Skip to main content
Log in

Measurements of the viscosity of iron and uranium under shock compression

  • Review
  • Published:
High Temperature Aims and scope

Abstract

Interest in studying the viscosity of iron and uranium is primarily associated with studying the stability of motion of envelopes made of these materials towards the center in spherically symmetric systems during the acceleration of the envelopes by the products of explosion and by shock waves. The experimental measurements of viscosity in the pressure range from 30 to 250 GPa involve the use of the method of evolution of harmonic oscillation preassigned at the front of shock wave propagating in iron and uranium. The resultant data are considered along with the estimates of the thermodynamic state of matter under shock compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al’tshuler, L.V., Trunin, R.F., Urlin, V.D. et al., Usp. Fiz. Nauk, 1999, vol. 169, no. 3, p. 323.

    Google Scholar 

  2. Al’tshuler, L.V., Trunin, R.F., Krupnikov, K.K., and Panov, V.N., Usp. Fiz. Nauk, 1996, vol. 166, no. 5, p. 575.

    Google Scholar 

  3. Funtikov, A.I., Usp. Fiz. Nauk, 1997, vol. 167, no. 10, p. 1119.

    Google Scholar 

  4. Sakharov, A.D., Zaidel’, R.M., Mineev, V.N., and Oleinik, A.G., Dokl. Akad. Nauk SSSR, 1964, vol. 159, no. 5, p. 1019.

    Google Scholar 

  5. Mineev, V.N. and Savinov, E.V., Zh. Eksp. Teor. Fiz., 1967, vol. 52, no. 3, p. 629.

    Google Scholar 

  6. Mineev, V.N. and Zaidel’, R.M., Zh. Eksp. Teor. Fiz., 1968, vol. 54, no. 6, p. 1633.

    Google Scholar 

  7. Mineev, V.N. and Savinov, E.V., Zh. Eksp. Teor. Fiz., 1975, vol. 68, no. 4, p. 1321.

    Google Scholar 

  8. Zaidel’, R.M., Prikl. Mekh. Tekh. Fiz., 1967, no. 4, p. 30.

  9. Miller, G.H. and Ahrens, T.J., Rev. Mod. Phys., 1991, vol. 63, no. 4, p. 919.

    Article  ADS  Google Scholar 

  10. Savenkov, G.G. and Meshcheryakov, Yu.I., Fiz. Goreniya Vzryva, 2002, vol. 36, no. 3, p. 113.

    Google Scholar 

  11. Dremin, A.N. and Kanel’, G.I., Prikl. Mekh. Tekh. Fiz., 1976, no. 2, p. 146.

  12. Kanel’, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh (Shock-Wave Phenomena in Condensed Media), Moscow: Yanus-K, 1996.

    Google Scholar 

  13. Eksperimental’nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rashireniyu kondensirovannykh veshchestv (Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Matter), Trunin, R.F., Ed., Sarov: RFYaTs-VNIIEF (Russian Federal Nuclear Center-All-Russia Research Inst. of Experimental Physics), 2001.

    Google Scholar 

  14. Funtikov, A.I., Fiz. Zemli, 2001, no. 9, p. 3.

  15. Al’tshuler, L.V., Bakanova, A.A., Brazhnik, M.I. et al., Khim. Fiz., 1995, vol. 14, no. 2–3, p. 65.

    Google Scholar 

  16. Funtikov, A.I., Teplofiz. Vys. Temp., 1998, vol. 36, no. 3, p. 406 (High Temp. (Engl. transl.), vol. 36, no. 3, p. 384).

    Google Scholar 

  17. Funtikov, A.I., Teplofiz. Vys. Temp., 2003, vol. 41, no. 6, p. 954 (High Temp. (Engl. transl.), vol. 41, no. 6, p. 850).

    Google Scholar 

  18. Boehler, R., Nature, 1993, vol. 363, p. 534.

    Article  ADS  Google Scholar 

  19. Saxena, S.K., Shen, G., and Lazor, P., Science, 1993, vol. 260, p. 1312.

    Article  ADS  Google Scholar 

  20. Brown, J.M. and McQueen, R.G., J. Geophys. Res., 1986, vol. 91, p. 7485.

    Article  ADS  Google Scholar 

  21. Ahrens, T.J., Hya Tan, and Bass, J.D., High Pressure Res., 1990, vol. 2, p. 145.

    ADS  Google Scholar 

  22. Yoo, C.S., Holmes, N.C., and Ross, M., Phys. Rev. Lett., 1993, vol. 70, no. 25, p. 3931.

    Article  ADS  Google Scholar 

  23. Vocadlo, L., Brodholt, J., Alfe, D., and Price, D., Phys. Earth Planet. Inter., 2000, vol. 117, p. 123.

    Article  ADS  Google Scholar 

  24. Saxena, S.K., Dubrovinsky, L.S., Haggkvist, P. et al., Science, 1995, vol. 269, p. 1703.

    Article  ADS  Google Scholar 

  25. Yoo, C.S., Akella, J., Campbell, A.J. et al., Science, 1995, vol. 270, p. 1473.

    Article  ADS  Google Scholar 

  26. Andrault, D., Fiquet, G., Kunz, M. et al., Science, 1997, vol. 278, p. 831.

    Article  ADS  Google Scholar 

  27. Kubo, A., Ito, E., Katsure, T. et al., Geophys. Res. Lett., 2003, vol. 30, no. 3, p. 26.

    Article  Google Scholar 

  28. Shen, G., Mao, H.K., Hemley, R.J. et al., Geophys. Res. Lett., 1998, vol. 25, no. 3, p. 373.

    Article  ADS  Google Scholar 

  29. Saxena, S.K. and Dubrovinsky, L.S., Am. Mineral., 2000, vol. 85, p. 372.

    Google Scholar 

  30. Ahrens, T.J., Holland, A., Kathleen, G., and Chen, G.Q., Geophys. Res. Lett., 2002, vol. 29, no. 7, p. 54.

    Article  Google Scholar 

  31. Boehler, R., Rev. Geophys., 2000, vol. 38, no. 2, p. 221.

    Article  ADS  Google Scholar 

  32. Nguyen, J.H. and Holmes, N.C., Nature, 2004, vol. 427, p. 339.

    Article  ADS  Google Scholar 

  33. Funtikov, A.I., Osipov, R.S., and Tsyganov, V.A., Teplofiz. Vys. Temp., 1999, vol. 37, no. 6, p. 887 (High Temp. (Engl. transl.), vol. 37, no. 6, p. 857).

    Google Scholar 

  34. Laio, A., Bernard, S., Chiarotti, G.L. et al., Science, 2000, vol. 287, p. 1027.

    Article  ADS  Google Scholar 

  35. Belonoshko, A.B., Ahuja, R., and Johansson, B., Phys. Rev. Lett., 2000, vol. 84, no. 16, p. 3638.

    Article  ADS  Google Scholar 

  36. Alfe, D., Gillan, M.J., and Price, D., Nature, 1999, vol. 401, p. 462.

    Article  ADS  Google Scholar 

  37. Mineev, V.N. and Funtikov, A.I., Usp. Fiz. Nauk, 2004, vol. 174, no. 7, p. 727.

    Article  Google Scholar 

  38. Rutter, M.D., Secco, R.A., and Liu, H., Phys. Rev., 2002, vol. 66, p. 060102.

  39. Arsent’ev, P.P. and Koledov, L.A., Metallicheskie rasplavy i ikh svoistva (Metal Melts and Their Properties), Moscow: Metallurgiya, 1976.

    Google Scholar 

  40. Terasaki, H., Cato, T., Urakawa, S. et al., Geophys. Res. Lett., 2002, vol. 29, no. 8, p. 68.

    Article  Google Scholar 

  41. Sanloup, C.F., Giyot, F., Gillet, P. et al., Europhys. Lett., 2000, vol. 52, p. 151.

    Article  ADS  Google Scholar 

  42. Vocadlo, L., Alfe, D., Gillan, M.J., and Price, D., Phys. Earth Planet. Inter., 2003, vol. 140, p. 101.

    Article  ADS  Google Scholar 

  43. Dziewonski, A.M. and Anderson, D.L., Phys. Earth Planet. Inter., 1981, vol. 25, p. 297.

    Article  ADS  Google Scholar 

  44. Zhang, Y., Gio, G., and Nie, G., Phys. Chem. Minerals, 2000, vol. 27, p. 164.

    Article  ADS  Google Scholar 

  45. Medvedev, A.B., Modified Van der Waals Model for Dense States, in Udarnye volny i ekstremal’nye sostoyaniya veshchestva (Shock Waves and Extreme States of Matter), Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., and Funtikov, A.I., Eds., Moscow: Nauka, 2000, p. 315.

    Google Scholar 

  46. Medvedev, A.B., Teplofiz. Vys. Temp., 1995, vol. 33, no. 2, p. 227 (High Temp. (Engl. transl.), vol. 33, no. 2, p. 225).

    Google Scholar 

  47. Frenkel, Ya.I., Kineticheskaya teoriya zhidkostei, Moscow-Leningrad: Izd. AN SSSR (USSR Acad. Sci.), 1945. Translated under the title Kinetic Theory of Liquids, Oxford: Clarendon Press, 1946.

    Google Scholar 

  48. Yoo, C.S., Akella, J., and Moriarty, J.A., Phys. Rev. B, 1993, vol. 48, no. 21, p. 15529.

  49. Dai, C., Tan, H., and Geng, H., J. Appl. Phys., 2002, vol. 92, no. 9, p. 5019.

    Article  ADS  Google Scholar 

  50. Lalle, P. and Courchinoux, R., Melting on the Hugoniot, in Shock Compression of Condensed Matter-1995, Schmidt, S.C. and Tao, W.C., Eds., New York: AIP, 1996, p. 207.

    Google Scholar 

  51. Stepanov, G.V., Uprugoplasticheskoe deformirovanie i razrushenie materialov pri impul’snykh nagruzheniyakh (Elastoplastic Strain and Destruction of Materials under Pulsed Loading), Kiev: Naukova Dumka, 1991.

    Google Scholar 

  52. Ogorodnikov, V.A., Sadovoi, A.A., Tyun’kin, E.S., and Chulkov, N.M., Prikl. Mekh. Tekh. Fiz., 1995, no. 5, p. 5.

  53. Godunov, S.K., Deribas, A.A., Zakharchenko, I.D., and Mali, V.I., Fiz. Goreniya Vzryva, 1971, no. 1, p. 135.

  54. Stepanov, G.V. and Kharchenko, V.V., Probl. Prochn., 1985, no. 8, p. 59.

  55. Bat’kov, Yu.V., Glushak, B.L., and Novikov, S.A., Fiz. Goreniya Vzryva, 1989, vol. 25, no. 5, p. 126.

    Google Scholar 

  56. Ogorodnikov, V.A., Ivanov, A.G., Tyun’kin, E.S. et al., Fiz. Goreniya Vzryva, 1992, no. 1, p. 94.

  57. Chhabildas, L.C. and Asay, J.R., J. Appl. Phys., 1979, vol. 50, no. 4, p. 2749.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 6, 2006, pp. 943–950.

Original Russian Text Copyright © 2006 by V. N. Mineev and A. I. Funtikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineev, V.N., Funtikov, A.I. Measurements of the viscosity of iron and uranium under shock compression. High Temp 44, 941–949 (2006). https://doi.org/10.1007/s10740-006-0113-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0113-0

Keywords

Navigation