Skip to main content
Log in

Electrodynamics of a low-pressure electrode microwave discharge

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Results are given of self-consistent two-dimensional simulation of self-sustained steady electrode microwave discharge in a chamber at the end of central conductor of a coaxial line. The discharge parameters are calculated in the diffusion mode in hydrogen at pressures of 0.5, 2, and 8 torr and incident power of 30–200 W. The dependence of matching between the discharge chamber and delivery path on the geometric dimensions of the chamber is investigated in the presence of plasma. It is demonstrated that the length of central electrode is the key factor affecting the structure of plasma formation and its matching with the pumping wave. The maxima and minima of matching alternate when the central electrode is elongated by quarter wave. The maxima and minima of matching for the case of low pressure (< 2 torr) are shifted by λ/4 relative to those for high pressure (> 2 torr). The problem of maximal energy input to the discharge region at the end of antenna-type electrode is analyzed. It is demonstrated that a restriction exists on the maximal energy input to such a discharge (and, accordingly, on the size of plasma formation). These restrictions are associated either with the runaway of discharge toward the generator or with the ignition of discharge in the region of entry of antenna into the chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, L., Barankova, H., Lebedev, Yu.A., and Berg, S., Diamond Deposition in a Microwave Electrode Discharge at Reduced Pressures, in Proc. Diamond 1996 7 th Eur. Conf. on Diamond, Diamond-Like and Related Materials, France, 1996, p. 4.1.

  2. Bardos, L. and Lebedev, Yu.A., Zh. Tekh. Fiz., 1998, vol. 68, no.12, p. 29.

    Google Scholar 

  3. Lebedev, Yu.A., Mokeev, M.V., and Tatarinov, A.V., Fiz. Plazmy, 2000, vol. 26, no. 3, p. 293.

    Google Scholar 

  4. Lebedev, Yu.A. and Mokeev, M.V., Teplofiz. Vys. Temp., 2000, vol. 38, no. 3, p. 381 (High Temp. (Engl. transl.), vol. 38, no. 3, p. 358).

    Google Scholar 

  5. Lebedev, Yu.A. and Mokeev, M.V., Fiz. Plazmy, 2001, vol. 27, no. 5, p. 443.

    Google Scholar 

  6. Lebedev, Yu.A., Tatarinov, A.V., and Epstein, I.L., Plasma Sources Sci. Technol., 2002, vol. 11, no. 2, p. 146.

    Article  ADS  Google Scholar 

  7. Lebedev, Yu.A., Mokeev, M.V., Tatarinov, A.V., and Epstein, I.L., Fiz. Plazmy, 2004, vol. 30, no. 1, p. 96.

    Google Scholar 

  8. Lebedev, Yu.A. and Tatarinov, A.V., Plasma Sources Sci. Technol., 2004, vol. 13, no. 1, p. 1.

    Article  ADS  Google Scholar 

  9. Bardos, L., Barankova, H., Lebedev, Yu.A., Nyberg, T., and Berg, S., Diamond Related Mater., 1997, vol. 6, no. 3, p. 224.

    Article  Google Scholar 

  10. Taniyama, N., Kudo, M., Matsumoto, O., and Kawarada, H., Jpn. J. Appl. Phys., 2001, vol. 40, no. 7A, p. L698.

    Article  ADS  Google Scholar 

  11. Bardos, L., Barankova, H., and Lebedev, Yu.A., Effective Low Power Microwave Plasma CVD of Carbon Nitride Films, in Proc. 42 nd Ann. Conf. of Society of Vacuum Coaters, Chicago, 1999, p. E–7.

  12. Eto, A., Kimura, S., and Kando, M., Electrode Microwave Discharge by Moderate Microwave Power for Investigation of Thin Film Production, in Abstracts of 5 th Int. Workshop on Microwave Discharges: Fundamentals and Applications, Grefswald, 2003, p. 15.

  13. Lebedev, Yu.A. and Epstein, I.L., J. Moscow Phys. Soc., 1995, vol. 5, no. 1, p. 103.

    Google Scholar 

  14. Jackson, J.D., Classical Electrodynamics, New York: Wiley, 1975, p. 331.

    MATH  Google Scholar 

  15. Joseph, R.M., Hagness, S.C., and Taflove, A., Opt. Lett., 1991, vol. 16, p. 1412.

    Article  ADS  Google Scholar 

  16. Tawara, H., Itikawa, Y., Nishimura, H., and Yoshino, M., J. Phys. Chem. Ref. Data, 1990, vol. 19, p. 617.

    Article  ADS  Google Scholar 

  17. Gal’tsev, V.E., Dem’yanov, A.V., Kochetov, I.V., et al., Calculation of the Characteristics of Electric Discharge in Gas Mixtures Containing HCl and H2, Preprint of IAE (Inst. of Atomic Energy, Moscow, no. 3156.

  18. Demidov, V.I., Kolokolov, N.B., and Kudryavtsev, A.A., Zondovye metody issledovaniya nizkotemperaturnoi plazmy (Probe Methods of Investigation of Low-Temperature Plasma), Moscow: Energoatomizdat, 1996.

    Google Scholar 

  19. Grotjohn, T.A., Electron Gas Heating in Low Pressure, Unmagnetized Microwave Plasmas Used for Materials Processing, in Proceedings of IV International Workshop on Microwave Discharges: Fundamentals and Applications, Moscow: Yanus-K, 2001, p. 25.

    Google Scholar 

  20. Kudela, J., Terebessy, T., and Kando, M., Hot Electrons and EEDF-Anisotropy in Large Area Surface Wave Discharges, in Proceedings of IV International Workshop on Microwave Discharges: Fundamentals and Applications, Moscow: Yanus-K, 2001, p. 63.

    Google Scholar 

  21. Orlov, S.I., Raschet i konstruirovanie koaksial’nykh rezonatorov (Analysis and Design of Coaxial Resonators), Moscow: Sovetskoye Radio, 1970.

    Google Scholar 

  22. Lebedev, Yu.A., Tatarinov, A.V., and Epstein, I.L., Simulation of Electrode Microwave Discharge. Inclusion of Double Layer, Tezisy dokladov XXXI Zvenigorodskoi konferentsii po fizike plazmy i UTS (Abstracts of Papers to XXXI Zvenigorod Conference on Plasma Physics and Controlled Thermonuclear Fusion), Moscow: ZAO NTTs PLAZMAIOFAN, 2004, p. 178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 44, No. 3, 2006, pp. 325–334.

Original Russian Text Copyright © 2006 by Yu. A. Lebedev, A. V. Tatarinov, and I. L. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, Y.A., Tatarinov, A.V. & Epstein, I.L. Electrodynamics of a low-pressure electrode microwave discharge. High Temp 44, 317–327 (2006). https://doi.org/10.1007/s10740-006-0041-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-006-0041-z

Keywords

Navigation