Skip to main content

Functional expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts

Abstract

TRPA1 and TRPV1 channels respond to external stimulation as pain mediators and form a complex with a transmembrane protein TMEM100 in some tissues. However, their expression and interaction in dental pulp is unclear. To investigate the functional co-expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts (HODs), immunohistochemistry, immunofluorescence staining and Western blot were used to study their co-localization and expression in both native HODs and cultured HOD-like cells. Calcium imaging was used to detect the functional interaction between TRPA1 and TRPV1 channels. Immunohistochemistry and multiple immunofluorescence staining of tooth slices showed positive expression of TRPA1 channel, TRPV1 channel and TMEM100 mainly in the cell bodies of HODs, and TRPA1 channel presented more obvious immunofluorescence in the cell processes than TRPV1 channel and TMEM100. HALO software analysis showed that TRPA1 and TRPV1 channels were positively expressed in most TMEM100+ HODs and these three proteins were strongly correlated in HODs (P < 0.01). The protein expression levels of TRPA1 channel, TRPV1 channel and TMEM100 in HODs showed no significant difference (P > 0.05). Double immunofluorescence staining of cultured HOD-like cells visually demonstrated that TRPA1 and TRPV1 channel were both highly co-localized with TMEM100 with similar expressive intensity. Calcium imaging showed that there was a functional interaction between TRPA1 and TRPV1 channels in HOD-like cells, and TRPA1 channel might play a greater role in this interaction. Overall, we concluded that TRPA1 channel, TRPV1 channel and TMEM100 could be functionally co-expressed in HODs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA (2000) Human dentin production in vitro. Exp Cell Res 258:33–41. https://doi.org/10.1006/excr.2000.4909

    CAS  Article  PubMed  Google Scholar 

  2. Allard B, Couble ML, Magloire H, Bleicher F (2000) Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 275:25556–25561. https://doi.org/10.1074/jbc.M002327200

    CAS  Article  PubMed  Google Scholar 

  3. An S (2019) The emerging role of extracellular Ca(2+) in osteo/odontogenic differentiation and the involvement of intracellular Ca(2+) signaling: from osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 234:2169–2193. https://doi.org/10.1002/jcp.27068

    CAS  Article  PubMed  Google Scholar 

  4. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284. https://doi.org/10.1016/j.cell.2009.09.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200. https://doi.org/10.1146/annurev-physiol-030212-183811

    CAS  Article  PubMed  Google Scholar 

  6. Bleicher F (2014) Odontoblast physiology. Exp Cell Res 325:65–71. https://doi.org/10.1016/j.yexcr.2013.12.012

    CAS  Article  PubMed  Google Scholar 

  7. El Karim IA, Linden GJ, Curtis TM, About I, Mcgahon MK, Irwin CR, Lundy FT (2011) Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pain 152:2211–2223. https://doi.org/10.1016/j.pain.2010.10.016

    CAS  Article  PubMed  Google Scholar 

  8. El Karim IA, McCrudden MT, McGahon MK, Curtis TM, Jeanneau C, Giraud T, Irwin CR, Linden GJ, Lundy FT, About I (2016) Biodentine reduces tumor necrosis factor alpha-induced TRPA1 expression in odontoblast like cells. J Endod 42:589–595. https://doi.org/10.1016/j.joen.2015.12.017

    Article  PubMed  Google Scholar 

  9. Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A (2014) Trafficking of thermoTRP channels. Membranes (Basel) 4:525–564. https://doi.org/10.3390/membranes4030525

    CAS  Article  Google Scholar 

  10. Gupta R, Saito S, Mori Y, Itoh SG, Okumura H, Tominaga M (2016) Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci Rep 6:1–14. https://doi.org/10.1038/srep37460

    CAS  Article  Google Scholar 

  11. Hamamoto T, Takumida M, Hirakawa K, Tatsukawa T, Ishibashi T (2009) Localization of transient receptor potential vanilloid (TRPV) in the human larynx. Acta Otolaryngol 129:560–568. https://doi.org/10.1080/00016480802273108

    CAS  Article  PubMed  Google Scholar 

  12. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J (2019) The role of transient receptor potential (TRP) channels in the transduction of dental pain. Int J Mol Sci 20:526. https://doi.org/10.3390/ijms20030526

    CAS  Article  PubMed Central  Google Scholar 

  13. Lee HK, Park JW, Seo YM, Kim HH, Lee G, Bae HS, Park JC (2016) Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp. J Mol Histol 47:345–351. https://doi.org/10.1007/s10735-016-9676-1

    CAS  Article  PubMed  Google Scholar 

  14. Linde A, Lundgren T (1995) From serum to the mineral phase. The role of the odontoblast in calcium transport and mineral formation. Int J Dev Biol 39:213–222

    CAS  PubMed  Google Scholar 

  15. Linsuwanont P, Palamara JE, Messer HH (2007) An investigation of thermal stimulation in intact teeth. Arch Oral Biol 52:218–227. https://doi.org/10.1016/j.archoralbio.2006.10.009

    CAS  Article  PubMed  Google Scholar 

  16. Moon EH, Kim MJ, Ko KS, Kim YS, Seo J, Oh SP, Lee YJ (2010) Generation of mice with a conditional and reporter allele for Tmem100. Genesis 48:673–678. https://doi.org/10.1002/dvg.20674

    CAS  Article  PubMed  Google Scholar 

  17. Muramatsu T, Kashiwagi S, Ishizuka H, Matsuura Y, Furusawa M, Kimura M, Shibukawa Y (2019) Alkaline extracellular conditions promote the proliferation and mineralization of a human cementoblast cell line. Int Endod J 52:639–645. https://doi.org/10.1111/iej.13044

    CAS  Article  PubMed  Google Scholar 

  18. Sato M, Sobhan U, Tsumura M, Kuroda H, Soya M, Masamura A, Nishiyama A, Katakura A, Ichinohe T, Tazaki M, Shibukawa Y (2013) Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts. J Endod 39:779–787. https://doi.org/10.1016/j.joen.2013.01.012

    Article  PubMed  Google Scholar 

  19. Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, Ichinohe T, Tazaki M (2015) Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch 467:843–863. https://doi.org/10.1007/s00424-014-1551-x

    CAS  Article  PubMed  Google Scholar 

  20. Ständer S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, Brzoska T, Lippert U, Henz BM, Luger TA, Metze D, Steinhoff M (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  Google Scholar 

  21. Staruschenko A, Jeske NA, Akopian AN (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285:15167–15177. https://doi.org/10.1074/jbc.M110.106153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Tsumura M, Sobhan U, Sato M, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Tazaki M, Shibukawa Y (2013) Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS ONE 8:e82233. https://doi.org/10.1371/journal.pone.0082233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Wen W, Que K, Zang C, Wen J, Sun G, Zhao Z, Li Y (2017) Expression and distribution of three transient receptor potential vanilloid (TRPV) channel proteins in human odontoblast-like cells. J Mol Histol 48:367–377. https://doi.org/10.1007/s10735-017-9735-2

    CAS  Article  PubMed  Google Scholar 

  24. Weng HJ, Patel KN, Jeske NA, Bierbower SM, Zou W, Tiwari V, Zheng Q, Tang Z, Mo GC, Wang Y, Geng Y, Zhang J, Guan Y, Akopian AN, Dong X (2015) Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85:833–846. https://doi.org/10.1016/j.neuron.2014.12.065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Yang R, Liu Y, Yu T, Liu D, Shi S, Zhou Y, Zhou Y (2018) Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discov 4:1. https://doi.org/10.1038/s41420-018-0071-4

    CAS  Article  PubMed  Google Scholar 

  26. Yoshiba K, Yoshiba N, Ejiri S, Iwaku M, Ozawa H (2002) Odontoblast processes in human dentin revealed by fluorescence labeling and transmission electron microscopy. Histochem Cell Biol 118:205–212. https://doi.org/10.1007/s00418-002-0442-y

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tianjin Natural Science Foundation [Grant No. 19JCYBJC29000] and Tianjin Municipal Natural Science Foundation [Grant No. 18JCQNJC78400].

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Weiping Tian or Kehua Que.

Ethics declarations

Conflict of interest

The authors deny any conflicts of interest related to this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Y., Lou, Y. et al. Functional expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts. J Mol Histol 52, 1105–1114 (2021). https://doi.org/10.1007/s10735-021-10018-w

Download citation

Keywords

  • TRPA1 channel
  • TRPV1 channel
  • TMEM100
  • Co-expression