Skip to main content
Log in

Transcriptomic analysis and biological evaluation reveals that LMO3 regulates the osteogenic differentiation of human adipose derived stem cells via PI3K/Akt signaling pathway

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Autologous bone transplantation which is a common treatment method for bone defects needs a large quantity of bone cells. In order to develop new treatments to regenerating bone tissues, this research aimed at identifying the key genes and finding their mechanism in human adipose-derived stem cells (hADSCs) osteogenesis. GSE63754, GSE89330 and GSE72429 were downloaded to perform GO functional and KEGG pathway analyses, construct a competing endogenous RNA (ceRNA) network, construct a PPI network and identify hub genes. The expression level of LMO3 during the osteogenesis of hADSCs was examined by quantitative reverse transcription polymerase chain reaction and western blot. Lentivirus transfection was used to knock down or overexpress LMO3, which enabled us to investigate the effect of LMO3 on osteogenic differentiation of hADSCs. Wortmannin were used to identify the mechanism of the LMO3/PI3K/Akt axis in regulating osteogenic differentiation of hADSCs. Moreover, ectopic bone formation in nude mice was used to investigate the effect of LMO3 on osteogenesis in vivo. In this study, we found the expression of LMO3 was significantly upregulated during the osteogenic differentiation of hADSCs. LMO3 knockdown remarkably suppressed osteogenic differentiation of hADSCs, while LMO3 overexpression promoted osteogenic differentiation of hADSCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of LMO3 overexpression on osteogenic differentiation was related to the activation of PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling pathway with wortmannin effectively blocked the stimulation of osteogenic differentiation induced by LMO3 overexpression. In conclusion, based on transcriptomic analysis, we identified key genes involved in regulating the osteogenic differentiation of hADSCs. In addition, we found that LMO3 might act as a positive modulator of hADSC osteogenic differentiation by mediating PI3K/Akt signaling pathway. Manipulating the expression of LMO3 and its associated pathways might contribute to advances in bone regeneration and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed LA et al (2021) Boosting Akt pathway by rupatadine modulates Th17/Tregs balance for attenuation of isoproterenol-induced heart failure in rats. Front Pharmacol 12:651150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ala U et al (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci USA 110(18):7154–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin HD, Ethier CR (2016) Differential effects of tyrosine-rich amelogenin peptide on chondrogenic and osteogenic differentiation of adult chondrocytes. Cell Tissue Res 364(1):219–224

    Article  CAS  PubMed  Google Scholar 

  • Aoyama M et al (2005) LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Can Res 65(11):4587–4597

    Article  CAS  Google Scholar 

  • Bourin P et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunnell BA et al (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S et al (2020) Identification of the key genes and microRNAs in adult acute myeloid leukemia with FLT3 mutation by bioinformatics analysis. Int J Med Sci 17(9):1269–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Wentworth K, Shoback DM (2020) New frontiers in osteoporosis therapy. Annu Rev Med 71:277–288

    Article  CAS  PubMed  Google Scholar 

  • Chun SY et al (2019) Preparation and characterization of human adipose tissue-derived extracellular matrix, growth factors, and stem cells: a concise review. Tissue Eng Regen Med 16(4):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniunaite K et al (2015) Epigenetic regulation of human adipose-derived stem cells differentiation. Mol Cell Biochem 410(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–7

    Article  CAS  PubMed  Google Scholar 

  • Dong R et al (2014) Comparison of long noncoding RNA and mRNA expression profiles in mesenchymal stem cells derived from human periodontal ligament and bone marrow. Biomed Res Int 2014:317853

    PubMed  PubMed Central  Google Scholar 

  • Dong X et al (2016) GPR39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the PI3K/AKT cell signaling pathway. J Recept Signal Transduct Res 36(2):130–138

    Article  CAS  PubMed  Google Scholar 

  • Duttenhoefer F et al (2013) 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cells Mater 26(4):49–65

    CAS  Google Scholar 

  • Gao F et al (2021) Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway. J Orthop Surg Res 16(1):397

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaur M, Dobke M, Lunyak VV (2019) Methods and strategies for procurement, isolation, characterization, and assessment of senescence of human mesenchymal stem cells from adipose tissue. Methods Mol Biol 2045:37–92

    Article  CAS  PubMed  Google Scholar 

  • Gu X et al (2017) Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 18(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu C, Zhao L, Li L (2019) Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 10(1):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang G et al (2017) Identification and characterization of long non-coding RNAs in osteogenic differentiation of human adipose-derived stem cells. Cell Physiol Biochem 42(3):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Jia B et al (2019) A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells. J Cell Physiol 234(11):19523–19538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y et al (2020) Differential circular RNA expression profiling during osteogenic differentiation in human adipose-derived stem cells. Epigenomics 12(4):289–302

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2019) Comprehensive bioinformatics analysis of acquired progesterone resistance in endometrial cancer cell line. J Transl Med 17(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T et al (2021) Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater 6(8):2467–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Q et al (2006) Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 18:2262–2271

    Article  CAS  PubMed  Google Scholar 

  • Park JS et al (2020) Osteoporotic conditions influence the activity of adipose-derived stem cells. Tissue Eng Regen Med 17(6):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paspaliaris V, Kolios G (2019) Stem cells in osteoporosis: from biology to new therapeutic approaches. Stem Cells Int 2019:1730978

    Article  PubMed  PubMed Central  Google Scholar 

  • Peltier J et al (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361

    Article  CAS  PubMed  Google Scholar 

  • Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si L et al (2015) Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos Int 26(7):1929–1937

    Article  CAS  PubMed  Google Scholar 

  • Sorger JI et al (2001) Allograft fractures revisited. Clin Orthop Relat Res 382:66–74

    Article  Google Scholar 

  • Sun W et al (2019) Resveratrol inhibits human visceral preadipocyte proliferation and differentiation in vitro. Lipids 54(11–12):679–686

    Article  CAS  PubMed  Google Scholar 

  • Tang XL et al (2017) Protein tyrosine phosphatase SHP-1 modulates osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Mol Cell Endocrinol 439:203–212

    Article  CAS  PubMed  Google Scholar 

  • Vos T et al (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1204–1222

    Article  Google Scholar 

  • Wagner G et al (2021) LMO3 reprograms visceral adipocyte metabolism during obesity. J Mol Med (berl) 99(8):1151–1171

    Article  CAS  Google Scholar 

  • Wang L et al (2015) Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. Int Orthop 39(5):1013–1019

    Article  PubMed  Google Scholar 

  • Wu Z et al (2020) Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood). https://doi.org/10.1177/1535370220978650

    Article  Google Scholar 

  • Xie Y et al (2019) PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia. Mol Med Rep 19(2):783–791

    CAS  PubMed  Google Scholar 

  • Yang B et al (2021) Selenium attenuates ischemia/reperfusion injury-induced damage to the blood-brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway-mediated autophagy inhibition. Int J Mol Med 48(3):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Joint Funds of the Natural science Foundation of Liaoning Province, Grant Number 2020-ZLLH-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenye Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental procedures involving animals were done in accordance with the Guide for the Care and Use of Laboratory Animals and the institutional ethical guidelines for animal experiments.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Pei, W. Transcriptomic analysis and biological evaluation reveals that LMO3 regulates the osteogenic differentiation of human adipose derived stem cells via PI3K/Akt signaling pathway. J Mol Histol 53, 379–394 (2022). https://doi.org/10.1007/s10735-021-10047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-021-10047-5

Keywords

Navigation