Skip to main content
Log in

The effect of interphase interaction on the development of perturbations in a turbulent swirl flow in multicomponent cocurrent supersonic stream

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The parameters are calculated of flow in the viscous core of an axisymmetric multicomponent turbulent vortex in a cocurrent supersonic stream containing liquid particles and water vapor condensing on these particles. The effect of interphase transfer of momentum and energy on the flow parameters in the vortex core is taken into account. The results of analysis of harmonic disturbances of infinitely small amplitude propagating along the vortex axis are used to determine the effect of turbulent swirl flow on the behavior of neutral disturbances associated with the processes of evaporation and condensation of water vapor on liquid particles in the axisymmetric vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stolarski, R.C. and Wesoky, H.L., The Atmospheric Effects of Stratospheric Aircraft: A Second Program Report, NASA Reference Publication 1293, NASA, Mail Code JTT, Washington, D.C.. 20546-0001, March 1993.

  2. Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, NASA Reference Publication 1381, NASA, Mail Code JTT, Washington, D.C.. 20546-0001, November 1993.

  3. Miake-Lye, R.C., Martinez-Sanchez, M., Brown, R.C., and Kolb, C.E., Plume and Wake Dynamics, Mixing, and Chemistry behind an HSCT Aircraft, AIAA-91-3158, 1991.

  4. Fahey, D.W., Keim, E.R., Boering, K.A., et al., Science, 1995, vol. 270, p. 70.

    Article  ADS  Google Scholar 

  5. Kashevarov, A.V. and Stasenko, A.L., Uch. Zap. Tsentr. Aerogidrodin. Inst., 1994, vol. 25, no. 3–4, p. 103.

    Google Scholar 

  6. Kashevarov, A.V., Potapov, Yu.F., and Stasenko, A.L., Uch. Zap. Tsentr. Aerogidrodin. Inst., 1994, vol. 25, no. 3–4, p. 123.

    Google Scholar 

  7. Kazakov, A.V., Teplofiz. Vys. Temp., 1999, vol. 37, no. 5, p. 758 (High Temp. (Engl. transl.), vol. 37, no. 5, p. 728).

    Google Scholar 

  8. Kazakov, A.V., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 1998, no. 3, p. 50.

  9. Kazakov, A.V. and Kuryachii, A.P., Teplofiz. Vys. Temp., 1999, vol. 37, no. 2, p. 254 (High Temp. (Engl. transl.), vol. 37, no. 2, p. 231).

    Google Scholar 

  10. Cantwell, B.J., Annu. Rev. Fluid Mech., 1981, vol. 13, p. 457.

    Article  ADS  Google Scholar 

  11. Ho, C.M. and Huerre, P., Annu. Rev. Fluid Mech., 1984, vol. 16, p. 365.

    Article  ADS  Google Scholar 

  12. Reynolds, W.C. and Hussain, A.K.M.F., J. Fluid Mech., 1972, vol. 54, p. 263.

    Article  ADS  Google Scholar 

  13. Reau, N. and Tumin, A., Eur. J. Mech. B, 2002, vol. 21, p. 143.

    Article  MATH  Google Scholar 

  14. Marble, F.E., Annu. Rev. Fluid. Mech., 1970, vol. 2, p. 397.

    Article  ADS  Google Scholar 

  15. Lilley, D.G., AIAA J., 1973, vol. 11, no. 7, p. 955.

    Article  ADS  Google Scholar 

  16. Batchelor, G.K., J. Fluid Mech., 1964, vol. 20, Part 4, p. 645.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Denisenko, O.V. and Provotorov, V.P., Tr. Tsentr. Aerogidrodin. Inst., 1985, issue 2269, p. 111.

  18. Vasil’ev, L.E., Popov, S.I., and Svishchev, G.P., TVF, 1994, no. 1–2.

  19. Kazakov, A.V., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2005, no. 1, p. 71.

  20. Asmolov, E.S., Kazakov, A.V., Kiselev, A.F., and Rus’yanov, D.A., Teplofiz. Vys. Temp., 2005, vol. 43, no. 4, p. 594 (High Temp. (Engl. transl.), vol. 43, no. 4, p. 595).

    Google Scholar 

  21. Malik, M.R. and Orszag, S.A., Efficient Computation of the Stability of Three-Dimensional Compressible Boundary Layers, AIAA-81-1277, 1981.

  22. Asmolov, E.S., Kazakov, A.V., Kiselev, A.F., and Kuryachii, A.P., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2005, no. 6, p. 109.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 6, 2006, pp. 885–891.

Original Russian Text Copyright © 2006 by E. S. Asmolov, A. V. Kazakov, A. F. Kiselev, and A. P. Kuryachii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmolov, E.S., Kazakov, A.V., Kiselev, A.F. et al. The effect of interphase interaction on the development of perturbations in a turbulent swirl flow in multicomponent cocurrent supersonic stream. High Temp 44, 879–886 (2006). https://doi.org/10.1007/s10740-006-0106-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0106-z

Keywords

Navigation