Skip to main content
Log in

Molecular-dynamic calculation of spectral characteristics of absorption of infrared radiation by (H2O)j and (CH4)i(H2O)n clusters

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The method of molecular dynamics is used to investigate the stability and physical properties of (CH4)i(H2O)n clusters. The possibility of methane molecules being absorbed by clusters containing ten and twenty water molecules is demonstrated. Such clusters retain the thermodynamic stability when the number of CH4 molecules they absorbed does not exceed six. The frequency dispersion of complex permittivity of (CH4)i(H2O)n aggregates reflects the resonant behavior of polarizability depending on the applied electric field. The dependence of the absorption coefficient α on the frequency of infrared radiation varies significantly after even one CH4 molecule is absorbed by water clusters. The maximal value of α for water aggregates which absorbed CH4 molecules is much lower than the respective value for pure water clusters of appropriate size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pine, A.S. and Lafferty, W.J., J. Chem. Phys., 1983, vol. 78, p. 2154.

    Article  ADS  Google Scholar 

  2. Havenith, M., Infrared Spectroscopy of Molecular Clusters, Berlin: Springer, 2002.

    Google Scholar 

  3. El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1962.

    Google Scholar 

  4. Antipov, A.B., Kapitanov, V.A., Ponomarev, Yu.N., and Sapozhnikova, V.A., Optiko-akusticheskii metod v lazernoi spektroskopii atmosfernykh gazov (Optico-Acoustic Method in Laser Spectroscopy of Atmospheric Gases), Novosibirsk: Nauka, 1984.

    Google Scholar 

  5. Spektroskopiya vzaimodeistvuyushchikh molecul (The Spectroscopy of Interacting Molecules), Bulanin, M.O., Ed., Leningrad: Izd. LGU (Leningrad State Univ.), 1970.

    Google Scholar 

  6. Stern, H.A. and Berne, B.J., J. Chem. Phys., 2001, vol. 115, p. 7622.

    Article  ADS  Google Scholar 

  7. Bredov, M.M., Rumyantsev, V.V., and Toptygin, I.N., Klassicheskaya elektrodinamika (Classical Electrodynamics), St. Petersburg: Lan’, 2003.

    Google Scholar 

  8. Bosma, W.B., Fried, L.E., and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  ADS  Google Scholar 

  9. Chukanov, V.N. and Galashev, A.E., Perspekt. Energ., 2003, vol. 7, p. 283.

    Google Scholar 

  10. Halmann, M.M. and Steinberg, M., Greenhouse Gas Carbon Dioxide Mitigation. Science and Technology, Boca Raton: Lewis Publ., 1999.

    Google Scholar 

  11. Peng, G., Leslie, L.M., and Shao, Y., Environmental Modeling and Prediction, Berlin: Springer, 2002.

    Google Scholar 

  12. Galashev, A.E., Pozharskaya, G.I., and Chukanov, V.N., Kolloidn. Zh., 2002, vol. 64, no. 6, p. 762.

    Google Scholar 

  13. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  ADS  Google Scholar 

  14. Benedict, W.S., Gailar, N., and Plyler, E.K., J. Chem. Phys., 1956, vol. 24, p. 1139.

    Article  Google Scholar 

  15. Xantheas, S., J. Chem. Phys., 1996, vol. 104, p. 8821.

    Article  ADS  Google Scholar 

  16. Feller, D., and Dixon, D.A., J. Chem. Phys., 1996, vol. 100, p. 2993.

    Article  Google Scholar 

  17. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100, p. 3757.

    Article  ADS  Google Scholar 

  18. Sun, Y., Spellmeyer, D., Pearlman, D.A., and Kollman, P., J. Am. Chem. Soc., 1992, vol. 114, p. 6798.

    Article  Google Scholar 

  19. Caldwell, J., Dang, L.X., and Kollman, P.A., J. Am. Chem. Soc., 1990, vol. 112, p. 9144.

    Article  Google Scholar 

  20. Mayants, L.S., Teoriya i raschet kolebanii molekul (The Theory and Calculation of Molecular Vibrations), Moscow: Izd. AN SSSR (USSR Acad. Sci.), 1960.

    Google Scholar 

  21. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1.

    Google Scholar 

  22. Haile, J.M., Molecular Dynamics Simulation. Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  23. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in Dynamics of Solid and Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  24. Sonnenschein, R., J. Comp. Phys., 1985, vol. 59, p. 347.

    Article  MATH  Google Scholar 

  25. Fanourgakis, G.S., Apra, E., and Xantheas, S.S., Chem. Phys., 2004, vol. 121, no. 6, p. 2655.

    Article  ADS  Google Scholar 

  26. Bresme, F., J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  ADS  Google Scholar 

  27. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  ADS  Google Scholar 

  28. Shevkunov, S.V., Kolloidn. Zh., 2002, vol. 64, no. 2, p. 262.

    Google Scholar 

  29. Goggin, P.L. and Carr, C., Far Infrared Spectroscopy and Aqueous Solutions, in Water and Aqueous Solutions, Bristol—Boston: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  30. Nikitin, E.E., Teoriya elementarnykh atomno-molekulyarnykh protsessov v gazakh (The Theory of Elementary Atomic-Molecular Processes in Gases), Moscow: Khimiya, 1970.

    Google Scholar 

  31. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

    Google Scholar 

  32. Tse, J.S. and Klein, M., J. Chem. Phys., 1983, vol. 78, p. 2096.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 3, 2006, pp. 370–377.

Original Russian Text Copyright © 2006 by A. E. Galashev, V. N. Chukanov, A. N. Novruzov, and O. A. Galasheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Chukanov, V.N., Novruzov, A.N. et al. Molecular-dynamic calculation of spectral characteristics of absorption of infrared radiation by (H2O)j and (CH4)i(H2O)n clusters. High Temp 44, 364–372 (2006). https://doi.org/10.1007/s10740-006-0046-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0046-7

Keywords

Navigation