Skip to main content
Log in

Heat-engineering units for the generation of dense high-temperature gas

  • Review
  • Published:
High Temperature Aims and scope

Abstract

Various methods of gas compression are reviewed, which are intended for heating the gas. Special attention is given to units of nonisentropic compression of the mechanical heat-engineering type, in which the gas is transferred from chamber to chamber in order to increase the temperature. The units are subdivided into classes or systems, namely, those of impulse, pulse-periodic, and continuous operation. Methods are discussed of mathematical description of processes occurring in units of this type, including analytical investigation of simplified qualitative models and numerical simulation in more complex cases close to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kislykh, V.V. and Krapivnoy, K.V., Teplofiz. Vys. Temp., 1990, vol. 28, no. 6, p. 1195.

    ADS  Google Scholar 

  2. Kislykh, V.V., Piston Gasdynamic Units with MCC, in Advanced Hypersonic Test Facilities: Progress in Astronautics and Aeronautics, Lu, F.K. and Marren, D.E., Eds., 2002, vol. 198.

  3. Kislykh, V.V., The Efficacious Multicascade Compression (MCC) Method for Aerothermodynamic Ground Testing of a New Generation of Aerospace, J.C.E.F.M. 94 Proc. 2 nd Int. Conf. on Experimental Fluid Mechanics, Torino, 1994.

  4. Kislykh, V.V. and Orth, R.C., Data Analysis from Hypersonic Combustion Tests in the TsNIIMash PGU-11 Facility, 7 th Int. Space Planes and Hypersonic System Technology Conf., AIAA 96-4584-CP, Norfolk, VA, 1996.

  5. Kislykh, V.V., Simulation of Hypersonic Flows Using the Multicascade Compression Method, in Trudy Vserossiiskoi nauchno-tekhnicheskoi konferentsii Fundamental’nye issledovaniya dlya giperzvukovykh tekhnologii (Proc. All-Russia Sci.-and-Tech. Conf. on Basic Research for Hypersonic Technologies), Zhukovskii (Moscow Region), TsAGI (Central Inst. of Aerohydrodynamics), 1998.

    Google Scholar 

  6. Anfimov, N.A., Zemlyansky, B.A., and Kislykh, V.V., Methods and Means for Studying Flying Vehicles Heat Transfer at Hypersonic Velocities, 9 th Int. Space Planes and Hypersonic Systems Conf., AIAA-4891, Norfolk, VA, 1999.

  7. Kislykh, V.V. and Reshetin, I.A., Simulation of Engine Jets Effect on Aft Elements of Launchers for Space Transportation System, 9 th Int. Space Planes and Hypersonic Systems Conf., AIAA-4891, Norfolk, VA, 1999.

  8. Kislykh, V.V. and Reshetin, I.A., Advanced Scram-Jet Engine Models and Real Gas Jet Flows Experimental Investigations in the Multipurpose PGU TsNIIMash, AIAA-2001-3297, 37 th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Salt Lake City, 2001.

  9. Arifulin, R.A., Kislykh, V.V., Mikhailov, V.M., and Puchkov, V.V., The Possibilities of Ground Testing of Space Vehicles for Mars Flight Using Piston Facilities of Multicascade Compression at TsNIIMash, Shestaya mezhdunarodnaya konferentsiya “Sistemnyi analiz i upravlenie kosmicheskimi kompleksami” (Sixth Int. Conf. on Systems Analysis and Control of Space Complexes), Evpatoria, Crimea, 2001.

    Google Scholar 

  10. Kislykh, V.V., Kosmonavt. Raketostr. TsNIIMash, 2004, no.2 (35), p. 27.

  11. Topchiyan, M.E. and Kharitonov, A.M., Prikl. Mekh. Tekh. Fiz., 1994, vol. 35, no. 3, p. 66.

    Google Scholar 

  12. Rychkov, V.N., Topchiyan, M.E., Meshcheryakov, A.A., and Pinakov, V.I., Prikl. Mekh. Tekh. Fiz., 2000, vol. 41, no. 5, p. 103.

    Google Scholar 

  13. Richards, B.E. and Enkenhus, K.R., Vopr. Raketn. Tekh., 1970, vol. 8, no. 6, p. 38.

    Google Scholar 

  14. Pinakov, V.I., Rychkov, V.N., and Topchiyan, M.E., Prikl. Mekh. Tekh. Fiz., 1982, no. 1, p. 63.

  15. Rychkov, V.N. and Topchiyan, M.E., Teplofiz. Aeromekh., 1999, vol. 6, no. 2, p. 173.

    Google Scholar 

  16. Kislykh, V.V. and Reshetin, I.A., Izv. Sib. Otd. Ross. Akad. Nauk Tekh. Nauki, 1990, issue 5, p. 135.

  17. Likhushin, V.Ya., Petrov, G.I., Shchetinkov, E.S. et al., An Investigation of the Effectiveness of Using ICE in a One-Stage Reusable Space Vehicle, o NIR/NII-1 (Report of R&D at Research Institute-1), Moscow, NIITP, 1966, p. 67.

    Google Scholar 

  18. Rychkov, V.N., The Possibilities of Simulation of Aerogasdynamic Processes in a Superhigh-Pressure Impulse Adiabatic Facility, Cand. Sci. (Phys.-Math.) Dissertation, Novosibirsk: Lavrentiev Inst. of Hydrodynamics, 1995.

    Google Scholar 

  19. Neely, A.J. and Morgan, R.G., Aeronaut. J., 1994, no. 3, p. 97.

  20. Kendall, M.A., Morgan, R.G., and Petrie-Repar, P.J., A Study of Free-Piston Driven Double-Diaphragm Drivers for Expansion Tubes, 35 th Aerospace Sci. Meet., AIAA 97-0686, Reno, 1997.

  21. Morgan, R.G., A Review of the Use of Expansion Tubes for Creating Superorbital Flows, 35 th Aerospace Sci. Meet., AIAA 97-0453, Reno, 1997.

  22. Ryabinin, Yu.N., Gazy pri bol’shikh plotnostyakh i temperaturakh (Gases at High Densities and Temperatures), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  23. Kislykh, V.V., Vasil’ev, V.N., and Verem’ev, V.S., Teplofiz. Vys. Temp., 1971, vol. 9, no. 5, p. 920.

    Google Scholar 

  24. Antanovich, A.A., Plotnikov, M.A., and Savel’ev, G.A., Prikl. Mekh. Tekh. Fiz., 1969, no. 3, p. 99.

  25. Zatoloka, V.V., Scientific Research into the Realization of the Idea of Hypersonic Scramjet Flying Vehicle Carried out in Laboratory no. 8 of the Institute of Theoretical and Applied Mechanics (Laboratory of Gas Thermodynamics of Engines), Preprint of ITPM SO AN SSSR (Inst. of Theoretical and Applied Mechanics, Siberian Div., USSR Acad. Sci.), Novosibirsk, 1991, no. 11-91.

  26. Kislykh, V.V. and Sidel’nikov, A.E., Kinet. Katal., 1975, vol. 16, issue 3, p. 776.

    Google Scholar 

  27. Verem’ev, E.S., Kislykh, V.V., and Sidel’nikov, A.E., Kinet. Katal., 1972, vol. XIII, issue 2, p. 269.

    Google Scholar 

  28. Kislykh, V.V., Petrova, O.V., and Reshetin, I.A., USSR Inventor’s Certificate no. 1 012 965, Byull. Izobret., 1983, no.15.

  29. Zatoloka, V.V., Impul’snye aerodinamicheskie truby (Impulse Wind Tunnels), Novosibirsk: Nauka, 1986.

    Google Scholar 

  30. Shakhov, V.G., Osnovy teorii pogranichnogo sloya (The Fundamentals of the Theory of Boundary Layer), Kuibyshev: KAI (Kuibyshev Aviation Inst.), 1989.

    Google Scholar 

  31. Zhukov, M.F. and Fomin, V.M., Nizkotemp. Plazma, 2000, vol. 18, p. 425.

    Google Scholar 

  32. Kolbanovskii, Yu.A., Shchipacev, V.S., Chernyak, N.Ya. et al., Khimimpul’snoe szhatie gazov v khimii i tekhnologii (Chemical-Impulse Compression of Gases in Chemistry and Technology), Moscow: Nauka, 1982.

    Google Scholar 

  33. Harris, R., On the Threshold-the Outlook for Supersonic and Hypersonic Aircraft, Washington: AIAA Paper, 1990, no.89, p. 271.

  34. Struminskii, V.V., Zatoloka, V.V., Antonov, A.S. et al., The Simulation of Turbulent Boundary Layer in Impulse Wind Tunnels in a Wide Range of Variation of the Basic Parameters of Flow, in Mekhanika turbulentnykh potokov (Mechanics of Turbulent Flows), Moscow: Nauka, 1980, p. 248.

    Google Scholar 

  35. Antonov, A.S., Boshenyatov, V.V., Dmitriev, V.A. et al., IT-301_Hypersonic Impulse Wind Tunnel, in Aerofizicheskie issledovaniya (Aerophysical Research), Novosibirsk: ITPM SO AN SSSR (Inst. of Theoretical and Applied Mechanics, Siberian Div., USSR Acad. Sci.), 1972, p. 20.

    Google Scholar 

  36. Kislykh, V.V., High-Velocity Impulse Tunnels: Comparison and Prospects for Development, Mezhdunarodnaya konferentsiy a “Fundamental’nye problemy vysokoskorostnykh techenii” (Int. Conf. on Basic Problems Associated with High-Velocity Flows), Zhukovskii, Moscow Region, 2004.

  37. Kislykh, V.V. and Sidel’nikov, A.E., Teplofiz. Vys. Temp., 1972, vol. 10, no. 4, p. 853.

    Google Scholar 

  38. Kislykh, V.V., Kondratov, A.A., and Semenov, V.L., The Program for the Complex Investigation of the Hypersonic Flight Laboratory (HFL) “IGLA” in the PGU of TsNIIMash, 10 th Int. Space Planes and Hypersonic Systems Conf., AIAA-1875, Kyoto, 2001.

  39. Riva, G., Reggiori, A., and Daminelli, G.B., A Method for Evaluating the Combustion Efficiency in Direct Connect Supersonic Combustion Test Facilities, 22 nd Int. Symp. on Shock Waves, London, 1999, p. 291.

  40. Semenov, V.L., Kleyankin, G.A., Ivanov, A.P. et al., Development of a Model and Stand Equipment for the Investigation of Integration of the Flow Train of HSE and Glider at Mach Number Values of 6 to 14, XXIX Akademicheskie chteniya po kosmonavtike (XXIX Academic Sessions in Astronautics), Moscow, 2005.

  41. Riva, G., Reggiori, A., and Daminelli, G.B., J. Propulsion Power, 1997, vol. 13, no. 4, p. 532.

    Google Scholar 

  42. Stalker, R.J., J. R. Aeronaut. Soc., 1972, vol. 20, p. 374.

    Google Scholar 

  43. Bogdanoff, D.W. and Miller, R.J., Int. J. Impact Eng., 1995, vol. 17, p. 81.

    Article  Google Scholar 

  44. Angrilli, F., Panarin, D., Cecco, M. De, and Fracesconi, A., Acta Astronaut., 2003, vol. 53, no. 3, p. 185.

    ADS  Google Scholar 

  45. Panarin, D., Fracesconi, A., and Angrilli, F., Rev. Sci. Instrum., 2004, vol. 75, no. 1.

  46. Hunter, J.W. and Hyde, R.A., A Light Gas Gun System for Launching Building Material into Low Earth Orbit, AIAA Paper 89-2439, 1989.

  47. Riva, G. and Reggiori, A., Fusion Technol., 1989, vol. 15, p. 143.

    Google Scholar 

  48. Riva, G. and Reggiori, A., Fusion Technol., 1992, vol. 21, p. 31.

    Google Scholar 

  49. Kryukov, P.V., Review of Investigations under Way on the Large-Scale TsNIIMash Ballistic Facility. Ballistic Technologies Scientific Venture, http://www.islandone.org/ LEOBiblio/HVIS-98.PDF.

  50. Shmelev, V.M. and Nikolaev, V.M., Probl. Mashinostr. Avtom., 2002, no. 4, p. 57.

  51. Nikolaev, V.M., Superadiabatic Compression of Gas Mixtures in Ballistic Facilities, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Inst. of Chemical Physics, Moscow, 2005.

    Google Scholar 

  52. Zalyubovskii, M.N. and Senachin, P.K., Simulation of Delay of Fuel Ignition in a Diesel Engine in a Free-Piston Adiabatic Compression Facility, Tezisy dokladovV nauchno-prakticheskogo seminara “Sovershenstvovanie moshchnostnykh, ekonomicheskikh i ekologicheskikh pokazatelei DVS” (Abstracts of Papers to V Scientific-and-Practical Seminar on Improving the Power, Economic, and Environmental Performance of ICE), Vladimir, 1995, p. 128.

  53. Buzukov, A.A., Teplofiz. Aeromekh., 1999, vol. 6, no. 4, p. 563.

    Google Scholar 

  54. Margolin, A.D., Vasilik, N.Ya., Shmelev, V.M. et al., Ballistic Plasma Generator as a Source of Ultraviolet Radiation for Photochemistry, Tezisy dokladov XV mezhotraslevogo seminara “Atomno-vodorodnaya energetika i tekhnologiya” (Abstracts of Papers to XV Interindustry Seminar on Nuclear-and-Hydrogen Power Engineering and Technology), Moscow, 1990, p. 58.

  55. Volov, D.B., RF Useful Model Patent no. 42 633, class MPK-7: F 25B29/00, 10.12.2004.

  56. Volov, D.B., RF Useful Model Patent no. 48 040, class MPK-7: F 25B29/00, 10.09.2005.

  57. Volov, D.B., RF Useful Model Patent no. 51 416, class MPK-7: F 25B29/00, 02.10.2006.

  58. Volov, D.B., RF Useful Model Patent no. 51 601, class MPK-7: B65D88/74, 02.27.2006.

  59. Shestopalov, E.M., RF Inventor’s Certificate no. 2 106 586, Byull. Izobret., 1998, no. 7.

  60. Krupenin, Yu.D., RF Inventor’s Certificate no. 2 053 458, Byull. Izobret., 1996, no. 3.

  61. Zlatin, N.A., Krasil’shchikov, A.P., Mishin, G.I., and Popov, N.N., Ballisticheskie ustanovki i ikh primenenie v eksperimental’nykh issledovaniyakh (Ballistic Facilities and Their Uses in Experimental Investigations), Moscow: Nauka, 1974.

    Google Scholar 

  62. Rakhmatullin, Kh.A. and Semenov, S.S., Udarnye truby (Shock Tubes), Moscow: Nauka, 1962.

    Google Scholar 

  63. Khvostov, N.I., Zubarev, N.S., and Zaika, V.I., Izv. Sib. Otd. Akad. Nauk SSSR Tekh. Nauki, 1990, issue 5, p. 145.

  64. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (The Physics of Shock Waves and High-Temperature Gasdynamic Phenomena), Moscow: Nauka, 1966.

    Google Scholar 

  65. Shumskii, V.V. and Yaroslavtsev, M.I., Prikl. Mekh. Tekh. Fiz., 2005, vol. 46, no. 1, p. 29.

    Google Scholar 

  66. Krapivnoy, K.V., Nonisentropic Compression of Gas in Piston Gasdynamic Facilities, Cand. Sci. (Phys.-Math.) Dissertation, Dolgoprudnyi, Moscow Region, 1995.

  67. Kolbanovskii, Yu.A., Shchipachev, V.S., Chernyak, N.Ya. et al., Impul’snoe szhatie gazov v khimii i tekhnologii (Impulse Compression of Gases in Chemistry and Technology), Moscow: Nauka, 1982.

    Google Scholar 

  68. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (The Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

    Google Scholar 

  69. Volov, V.T., Shmelev, V.M., and Volov, D.B., Teplofiz. Vys. Temp., 2000, vol. 38, no. 2, p. 188 (High Temp. (Engl. transl.), vol. 38, no. 2, p. 170).

    Google Scholar 

  70. Parsons, Ch.A., Scientific Papers and Addresses of A. Parsons, Cambridge, 1934.

  71. Ramsauer, C., Chem. Fabr., 1937, vol. 37, p. 391.

    Google Scholar 

  72. Ramsauer, C., Phys. Z., 1933, vol. 34, p. 890.

    Google Scholar 

  73. Khariton, Yu.B., Reinov, N.M., and Klyazer, V.G., Investigation of Chemical Processes Occurring under Strong Adiabatic Compression, in Sbornik referatov nauchno-issledovatel’skikh rabot khimicheskikh institutov AN SSSR (Collection of Extended Abstracts of Research Papers of Chemical Institutes of the USSR Academy of Sciences), Moscow: Fizmatgiz, 1940, p. 121.

    Google Scholar 

  74. Liu, I.D., Appl. Opt., 1967, vol. 6, no. 7, p. 1195.

    ADS  Google Scholar 

  75. Dowling, J.A., Davis, J., Eckerman, J., et al., Appl. Opt., 1969, vol. 8, no. 9, p. 1867.

    ADS  Google Scholar 

  76. Kubiak, E.J., Appl. Opt., 1968, vol. 7, no. 9, p. 1743.

    Article  ADS  Google Scholar 

  77. Dowling, J.A., Shumsky, J., Eckerman, J., and Schelier, R.E., Appl. Phys. Lett., 1968, vol. 12, no. 5, p. 184.

    Article  ADS  Google Scholar 

  78. Rokhlin, G.N., Razryadnye istochniki sveta (Discharge Light Sources), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  79. Makarychev, S.V., Smekhov, G.D., and Yalovik, M.S., Mekh. Zhidk. Gaza, 1992, no. 1, p. 155.

  80. Zatoloka, V.V., The Heating and Discharge of Gas from the Stilling Chamber of an Impulse Wind Tunnel, Preprint of ITPM SO AN SSSR (Inst. of Theoretical and Applied Mechanics, Siberian Div., USSR Acad. Sci.), Novosibirsk, 1988, no. 3-89.

  81. Rakhmatullin, Kh.A., Gazovaya i volnovaya dinamika (Gas and Wave Dynamics), Moscow: Izd. MGU (Moscow State Univ.), 1983.

    Google Scholar 

  82. Zvegintsev, V.I., Izv. Sib. Otd. Akad. Nauk SSSR Tekh. Nauki, 1990, issue 5, p. 129.

  83. Shmelev, V. and Nikolaev, V., Superadiabatic Compression in an ICE, The Third Asia-South Pacific Conf. on Combustion-ASPACC, Seoul, 2001, p. 573.

  84. Shmelev, V.M. and Nikolaev, V.M., Superadiabatic Compression in the Cylinder of Internal Combustion Engine, The second Mediterranean Combustion Symp., Sharm El-Sheikh, 2002, p. 1283.

  85. Nikolaev, V.M. and Shmelev, V.M., An Engine with Superadiabatic Compression, Materialy IX Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Findamental’nye i prikladnye problemy sovershenstvovaniya porshnevykh dvigatelei” (Proc. IX Int. Scientific-and-Practical Conf. on the Basic and Applied Problems Associated with Improvements in Piston Engines), Vladimir, 2003, p. 189.

  86. Popov, N.N., Vestn. Mosk. Univ. Fiz. Astronomiya, 1962, no.4, p. 69.

  87. Enkenhus, K.R. and Richards, B.E., AIAA J., 1970, vol. 8, no.6, p. 1020.

    ADS  Google Scholar 

  88. Lukashevich, D., Harris, W., Jackson, R., et al., Development of Capacitive and Induction Impulse Wind Tunnels, in Tekhnika giperzvukovykh issledovanii (Techniques for Hypersonic Research), Moscow: Mir, 1964, p. 213 (Russ. transl.).

    Google Scholar 

  89. Rakhmatullin, Kh.A., USSR Inventor’s Certificate no. 270 305, Byull. Izobret., 1970, no. 16.

  90. Kislykh, V.V. and Rakhmatullin, Kh.A., Teplofiz. Vys. Temp., 1972, vol. 10, no. 2, p. 400.

    Google Scholar 

  91. Anfimov, N.A., Kislykh, V.V., and Krapivnoy, K.V., Development Outlook Harnessing Nitrous Oxide for Elevation of Temperature and Pressure in Piston Facilities, 29 th Joint Propulsion Conf. and Exhib. AIAA 92-2016, AIAA/SAE/ASEE, Monterey, 1993.

  92. Shumskii, V.V., Izv. Sib. Otd. Akad. Nauk SSSR Tekh. Nauki, 1990, issue 5, p. 149.

  93. Shumskii, V.V., Fiz. Goreniya Vzryva, 2003, vol. 39, no. 3, p. 50.

    Google Scholar 

  94. Shumskii, V.V. and Yaroslavtsev, M.I., An Experimental Investigation of the Development of Heating owing to the Chemical Reaction of the Working Medium of an Impulse Wind Tunnel, in Sovremennye problemy aerogidromekhaniki. Cbornik trudov Vserossiiskogo simpoziuma posvyashchennogo 90-letiyu so dnya rozhdeniya akad. V.V. Struminskogo (Present-Day Problems in Aerohydromechanics: Collection of Papers to the All-Russia Symposium Devoted to the 90 th Anniversary of Academician V.V. Struminskii), Yanovskii, Yu.G., Ed., Moscow: IPRIM Russian Acad. Sci., 2004, p. 27.

    Google Scholar 

  95. Shmelev, V.M., Margolin, A.D., Vasilik, N.Ya, et al., Teplofiz. Vys. Temp., 1998, vol. 36, no. 4, p. 548 (High Temp. (Engl. transl.), vol. 36, no. 4, p. 524).

    Google Scholar 

  96. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1982.

    MATH  Google Scholar 

  97. Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988.

    Google Scholar 

  98. Boshnyakovich, F., Tekhnicheskaya termodinamika. Ch. I (Engineering Thermodynamics), Moscow: Gosenergoizdat, 1955, Part I.

    Google Scholar 

  99. Orlov, B.V. and Mazing, G.Yu., Termodinamicheskie i ballisticheskie osnovy proyektirovaniya raketnykh dvigatelei na tverdom toplive (The Thermodynamic and Ballistic Fundamentals of Designing Solid-Propellant Rocket Engines), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  100. Sosnin, E.I., Izmenenie parametrov gaza v protsessakh napolneniya i oporozhneniya yomkostei (The Variation of Parameters of gas in the Processes of Filling and Emptying of Containers) Moscow: TsAGI (Central Inst. of Aerohydrodynamics), 1976.

  101. Kislykh, V.V., Petrov, O.V., and Puchkov, V.V., USSR Inventor’s Certificate no. 972 931, Byull. Izobret., 1989, no. 29.

  102. Anfimov, N.A. and Kislykh, V.V., Multicascade-Compression Effective Means to Obtain High-Temperature Dense Gas in Piston Gasdynamic Unit (PGU), Proc. 17 th Int. Symp. on Shock Waves and Shock Tubes, New York, 1990, p. 588.

  103. Anfimov, N.A., Kislykh, V.V., and Krapivnoy, K.V., Z. Flugwiss. Weltraumforsch., 1992, no. 16.

  104. Meshcheryakov, A.A., Pinakov, V.I., Rychkov, V.N., and Topchiyan, M.E., A-1 Gasdynamic Facility, Otchet #9 (Report no. 9), Novosibirsk: Inst. of Hydrodynamics, Siberian Div., USSR Acad. Sci., 1975.

    Google Scholar 

  105. Nikolaev, Yu.A., Rychkov, V.N., and Topchiyan, M.E., Calculation of Motion of Structural Elements of the Energy Complex of A-1 Facility, Otchet #5 (Report no. 5), Novosibirsk: Inst. of Hydrodynamics, Siberian Div., USSR Acad. Sci., 1974.

    Google Scholar 

  106. Rychkov, V.N., Prikl. Mekh. Tekh. Fiz., 1998, vol. 39, no. 5, p. 186.

    Google Scholar 

  107. Zykov, N.A. and Sevost’yanov, R.M., Tr. Tsentr. Aerogidrodin. Inst., 1971, no. 1329.

  108. Meshcheryakov, A.A., Pinakov, V.I., Rychkov, V.N., and Topchiyan, M.E., Preliminary Investigation of Survivability of Nozzle Throat Materials at Supercritical Pressures of Nitrogen and Air, Otchet po kontraktuno. G61708-97-\U-0138 s Evropeiskim otdeleniem aerokosmicheskikh issledovanii i razvitiya (Report under EOARD Contract no. G 61708-97-\U-0138), Novosibirsk: Inst. of Hydrodynamics, Siberian Div., USSR Acad. Sci., 1999.

    Google Scholar 

  109. Kislykh, V.V. and Krapivnoy, K.V., Gas Temperature Gradient in the Process of Nonisentropic Compression in Elongated Chamber, 6 th Int. Workshop in Shock Tube Technology, Japan, 1998.

  110. Reggiori, A., Riva, G., and Daminelli, G., Full-Mixing vs. Non-Mixing in Nonisentropic Compression, 8 th IWSTT-11/ 14, Bangalore, 2002.

  111. Kislykh, V.V. and Orth, R.C., American/Russian Hypersonic Combustion Research in the TsNIIMash Facility, 33 rd Aerospace Science Meet. and Exhib. AIAA 95-0686, Reno, 1995.

  112. Kislykh, V.V., The Multicascade Compression (MCC) Method Development, 6 th Int. Workshop in Shock Tube Technology, Japan, 1998.

  113. Margolin, A.D., Vasilik, N.Ya., Shmelev, V.M., et al., Ballistic Plasma Generators with Multistage Heating, in Tezisy dokladov Pervogo vsesoyuznogo simpoziuma po radiatsionnoi plazmodinamike (Abstracts of Papers to the First All-Union Symposium on Radiation Plasma Dynamics), Moscow: Energoatomizdat, 1989, p. 33.

    Google Scholar 

  114. Shmelev, V.M., Ballistic Generator of Plasma with Multistep Heating of Gas, Proc. 5 th int. Energy Conf., Seoul, 1993, p. 12.

  115. Vasilik, N.Ya, Krupkin, V.G., Margolin, A.D., et al., Teplofiz. Vys. Temp., 1998, vol. 36, no. 3, p. 380 (High Temp. (Engl. transl.), vol. 36, no. 3, p. 358).

    Google Scholar 

  116. Leontiev, A.I., Shakhov, V.G., and Volov, V.T., Izv. Sib. Nauchn. Tsentr Ross. Akad. Nauk, 2003, p. 35.

  117. Volov, D.B., Heat-Energy Characteristics of a Ballistic Plasma Generator with a Vortex Chamber, Cand. Sci. (Tech.) Dissertation, Moscow: Moscow Aviation Inst., 1998.

    Google Scholar 

  118. Volov, V.T., Volov, D.B., Shmelev, V.M., and Vilyakin, V.E., Prospects for the Development of Laser Techniques with Ballistic Pumping, in interschool collection of scientific papers on Issledovanie i razrabotka resursosberegayushchikh tekhnologii na zheleznodorozhnom transporte (Research and Development of Conservation Technologies in Railroad Transport), Samara: SamIIT (Samara Inst. of Transport Engineers), 1999, issue 19, p. 24.

    Google Scholar 

  119. Volov, D.B., Vestn. MANEB St. Petersburg, 2004, vol. 9, no.5, p. 110.

    Google Scholar 

  120. Anderson, J.D., Gas Dynamic Lasers: an Introduction, New York: Academic Press, 1976. Translated under the title Gazodinamicheskie lazery, Moscow: Mir, 1979.

    Google Scholar 

  121. Losev, S.A., Gazodinamicheskie lazery (Gasdynamic Lasers), Moscow: Nauka, 1977.

    Google Scholar 

  122. Konyukhov, V.K., Tr. Fiz. Inst. Akad. Nauk SSSR, 1979, vol. 3, p. 50.

    Google Scholar 

  123. Kuznetsov, A.A., Novgorodov, M.Z., Ochkin, V.N., et al., Slit-Shaped Non-Self-Sustained Discharge as the Active Medium of Xenon Laser, in XVII Zvenigorodskaya konferentsiya po fizike plazmy i UTS (XVII Zvenigorod Conference on Plasma Physics and Controlled Thermonuclear Fusion), Zvenigorod, 2000, p. 55.

  124. Issledovanie khimicheskikh reaktsii pri adiabaticheskom szhatii gazov Sbornik trudov instituta neftekhimicheskogo sinteza (Investigation of Chemical Reactions under Adiabatic Compression of Gases: A Collections of Papers of the Institute of Petrochemical Synthesis), Moscow: Nauka, 1978.

  125. Buzukov, A.A., Fiz. Goreniya Vzryva, 1999, vol. 35, no. 6, p. 3.

    Google Scholar 

  126. Shmelev, V.M., Kendall, M.A., and Morgan, R.G., Teplofiz. Vys. Temp., 1998, vol. 36, no. 2, p. 316 (High Temp. (Engl. transl.), vol. 36, no. 2, p. 299).

    Google Scholar 

  127. Vasilik, N.Ya., Volov, D.B., and Vilyakin, V.E., The Testing of the Vortex Chamber of a Ballistic Plasma Generator, in interschool collection of scientific papers on Voprosy nauchno-tekhnicheskogo progressa na zheleznodorozhnom transporte (Problems Associated with Scientific-and-Technical Progress in Railroad Transport), Samara: SamIIT (Samara Inst. of Transport Engineers), 1998, issue 14, p. 40.

    Google Scholar 

  128. Kislykh, V.V., A Generator of Dense Low-Temperature Plasma on the Basis of a Piston Gasdynamic Facility, IV Vsesoyuznaya konferentsiya “Kineticheskie i gazodinamicheskie protsessy v neravnovesnykh sredakh” (IV All Union Conf. on Kinetic and Gasdynamic Processes in Nonequilibrium Media), Moscow, 1988.

  129. Stewart, B., Morgan, R., and Jacobs, P., The RHYFL Facility as a High Performance Expansion Tube for Scramjet testing, 21 st AIAA Aerodynamics Measurement Technology and Ground Testing Conf., Queensland, Australia, p. 2000.

  130. Boyce, R.R., Takahashi, M., and Stalker, R.J., Mass Spectrometric Measurements of the Freestream Flow in the T4 Free-Piston Shock Tunnel, Proc. 21st Int. Symp. on Shock Waves, Queensland, Australia, 1998, p. 134.

  131. Kendall, M.A., Morgan, R.G., and Jacobs, P.A., Shock Waves, 1997, vol. 7, no. 4, p. 219.

    Article  ADS  Google Scholar 

  132. Volov, D.B., Zh. Tekh. Fiz., 2003, vol. 73, no. 5, p. 30.

    Google Scholar 

  133. Volov, D.B., Obozr. Prikl. Prom. Mat., 2004, vol. 11, no. 1, p. 106.

    Google Scholar 

  134. Volov, D.B., Vestn. MANEB St. Petersburg, 2004, vol. 9, no.5, p. 104.

    Google Scholar 

  135. Demidov, V.P., Dvigateli s peremennoi stepen’yu szhatiya (Variable-Compression Ratio Engines), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  136. Khutsiev, A.I., Dvigateli vnutrennego sgoraniya s reguliruemym protsessom szhatiya (Variable-Compression Internal Combustion Engines), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  137. Khutsiev, A.I., Izv. Vyssh. Uchebn. Zaved. Mashinostr., 1978, no. 3, p. 111.

  138. Nikitin, E.A., Khutsiev, A.I., Evstifeev, B.V., and Ulanovskii, E.A., Izv. Vyssh. Uchebn. Zaved. Mashinostr., 1978, no. 9, p. 174.

  139. Khutsiev, A.I., Dvigatelestroenie., 1982, no. 1, p. 58.

  140. Akhremochkin, O.A., Rusakov, M.M., and Pelipenko, V.N., The Limits of Stable Combustion of Depleted Gasoline-Air Mixtures in ICE for Different Methods of Enhancement, IX Simpozium po goreniyu i vzryvu (IX Symp. on Combustion and Explosion), Chernogolovka, 1996, vol. 1, Part 2, p. 256.

  141. Pelipenko, V.N., Rusakov, M.M., Shaikin, A.P., and Akhremochkin, O.A., Additives to Gasoline-Air Mixture, the Limits of Ignition, and the Toxicity of Internal Combustion Engines, XII Simpozium po goreniyu i vzryvu (XII Symp. on Combustion and Explosion), Chernogolovka, 2000, p. 178.

  142. Bortnikov, L.N., Rusakov, M.M., Shaikin, A.P., et al., Experimental and Numerical Investigations of the Combustion of Gasoline-Air Mixture with Hydrogen Additives in Modern Engines, XII Simpozium po goreniyu i vzryvu (XII Symp. on Combustion and Explosion), Chernogolovka, 2000, p. 170.

  143. Nosach, V.G., Sklyarenko, E.V., and Krivokon’, A.A., Prom. Teplotekh., 1993, vol. 15, no. 3, p. 103.

    Google Scholar 

  144. Peredrii, V.F., Noskov, N.I., and Petrenko, L.A., Dvigatelestroenie, 1991, no. 1, p. 42.

  145. Shmelev, V.M., Kendall, M.A., and Morgan, R.G., A Theoretical Study of a Throttling-Assisted Free-Piston Driver for Impulse Facilities, and Heat Transfer within a Shock-Assisted Free-Piston Driver, Dep. Research Report no. 1/97, Queensland Univ., Dept. of Mechanical Engineering, 1997.

  146. Volkov, V.G., A Numerical-Simulation Study of Heat and Mass Transfer in Wall Gas Curtains, Extended abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: MAI (Moscow Aviation Inst.), 2003.

    Google Scholar 

  147. Kasimov, V.Z., Ushakova, O.V., and Khomenko, Yu.P., Prikl. Mech. Tech. Phys., 2003, no. 5, p. 12.

  148. Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical Simulation in Continuum Mechanics), Moscow: Fizmatlit, 1994.

    MATH  Google Scholar 

  149. Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1976.

    Google Scholar 

  150. Dreitser, G.A., Evdokimov, V.D., and Kalinin, E.K., Inzh. Fiz. Zh., 1976, vol. 31, no. 1, p. 5.

    Google Scholar 

  151. Galitseiskii, B.M., Ryzhov, Yu.A., and Yakush, E.V., Teplovye i gidrodinamicheskie protsessy v koleblyushchikhsya potokakh (Thermal and Hydrodynamic Processes in Oscillating Flows), Moscow: Mashinostroenie, 1977.

    Google Scholar 

  152. Dreitser, G.A., Inzh. Fiz. Zh., 2001, vol. 74, no. 4, p. 33.

    Google Scholar 

  153. Polyakova, L.A. and Shakhov, V.G., Inzh. Fiz. Zh., 1981, vol. 40, no. 4, p. 678.

    Google Scholar 

  154. Porshnev, S.V., Computer Codes for the Simulation of the Process of Motion of Cannon Shells at the Time of Shooting, in Trudy Mezhdunarodnoi telekommunikatsionnoi nauchnoprakticheskoi konferentsii (Proceedings of International Telecommunication Scientific-and-Practical Conference), Ul’yanovsk: UlGTU (Ul’yanovsk State Technical Univ.), 1999, p. 52.

    Google Scholar 

  155. Nikitenko, N.I. and Kol’chik, Yu.N., Inzh. Fiz. Zh., 1999, vol. 72, no. 5, p. 837.

    Google Scholar 

  156. Biryukov, Yu.B., Gavrilenko, T.P., Plotnikov, M.A., and Topchiyan, M.E., Some Gasdynamic Characteristics of Outflow of Gas under High Pressure, Trudy I Sibirskoi konferentsii po aerodinamike: Aerodinamika (Proceedings of the I Siberian Conference on Aerodynamics: Aerodynamics), Novosibirsk: Nauka, 1973, p. 229.

    Google Scholar 

  157. Volov, D.B. and Shmelev, V.M., Experimental Investigations of Vortex Chamber, in Sbornik nauchnykh trudov molodykh uchenykh i asmirantov SamIITa (Collected Scientific Papers of Young Scientists and Post-Graduates of SamIIT-Samara Inst. of Transport Engineers), Samara, 1997, p. 83.

  158. Volov, D.B., Inzh. Fiz. Zh., 2004, vol. 77, no. 4, p. 132.

    Google Scholar 

  159. Sherwood, T., Pigford, R., and Wilke, C., Mass Transfer, New York: McGraw-Hill, 1975. Translated under the title Massoperedacha, Moscow: Khimiya, 1982.

    Google Scholar 

  160. Semko, A.N., Prikl. Mekh. Tekh. Fiz., 2000, no. 3, p. 32.

  161. Khristenko, Yu.F., Prikl. Mekh. Tekh. Fiz., 2000, vol. 41, no.6, p. 45.

    Google Scholar 

  162. Ramos, J.I., Internal Combustion Engine Modeling, New York, 1989.

  163. Martynenko, O.G., German, M.L., Lemesh, N.I., and Nogotov, E.F., Inzh. Fiz. Zh., 2000, no. 2, p. 187.

  164. Cherkashin, A.K., Polisistemnoe modelirovanie (Polysystem Modeling), Novosibirsk: Izd. SO RAN (Siberian Div., Russian Acad. Sci.), 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 4, 2006, pp. 604–626.

Original Russian Text Copyright © 2006 by D. B. Volov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volov, D.B. Heat-engineering units for the generation of dense high-temperature gas. High Temp 44, 602–624 (2006). https://doi.org/10.1007/s10740-006-0074-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0074-3

Keywords

Navigation