Skip to main content

MiR-133b regulates oxidative stress injury of trophoblasts in preeclampsia by mediating the JAK2/STAT3 signaling pathway

Abstract

Preeclampsia (PE) is a pregnancy-related syndrome. Aberrant placental microRNAs (miRNAs) expression might associate with PE, including miR-133b. However, its role in the pathogenesis of preeclampsia remains elusive. Therefore, this study explored the role of miR-133b in oxidative stress injury of trophoblasts in preeclampsia (PE) by mediating the JAK2/STAT3 signaling pathway. Placental tissues were collected from PE patients to detect the expression of miR-133b and JAK2/STAT3. Then, in vitro experiments were performed on human extravillous trophoblast-derived HTR-8/SVneo cells, which were divided into Normal, hypoxia/reoxygenation (H/R), H/R + miR-NC, H/R + miR-133b inhibitor, H/R + JAK2 siRNA and H/R + miR-133b inhibitor + JAK2 siRNA groups. Cell invasion and migration abilities were detected by Transwell and wound healing assays, while apoptosis was detected by flow cytometry. The intracellular oxidative stress levels were also measured. Furthermore, the expression of miR-133b and the JAK2/STAT3 pathway was determined by qRT-PCR and Western blotting. We found that miR-133b was up-regulated, with decreases in JAK2 and p-STAT3/STAT3 in placental tissues of PE patients. Additionally, HTR8/SVneo cells in the H/R group had decreased invasion and migration abilities with increased apoptotic rates and oxidative stress levels. Moreover, the expression of miR-133b was up-regulated with decreases in p-JAK2 and p-STAT3 in H/R-treated HTR8/SVneo cells. These indicators in the H/R + miR-133b inhibitor group were ameliorated in comparison with those in the H/R group but deteriorated in the H/R + JAK2 siRNA group. Moreover, JAK2 siRNA reversed the positive effect of the miR-133b inhibitor on the invasion and migration abilities of trophoblasts. In summary, inhibiting miR-133b may improve oxidative stress injury to promote the migration and invasion of trophoblasts and suppress apoptosis by activating the JAK2/STAT3 pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ackerman WET, Buhimschi IA, Eidem HR, Rinker DC, Rokas A, Rood K, Zhao G, Summerfield TL, Landon MB, Buhimschi CS (2016) Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection. Placenta 44:23–33. https://doi.org/10.1016/j.placenta.2016.05.010

    CAS  Article  PubMed  Google Scholar 

  2. Bahinipati J, Mohapatra PC (2016) Ischemia modified albumin as a marker of oxidative stress in normal pregnancy. J Clin Diagn Res 10:BC15–BC17. https://doi.org/10.7860/JCDR/2016/21609.8454

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bosco CB, Diaz EG, Gutierrez RR, Gonzalez JM, Parra-Cordero M, Rodrigo RS, Barja PY (2016) Placental hypoxia developed during preeclampsia induces telocytes apoptosis in chorionic villi affecting the maternal-fetus metabolic exchange. Curr Stem Cell Res Ther 11:420–425. https://doi.org/10.2174/1574888x10666150202144855

    CAS  Article  PubMed  Google Scholar 

  4. Bounds KR, Chiasson VL, Pan LJ, Gupta S, Chatterjee P (2017) MicroRNAs: new players in the pathobiology of preeclampsia. Front Cardiovasc Med 4:60. https://doi.org/10.3389/fcvm.2017.00060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Brown MA, Lindheimer MD, De Swiet M, Van Assche A, Moutquin JM (2001) The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 20:IX–XIV. https://doi.org/10.1081/PRG-100104165

    CAS  Article  PubMed  Google Scholar 

  6. Bulgan Kilicdag E, Ay G, Celik A, Ustundag B, Ozercan I, Simsek M (2005) Oxidant-antioxidant system changes relative to placental-umbilical pathology in patients with preeclampsia. Hypertens Pregnancy 24:147–157. https://doi.org/10.1081/PRG-200059863

    CAS  Article  PubMed  Google Scholar 

  7. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R (2014) Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol 10:466–480. https://doi.org/10.1038/nrneph.2014.102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chen G, Wilson R, Boyd P, Mckillop JH, Leitch C, Walker JJ, Burdon RH (1994) Normal superoxide dismutase (SOD) gene in pregnancy-induced hypertension: is the decreased SOD activity a secondary phenomenon? Free Radic Res 21:59–66. https://doi.org/10.3109/10715769409056557

    CAS  Article  PubMed  Google Scholar 

  9. Chen GQ, Ren L, Zhang J, Reed BM, Zhang D, Shen XH (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 70:38–47. https://doi.org/10.1016/j.cryobiol.2014.11.004

    CAS  Article  PubMed  Google Scholar 

  10. Chen K, Sun Y, Diao Y, Zhang T, Dong W (2018) Hydrogen-rich solution attenuates myocardial injury caused by cardiopulmonary bypass in rats via the Janus-activated kinase 2/signal transducer and activator of transcription 3 signaling pathway. Oncol Lett 16:167–178. https://doi.org/10.3892/ol.2018.8639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cheng SB, Sharma S (2016) Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol 38:699–708. https://doi.org/10.1007/s00281-016-0579-8

    Article  PubMed  Google Scholar 

  12. Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, Yi D (2012) The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 107:263. https://doi.org/10.1007/s00395-012-0263-7

    CAS  Article  PubMed  Google Scholar 

  13. Feng Y, Xu J, Zhou Q, Wang R, Liu N, Wu Y, Yuan H, Che H (2016) Alpha-1 antitrypsin prevents the development of preeclampsia through suppression of oxidative stress. Front Physiol 7:176. https://doi.org/10.3389/fphys.2016.00176

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng J, Wang X, Li H, Wang L, Tang Z (2018) Silencing of Annexin A1 suppressed the apoptosis and inflammatory response of preeclampsia rat trophoblasts. Int J Mol Med 42:3125–3134. https://doi.org/10.3892/ijmm.2018.3887

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Fest S, Brachwitz N, Schumacher A, Zenclussen ML, Khan F, Wafula PO, Casalis PA, Fill S, Costa SD, Mor G, Volk HD, Lode HN, Zenclussen AC (2008) Supporting the hypothesis of pregnancy as a tumor: survivin is upregulated in normal pregnant mice and participates in human trophoblast proliferation. Am J Reprod Immunol 59:75–83. https://doi.org/10.1111/j.1600-0897.2007.00557.x

    CAS  Article  PubMed  Google Scholar 

  16. Guo W, Fang L, Li B, Xiao X, Chen S, Wang J, Yang F, Chen L, Wang X (2017) Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells. Front Immunol 8:741. https://doi.org/10.3389/fimmu.2017.00741

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC (2019) The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia. Curr Hypertens Rev 15:105–112. https://doi.org/10.2174/1573402115666190119163942

    CAS  Article  PubMed  Google Scholar 

  18. Hemberger M (2012) Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med 44:325–337. https://doi.org/10.3109/07853890.2012.663930

    Article  PubMed  Google Scholar 

  19. Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A, Yousefi M (2020) MicroRNAs: small molecules with a large impact on pre-eclampsia. J Cell Physiol 235:3235–3248. https://doi.org/10.1002/jcp.29286

    CAS  Article  PubMed  Google Scholar 

  20. Hromadnikova I, Kotlabova K, Hympanova L, Krofta L (2016) Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res 137:126–140. https://doi.org/10.1016/j.thromres.2015.11.032

    CAS  Article  PubMed  Google Scholar 

  21. Hromadnikova I, Kotlabova K, Ivankova K, Vedmetskaya Y, Krofta L (2017) Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int J Cardiol 249:402–409. https://doi.org/10.1016/j.ijcard.2017.07.045

    Article  PubMed  Google Scholar 

  22. Hu TX, Guo X, Wang G, Gao L, He P, Xia Y, Gu H, Ni X (2017) MiR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta 52:33–40. https://doi.org/10.1016/j.placenta.2017.02.012

    CAS  Article  PubMed  Google Scholar 

  23. Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45:189–200. https://doi.org/10.1016/S1028-4559(09)60224-2

    Article  PubMed  Google Scholar 

  24. Jin X, Chen D, Zheng RH, Zhang H, Chen YP, Xiang Z (2017) miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World J Gastroenterol 23:76–86. https://doi.org/10.3748/wjg.v23.i1.76

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Joung YH, Na YM, Yoo YB, Darvin P, Sp N, Kang DY, Kim SY, Kim HS, Choi YH, Lee HK, Park KD, Cho BW, Kim HS, Park JH, Yang YM (2014) Combination of AG490, a Jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder tumor growth via the Jak2/STAT3 pathway. Int J Oncol 44:883–895. https://doi.org/10.3892/ijo.2014.2250

    CAS  Article  PubMed  Google Scholar 

  26. Judd LM, Menheniott TR, Ling H, Jackson CB, Howlett M, Kalantzis A, Priebe W, Giraud AS (2014) Inhibition of the JAK2/STAT3 pathway reduces gastric cancer growth in vitro and in vivo. PLoS ONE 9:e95993. https://doi.org/10.1371/journal.pone.0095993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Li J, Luo X, Xiao X, Zhang X, Qi H, Liu X, Zhang H, Gao L, Yang Z (2014) Decreased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 may be involved in the development of pre-eclampsia. Reprod Biomed Online 28:70–79. https://doi.org/10.1016/j.rbmo.2013.07.015

    CAS  Article  PubMed  Google Scholar 

  28. Li Y, Shi X, Li J, Zhang M, Yu B (2017) Knockdown of KLF11 attenuates hypoxia/reoxygenation injury via JAK2/STAT3 signaling in H9c2. Apoptosis 22:510–518. https://doi.org/10.1007/s10495-016-1327-1

    CAS  Article  PubMed  Google Scholar 

  29. Li J, Ding Z, Yang Y, Mao B, Wang Y, Xu X (2018) Lycium barbarum polysaccharides protect human trophoblast HTR8/SVneo cells from hydrogen peroxideinduced oxidative stress and apoptosis. Mol Med Rep 18:2581–2588. https://doi.org/10.3892/mmr.2018.9274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Luo C, Zhang C, Cai Q, Lin J, Zhu T, Huang X (2020) Upregulated lncRNA UCA1 inhibits trophoblast cell invasion and proliferation by downregulating JAK2. J Cell Physiol 235:7410–7419. https://doi.org/10.1002/jcp.29643

    CAS  Article  PubMed  Google Scholar 

  31. Ma K, Jin H, Hu R, Xiong Y, Zhou S, Ting P, Cheng Y, Yang Y, Yang P, Li X (2014) A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem Biophys 69:247–258. https://doi.org/10.1007/s12013-013-9792-4

    CAS  Article  PubMed  Google Scholar 

  32. Malik A, Pal R, Gupta SK (2017) Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS ONE 12:e0178269. https://doi.org/10.1371/journal.pone.0178269

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Matsubara K, Higaki T, Matsubara Y, Nawa A (2015) Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci 16:4600–4614. https://doi.org/10.3390/ijms16034600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Mcaleer MF, Tuan RS (2001) Metallothionein protects against severe oxidative stress-induced apoptosis of human trophoblastic cells. In Vitro Mol Toxicol 14:219–231. https://doi.org/10.1089/109793301753407975

    CAS  Article  Google Scholar 

  35. Michalczyk M, Celewicz A, Celewicz M, Wozniakowska-Gondek P, Rzepka R (2020) The role of inflammation in the pathogenesis of preeclampsia. Mediat Inflamm 2020:3864941. https://doi.org/10.1155/2020/3864941

    CAS  Article  Google Scholar 

  36. Murata M, Fukushima K, Takao T, Seki H, Takeda S, Wake N (2013) Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells. J Reprod Dev 59:7–13. https://doi.org/10.1262/jrd.2012-053

    CAS  Article  PubMed  Google Scholar 

  37. Niu ZR, Han T, Sun XL, Luan LX, Gou WL, Zhu XM (2018) MicroRNA-30a-3p is overexpressed in the placentas of patients with preeclampsia and affects trophoblast invasion and apoptosis by its effects on IGF-1. Am J Obstet Gynecol 218:249. https://doi.org/10.1016/j.ajog.2017.11.568

    CAS  Article  PubMed  Google Scholar 

  38. Noack F, Ribbat-Idel J, Thorns C, Chiriac A, Axt-Fliedner R, Diedrich K, Feller AC (2011) miRNA expression profiling in formalin-fixed and paraffin-embedded placental tissue samples from pregnancies with severe preeclampsia. J Perinat Med 39:267–271. https://doi.org/10.1515/jpm.2011.012

    Article  PubMed  Google Scholar 

  39. Phipps EA, Thadhani R, Benzing T, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15:275–289. https://doi.org/10.1038/s41581-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Qu HM, Qu LP, Li XY, Pan XZ (2018) Overexpressed HO-1 is associated with reduced STAT3 activation in preeclampsia placenta and inhibits STAT3 phosphorylation in placental JEG-3 cells under hypoxia. Arch Med Sci 14:597–607. https://doi.org/10.5114/aoms.2016.63261

    CAS  Article  PubMed  Google Scholar 

  41. Qu H, Yu Q, Jia B, Zhou W, Zhang Y, Mu L (2021) HIF3alpha affects preeclampsia development by regulating EVT growth via activation of the Flt1/JAK/STAT signaling pathway in hypoxia. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11701

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19:1933–1940. https://doi.org/10.1158/1078-0432.CCR-12-0284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Rao H, Bai Y, Li Q, Zhuang B, Yuan Y, Liu Y, Peng W, Baker PN, Tong C, Luo X, Qi H (2018) SATB1 downregulation induced by oxidative stress participates in trophoblast invasion by regulating beta-catenin. Biol Reprod 98:810–820. https://doi.org/10.1093/biolre/ioy033

    Article  PubMed  Google Scholar 

  44. Sagrillo-Fagundes L, Assuncao Salustiano EM, Ruano R, Markus RP, Vaillancourt C (2018a) Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res 65:e12520. https://doi.org/10.1111/jpi.12520

    CAS  Article  PubMed  Google Scholar 

  45. Sagrillo-Fagundes L, Laurent L, Bienvenue-Pariseault J, Vaillancourt C (2018b) In vitro induction of hypoxia/reoxygenation on placental cells: a suitable model for understanding placental diseases. Methods Mol Biol 1710:277–283. https://doi.org/10.1007/978-1-4939-7498-6_21

    CAS  Article  PubMed  Google Scholar 

  46. San Juan-Reyes S, Gomez-Olivan LM, Islas-Flores H, Dublan-Garcia O (2020) Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys 681:108255. https://doi.org/10.1016/j.abb.2020.108255

    CAS  Article  PubMed  Google Scholar 

  47. Sanchez-Aranguren LC, Prada CE, Riano-Medina CE, Lopez M (2014) Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol 5:372. https://doi.org/10.3389/fphys.2014.00372

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seeho SK, Park JH, Rowe J, Morris JM, Gallery ED (2008) Villous explant culture using early gestation tissue from ongoing pregnancies with known normal outcomes: the effect of oxygen on trophoblast outgrowth and migration. Hum Reprod 23:1170–1179. https://doi.org/10.1093/humrep/den066

    CAS  Article  PubMed  Google Scholar 

  49. Steegers EA, Von Dadelszen P, Duvekot JJ, Pijnenborg R (2010) Pre-Eclampsia Lancet 376:631–644. https://doi.org/10.1016/S0140-6736(10)60279-6

    Article  PubMed  Google Scholar 

  50. Suman P, Gupta SK (2012) Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells. Placenta 33:874–877. https://doi.org/10.1016/j.placenta.2012.06.017

    CAS  Article  PubMed  Google Scholar 

  51. Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, Yin C, Zhang W (2012) microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 27:1967–1975. https://doi.org/10.3892/or.2012.1711

    CAS  Article  PubMed  Google Scholar 

  52. Wang X, Li B, Wang J, Lei J, Liu C, Ma Y, Zhao H (2012) Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod Biomed Online 25:415–424. https://doi.org/10.1016/j.rbmo.2012.06.022

    CAS  Article  PubMed  Google Scholar 

  53. Wang D, Na Q, Song GY, Wang L (2020) Human umbilical cord mesenchymal stem cell-derived exosome-mediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1. Cell Cycle 19:1869–1883. https://doi.org/10.1080/15384101.2020.1769394

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Xu Z, Jin X, Cai W, Zhou M, Shao P, Yang Z, Fu R, Cao J, Liu Y, Yu F, Fan R, Zhang Y, Zou S, Zhou X, Yang N, Chen X, Li Y (2018) Proteomics analysis reveals abnormal electron transport and excessive oxidative stress cause mitochondrial dysfunction in placental tissues of early-onset preeclampsia. Proteomics Clin Appl 12:e1700165. https://doi.org/10.1002/prca.201700165

    CAS  Article  PubMed  Google Scholar 

  55. Yamaleyeva LM, Lindsey SH (2017) Potential for miRNAs as biomarkers and therapeutic targets in preeclampsia. Hypertension 69:580–581. https://doi.org/10.1161/HYPERTENSIONAHA.117.08587

    CAS  Article  PubMed  Google Scholar 

  56. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55:275–286. https://doi.org/10.1111/jpi.12070

    CAS  Article  PubMed  Google Scholar 

  57. Zhang WM, Cao P, Xin L, Zhang Y, Liu Z, Yao N, Ma YY (2019) Effect of miR-133 on apoptosis of trophoblasts in human placenta tissues via Rho/ROCK signaling pathway. Eur Rev Med Pharmacol Sci 23:10600–10608. https://doi.org/10.26355/eurrev_201912_19755

    Article  PubMed  Google Scholar 

  58. Zhao ZM, Jiang J (2018) Lowly expressed EGFR-AS1 promotes the progression of preeclampsia by inhibiting the EGFR-JAK/STAT signaling pathway. Eur Rev Med Pharmacol Sci 22:6190–6197. https://doi.org/10.26355/eurrev_201810_16024

    Article  PubMed  Google Scholar 

  59. Zhou Y, Wu D, Tao J, Qu P, Zhou Z, Hou J (2013) MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol 47:423–432. https://doi.org/10.3109/00365599.2012.748821

    CAS  Article  PubMed  Google Scholar 

  60. Zhou W, Bi X, Gao G, Sun L (2016a) miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells. Biomed Pharmacother 84:722–729. https://doi.org/10.1016/j.biopha.2016.09.074

    CAS  Article  PubMed  Google Scholar 

  61. Zhou X, Li Q, Xu J, Zhang X, Zhang H, Xiang Y, Fang C, Wang T, Xia S, Zhang Q, Xing Q, He L, Wang L, Xu M, Zhao X (2016b) The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-beta signaling. Sci Rep 6:19910. https://doi.org/10.1038/srep19910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Zou Y, Jiang Z, Yu X, Sun M, Zhang Y, Zuo Q, Zhou J, Yang N, Han P, Ge Z, De W, Sun L (2013) Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo. PLoS ONE 8:e79598. https://doi.org/10.1371/journal.pone.0079598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Zou Y, Zuo Q, Huang S, Yu X, Jiang Z, Zou S, Fan M, Sun L (2014) Resveratrol inhibits trophoblast apoptosis through oxidative stress in preeclampsia-model rats. Molecules 19:20570–20579. https://doi.org/10.3390/molecules191220570

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hai-Yan Yang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest in the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, HY. MiR-133b regulates oxidative stress injury of trophoblasts in preeclampsia by mediating the JAK2/STAT3 signaling pathway. J Mol Histol 52, 1177–1188 (2021). https://doi.org/10.1007/s10735-021-10024-y

Download citation

Keywords

  • miR-133b
  • JAK2/STAT3
  • Preeclampsia
  • Oxidative stress