scholar 

  48. Ikeda K, Tojo K, Tokudome G, Ohta M, Sugimoto K, Tamura T et al (2003) Cardiac expression of urocortin (Ucn) in diseased heart; preliminary results on possible involvement of Ucn in pathophysiology of cardiac diseases. Mol Cell Biochem 252:25–32

    PubMed  CAS  Google Scholar 

  49. Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB et al (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 92:836–840

    PubMed  CAS  Google Scholar 

  50. Coste SC, Quintos RF, Stenzel-Poore MP (2002) Corticotropin-releasing hormone-related peptides and receptors: emergent regulators of cardiovascular adaptations to stress. Trends Cardiovasc Med 12:176–182

    PubMed  CAS  Google Scholar 

  51. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci USA 90:8967–8971

    PubMed  CAS  Google Scholar 

  52. Tao J, Li S (2005) Urocortin: a cardiac protective peptide? Biochem Biophys Res Commun 332:923–926

    PubMed  CAS  Google Scholar 

  53. Garcia-Villalon AL, Amezquita YM, Monge L, Fernandez N, Climent B, Sanchez A et al (2005) Mechanisms of the protective effects of urocortin on coronary endothelial function during ischemia-reperfusion in rat isolated hearts. Br J Pharmacol 145:490–494

    PubMed  CAS  Google Scholar 

  54. Theroux P, Fuster V (1998) Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 97:1195–1206

    PubMed  CAS  Google Scholar 

  55. Wiviott SD, de Lemos JA, Morrow DA (2004) Pathophysiology, prognostic significance and clinical utility of B-type natriuretic peptide in acute coronary syndromes. Clin Chim Acta 346:119–128

    PubMed  CAS  Google Scholar 

  56. Berendes E, Schmidt C, Van Aken H, Hartlage MG, Rothenburger M, Wirtz S et al (2004) A-type and B-type natriuretic peptides in cardiac surgical procedures. Anesth Analg 98:11–19

    PubMed  CAS  Google Scholar 

  57. Hinson JP, Kapas S, Smith DM (2000) Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev 21:138–167

    PubMed  CAS  Google Scholar 

  58. Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I et al (1996) Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J 131:676–680

    PubMed  CAS  Google Scholar 

  59. Miyao Y, Nishikimi T, Goto Y, Miyazaki S, Daikoku S, Morii I et al (1998) Increased plasma adrenomedullin levels in patients with acute myocardial infarction in proportion to the clinical severity. Heart 79:39–44

    PubMed  CAS  Google Scholar 

  60. Nagaya N, Nishikimi T, Uematsu M, Yoshitomi Y, Miyao Y, Miyazaki S et al (1999) Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart 81:483–487

    PubMed  CAS  Google Scholar 

  61. Belloni AS, Guidolin D, Ceretta S, Bova S, Nussdorfer GG (2004) Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int J Mol Med 14:71–73

    PubMed  CAS  Google Scholar 

  62. Nagaya N, Nishikimi T, Yoshihara F, Horio T, Morimoto A, Kangawa K (2000) Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am J Physiol Regul Integr Comp Physiol 278:R1019–R1026

    PubMed  CAS  Google Scholar 

  63. Nguyen SV, Claycomb WC (1999) Hypoxia regulates the expression of the adrenomedullin and HIF-1 genes in cultured HL-1 cardiomyocytes. Biochem Biophys Res Commun 265:382–386

    PubMed  CAS  Google Scholar 

  64. Hoffmeister HM, Jur M, Wendel HP, Heller W, Seipel L (1995) Alterations of coagulation and fibrinolytic and kallikrein–kinin systems in the acute and postacute phases in patients with unstable angina pectoris. Circulation 91:2520–2527

    PubMed  CAS  Google Scholar 

  65. Baumgarten CR, Linz W, Kunkel G, Scholkens BA, Wiemer G (1993) Ramiprilat increases bradykinin outflow from isolated hearts of rat. Br J Pharmacol 108:293–295

    PubMed  CAS  Google Scholar 

  66. Duncan AM, Burrell LM, Kladis A, Campbell DJ (1997) Angiotensin and bradykinin peptides in rats with myocardial infarction. J Card Fail 3:41–52

    PubMed  CAS  Google Scholar 

  67. Pan HL, Chen SR, Scicli GM, Carretero OA (2000) Cardiac interstitial bradykinin release during ischemia is enhanced by ischemic preconditioning. Am J Physiol 279:H116–H121

    CAS  Google Scholar 

  68. Schulz R, Post H, Vahlhaus C, Heusch G (1998) Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98:1022–1029

    PubMed  CAS  Google Scholar 

  69. Sabatine MS, Morrow DA, de Lemos JA, Omland T, Desai MY, Tanasijevic M et al (2004) Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. J Am Coll Cardiol 44:1988–1995

    PubMed  CAS  Google Scholar 

  70. Ogawa A, Seino Y, Yamashita T, Ogata K, Takano T (2006) Difference in elevation of N-terminal pro-BNP and conventional cardiac markers between patients with ST elevation vs non-ST elevation acute coronary syndrome. Circ J 70:1372–1378

    PubMed  CAS  Google Scholar 

  71. Mukoyama M, Nakao K, Obata K, Jougasaki M, Yoshimura M, Morita E et al (1991) Augmented secretion of brain natriuretic peptide in acute myocardial infarction. Biochem Biophys Res Commun 180:431–436

    PubMed  CAS  Google Scholar 

  72. Talwar S, Squire IB, Downie PF, Davies JE, Ng LL (2000) Plasma N terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina. Heart 84:421–424

    PubMed  CAS  Google Scholar 

  73. Sabatine MS, Morrow DA, de Lemos JA, Gibson CM, Murphy SA, Rifai N et al (2002) Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation 105:1760–1763

    PubMed  CAS  Google Scholar 

  74. Morrow DA, de Lemos JA, Sabatine MS, Murphy SA, Demopoulos LA, DiBattiste PM et al (2003) Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 41:1264–1272

    PubMed  CAS  Google Scholar 

  75. James SK, Lindahl B, Siegbahn A, Stridsberg M, Venge P, Armstrong P et al (2003) N-terminal pro-brain natriuretic peptide and other risk markers for the separate prediction of mortality and subsequent myocardial infarction in patients with unstable coronary artery disease: a Global Utilization of Strategies To Open occluded arteries (GUSTO)-IV substudy. Circulation 108:275–281

    PubMed  CAS  Google Scholar 

  76. Heeschen C, Hamm CW, Mitrovic V, Lantelme NH, White HD (2004) N-terminal pro-B-type natriuretic peptide levels for dynamic risk stratification of patients with acute coronary syndromes. Circulation 110:3206–3212

    PubMed  CAS  Google Scholar 

  77. DeFilippi CR, Fink JC, Nass CM, Chen H, Christenson R (2005) N-terminal pro-B-type natriuretic peptide for predicting coronary disease and left ventricular hypertrophy in asymptomatic CKD not requiring dialysis. Am J Kidney Dis 46:35–44

    PubMed  CAS  Google Scholar 

  78. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH et al (2001) The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 345:1014–1021

    PubMed  Google Scholar 

  79. Arakawa N, Nakamura M, Aoki H, Hiramori K (1994) Relationship between plasma level of brain natriuretic peptide and myocardial infarct size. Cardiology 85:334–340

    PubMed  CAS  Google Scholar 

  80. Kyriakides ZS, Markianos M, Michalis L, Antoniadis A, Nikolaou NI, Kremastinos DT (2000) Brain natriuretic peptide increases acutely and much more prominently than atrial natriuretic peptide during coronary angioplasty. Clin Cardiol 23:285–288

    PubMed  CAS  Google Scholar 

  81. Zhang Y, Oliver JR, Horowitz JD (2004) The role of endothelin in mediating ischemia/hypoxia-induced atrial natriuretic peptide release. J Cardiovasc Pharmacol 43:227–233

    PubMed  CAS  Google Scholar 

  82. Chen BN, Rayner TE, Menadue MF, McLennan PL, Oliver JR (1993) Effect of ischaemia and role of eicosanoids in release of atrial natriuretic factor from rat heart. Cardiovasc Res 27:1576–1579

    Article  PubMed  CAS  Google Scholar 

  83. Arad M, Zamir N, Horowitz L, Oxman T, Rabinowitz B (1994) Release of atrial natriuretic peptide in brief ischemia-reperfusion in isolated rat hearts. Am J Physiol 266:H1971–H1978

    PubMed  CAS  Google Scholar 

  84. Larsen TH, Saetersdal T (1993) Regional appearance of atrial natriuretic peptide in the ventricles of infarcted rat hearts. Virchows Archiv 64:309–314

    Article  PubMed  CAS  Google Scholar 

  85. Hama N, Itoh H, Shirakami G, Nakagawa O, Suga S, Ogawa Y et al (1995) Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92:1558–1564

    PubMed  CAS  Google Scholar 

  86. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A et al (2003) B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol 284:H1592–H1600

    CAS  Google Scholar 

  87. Ng LL, Loke IW, O’Brien RJ, Squire IB, Davies JE (2004) Plasma urocortin in human systolic heart failure. Clin Sci (Lond) 106:383–388

    CAS  Google Scholar 

  88. Brar BK, Stephanou A, Okosi A, Lawrence KM, Knight RA, Marber MS et al (1999) CRH-like peptides protect cardiac myocytes from lethal ischaemic injury. Mol Cell Endocrinol 158:55–63

    PubMed  CAS  Google Scholar 

  89. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev DOI 10.1007/s10741-007-9026-1

  90. Okumura H, Nagaya N, Kangawa K (2003) Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens Res 26:99–104

    Google Scholar 

  91. Nakamura R, Kato J, Kitamura K, Onitsuka H, Imamura T, Cao Y et al (2004) Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation 110:426–431

    PubMed  CAS  Google Scholar 

  92. Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K et al (2004) Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation 109:242–248

    PubMed  CAS  Google Scholar 

  93. Hamid SA, Baxter GF (2005) Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 100:387–396

    PubMed  CAS  Google Scholar 

  94. Hamid SA, Baxter GF (2007) Adrenomedullin augments nitrite production and protects against ischaemia-reperfusion in the mouse heart. Proceedings of the British Pharmacological Society, pA2 Online

  95. Hamid SA, Baxter GF (2006) A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J Mol Cell Cardiol 41:360–363

    PubMed  CAS  Google Scholar 

  96. Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD et al (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol 286:H468–H476

    CAS  Google Scholar 

  97. Ito H, Hayashi I, Izumi T, Majima M (2003) Bradykinin inhibits development of myocardial infarction through B2 receptor signalling by increment of regional blood flow around the ischaemic lesions in rats. Br J Pharmacol 138:225–233

    PubMed  CAS  Google Scholar 

  98. Ebrahim Z, Yellon DM, Baxter GF (2001) Bradykinin elicits “second window” myocardial protection in rat heart through an NO-dependent mechanism. Am J Physiol 281:H1458–H1464

    CAS  Google Scholar 

  99. Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack JE 3rd et al (2000) Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation 102:346–351

    Google Scholar 

  100. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 89:273–278

    PubMed  CAS  Google Scholar 

  101. Ebrahim Z, Yellon DM, Baxter GF (2007) Attenuated cardioprotective response to bradykinin, but not classical ischaemic preconditioning, in DOCA-salt hypertensive left ventricular hypertrophy. Pharmacol Res 55:42–48

    PubMed  CAS  Google Scholar 

  102. Weidenbach R, Schulz R, Gres P, Behrends M, Post H, Heusch G (2000) Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT(1)-receptor antagonism. Br J Pharmacol 131:138–144

    PubMed  CAS  Google Scholar 

  103. Schriefer JA, Broudy EP, Hassen AH (1996) Endopeptidase inhibitors decrease myocardial ischemia/reperfusion injury in an in vivo rabbit model. J Pharmacol Exp Ther 278:1034–1039

    PubMed  CAS  Google Scholar 

  104. Scholkens BA, Linz W (1991) ACE inhibition: mechanisms of “cardioprotection” in acute myocardial ischemia. Klin Wochenschr 69:1–5

    PubMed  Google Scholar 

  105. Rastegar MA, Marchini F, Morazzoni G, Vegh A, Papp JG, Parratt JR (2000) The effects of Z13752A, a combined ACE/NEP inhibitor, on responses to coronary artery occlusion; a primary protective role for bradykinin. Br J Pharmacol 129:671–680

    PubMed  CAS  Google Scholar 

  106. Maki T, Nasa Y, Tanonaka K, Takahashi M, Takeo S (2003) Beneficial effects of sampatrilat, a novel vasopeptidase inhibitor, on cardiac remodeling and function of rats with chronic heart failure following left coronary artery ligation. J Pharmacol Exp Ther 305:97–105

    PubMed  CAS  Google Scholar 

  107. Jalowy A, Schulz R, Heusch G (1999) AT1 receptor blockade in experimental myocardial ischemia/reperfusion. J Am Soc Nephrol 10:S129–S136

    PubMed  CAS  Google Scholar 

  108. Heusch G, Rose J, Ehring T (1997) Cardioprotection by ACE inhibitors in myocardial ischaemia/reperfusion. The importance of bradykinin. Drugs 54:31–41

    Article  PubMed  CAS  Google Scholar 

  109. Veeravalli KK, Akula A, Routhu KV, Kota MK (2003) Infarct size limiting effect of apstatin alone and in combination with enalapril, lisinopril and ramipril in rats with experimental myocardial infarction. Pharmacol Res 48:557–563

    PubMed  CAS  Google Scholar 

  110. Agata J, Chao L, Chao J (2002) Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 40:653–659

    PubMed  CAS  Google Scholar 

  111. Bell RM, Yellon DM (2003) Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 35:185–193

    PubMed  CAS  Google Scholar 

  112. Okawa H, Horimoto H, Mieno S, Nomura Y, Yoshida M, Shinjiro S (2003) Preischemic infusion of alpha-human atrial natriuretic peptide elicits myoprotective effects against ischemia reperfusion in isolated rat hearts. Mol Cell Biochem 248:171–177

    PubMed  CAS  Google Scholar 

  113. Padilla F, Garcia-Dorado D, Agullo L, Barrabes JA, Inserte J, Escalona N et al (2001) Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc Res 51:592–600

    PubMed  CAS  Google Scholar 

  114. Inserte J, Garcia-Dorado D, Agullo L, Paniagua A, Soler-Soler J (2000) Urodilatin limits acute reperfusion injury in the isolated rat heart. Cardiovasc Res 45:351–359

    PubMed  CAS  Google Scholar 

  115. Yang XM, Philipp S, Downey JM, Cohen MV (2006) Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 101:311–318

    PubMed  CAS  Google Scholar 

  116. Burley DS, Baxter GF (2006) B-type natriuretic peptide limits reperfusion injury via opening of ATP-sensitive potassium channels. J Mol Cell Cardiol 40:967–968 (abstract)

    Google Scholar 

  117. Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA et al (2000) Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 275:8508–8514

    PubMed  CAS  Google Scholar 

  118. Lawrence KM, Chanalaris A, Scarabelli T, Hubank M, Pasini E, Townsend PA et al (2002) K(ATP) channel gene expression is induced by urocortin and mediates its cardioprotective effect. Circulation 106:1556–1562

    PubMed  CAS  Google Scholar 

  119. Brar BK, Jonassen AK, Egorina EM, Chen A, Negro A, Perrin MH et al (2004) Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology 145:24–35

    PubMed  CAS  Google Scholar 

  120. Schulman D, Latchman DS, Yellon DM (2002) Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol 283:H1481–H1488

    CAS  Google Scholar 

  121. Maewal P, de Lemos JA (2003) Natriuretic peptide hormone measurement in acute coronary syndromes. Heart Fail Rev 8:365–368

    PubMed  CAS  Google Scholar 

  122. Ishimitsu T, Ono H, Minami J, Matsuoka H (2006) Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 111:909–927

    PubMed  CAS  Google Scholar 

  123. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K (2005) Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. J Am Med Assoc 293:1900–1905

    CAS  Google Scholar 

  124. Aaronson KD, Sackner-Bernstein J (2006) Risk of death associated with nesiritide in patients with acutely decompensated heart failure. JAMA 296:1465–1466

    PubMed  CAS  Google Scholar 

  125. Sackner-Bernstein JD, Skopicki HA, Aaronson KD (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111:1487–1491

    PubMed  CAS  Google Scholar 

  126. Burger AJ, Burger MR (2005) Nesiritide: past, present, and future. Minerva Cardioangiol 53:509–522

    PubMed  CAS  Google Scholar 

  127. Davis ME, Pemberton CJ, Yandle TG, Lainchbury JG, Rademaker MT, Nicholls MG et al (2005) Effect of urocortin 1 infusion in humans with stable congestive cardiac failure. Clin Sci (Lond) 109:381–388

    Article  CAS  Google Scholar 

  128. Nozawa Y, Miura T, Tsuchida A, Kita H, Fukuma T, Shimamoto K (1999) Chronic treatment with an ACE inhibitor, temocapril, lowers the threshold for the infarct size-limiting effect of ischemic preconditioning. Cardiovasc Drugs Ther 13:151–157

    PubMed  CAS  Google Scholar 

  129. Ebrahim Z, Yellon DM, Baxter GF (2007) Ischaemic preconditioning in progressive experimental hypertension: interaction of left ventricular hypertrophy and ageing, and effect of ACE inhibition. Proceedings of the British Pharmacological Society, pA2 online

Download references

Acknowledgements

The authors acknowledge gratefully the support of their research in this field through the generous support of the British Heart Foundation, Heart Research UK and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Baxter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burley, D.S., Hamid, S.A. & Baxter, G.F. Cardioprotective actions of peptide hormones in myocardial ischemia. Heart Fail Rev 12, 279–291 (2007). https://doi.org/10.1007/s10741-007-9029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-007-9029-y

Keywords

Navigation